第一篇:2016考研数学 费马定理
考研交流学习群【198233974】
对于中值定理这部分的学习,很多同学都感到很困惑。然而中值定理又是我们考研数学中的难点,这部分的试题灵活性,综合性比较强,对考生的思维要求比较高,同时这一部分在考试中经常是出证明题,学生的得分率比较低,这里我帮助同学们一起学习中值定理。首先是要理解并记忆定理的内容;二是记住定理的证明过程,并掌握这一部分试题主题的证明思想。费马定理是三大中值定理的引理,很多同学在复习的时候经常忽略,下面中公考研数学辅导老师就带大家来看费马定理。
对于费马定理这个内容主要是说明,如果要证函数发f(x)在一点的导数为零,只要证明在这点取极值(极大值或极小),则存在导数等于零。
中公考研
http://www.xiexiebang.com 考研交流学习群【198233974】
罗尔定理的证明是会用到费马定理的,对于费马定理一定要掌握。
中公考研
http://www.xiexiebang.com
第二篇:2018考研高数重要定理证明微积分基本定理
2018考研高数重要定理证明微积分基本定理
来源:智阅网
微积分基本定理是考研数学中的重要定理,考察的频率较高,难度也比较大,下面详细的讲解一下,希望大家有所收获。
微积分定理包括两个定理:变限积分求导定理和牛顿-莱布尼茨公式。
变限积分求导定理的条件是变上限积分函数的被积函数在闭区间连续,结论可以形式地理解为变上限积分函数的导数为把积分号扔掉,并用积分上限替换被积函数的自变量。注意该求导公式对闭区间成立,而闭区间上的导数要区别对待:对应开区间上每一点的导数是一类,而区间端点处的导数属单侧导数。花开两朵,各表一枝。我们先考虑变上限积分函数在开区间上任意点x处的导数。一点的导数仍用导数定义考虑。至于导数定义这个极限式如何化简,笔者就不能剥夺读者思考的权利了。单侧导数类似考虑。
“牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。”这段话精彩地指出了牛顿-莱布尼茨公式在高数中举足轻重的作用。而多数考生能熟练运用该公式计算定积分。不过,提起该公式的证明,熟悉的考生并不多。
该公式和变限积分求导定理的公共条件是函数f(x)在闭区间连续,该公式的另一个条件是F(x)为f(x)在闭区间上的一个原函数,结论是f(x)在该区间上的定积分等于其原函数在区间端点处的函数值的差。该公式的证明要用到变限积分求导定理。若该公式的条件成立,则不难判断变限积分求导定理的条件成立,故变限积分求导定理的结论成立。
注意到该公式的另一个条件提到了原函数,那么我们把变限积分求导定理的结论用原函数的语言描述一下,即f(x)对应的变上限积分函数为f(x)在闭区间上的另一个原函数。根据原函数的概念,我们知道同一个函数的两个原函数之间只差个常数,所以F(x)等于f(x)的变上限积分函数加某个常数C。万事俱备,只差写一下。将该公式右侧的表达式结合推出的等式变形,不难得出结论。
上面讲述的微积分基本定理是考研数学的高频考点,考生们要认真学习其解题方法,并且学会运用。汤神《考研数学接力题典1800》可以检验大家的复习效果,总结做题经验,对我们现阶段的复习帮助很大。
第三篇:考研数学定理证明
考研数学定理证明
不一定会考,或者说是好像近几年也就是09年的考题出过一道证明题(拉格朗日中值定理的证明)。但准备时最好把课本上几个重要定理(比如中值定理)的证明看下,做到会自己证明。还有就是几个证明过程或方法比较奇特的定理,要看懂证明。一个可以应付直接考证明题,还可以借鉴证明思路帮助自己解其他题目,算是开扩思路吧,总之看下会有好处的,而且也不是很多,比照课本自己总结下吧,我去年就是这么整理的。数学140+
定理的证明属于比较难的,可以不看。很多人看都看不懂,或者看懂了也不会用。
但是定理的结论和应用一定要会。
考研里的证明题属于压轴的,大部分人都做不出来,所以不用担心。只要把基本盘拿下,你的分数就应该能过国家线。
祝你成功。
呵呵非常理解你的处境。我觉得这个问题不难解决,主要有两个办法。下面帮你具体分析一下,呵呵~
一。旁听师弟师妹的数学课~优点:不仅经济,便利,而且对老师的水平有保证~因为都是你们学校的嘛,你可以事先充分打听好哪个老师哪门课讲得好,然后还能比较容易获取课程进度,这样就可以专门去听自己不懂得那块,针对性强矮甚至你下课后还可以就不懂得习题跟老师请教一下~就本人这么多年的上学经验,老师对“问题学生”都是欢迎的,至少不排斥~缺点:由于不是专门针对考研复习的讲授,有些东西可能不是很适合~举个例子吧,比如将同样的知识,高一时候和高三第一轮复习时,讲的侧重点就不一样~(但是个人觉得这不算什么大缺点~嘿嘿~)
二。报名参加专门的考验辅导班。优点显而易见。老师肯定都是有多年考研辅导经验的,指导复习当然针对性强,有事半功倍的效果。缺点就是,嘿嘿,学费问题。你所在地的学费情况我就不清楚了,你可以自己去查一下~
还有一句话想说,其实这两个办法也不是对立的,你可以在学校里去旁听老师的课,把第一轮扎扎实实的复习完,放假回家去报名参加个辅导班,利用假期有针对性的做第二轮复习~相信两轮复习下来,你的长进一定不蝎呵呵~
我就说这么多,要是以后想起来了会再来补充的~最后祝你如愿考上理想院校哦~加油
也不知道一楼是哪个名校数学系的研究生,广州大学吗?这么有才华!听他的话等楼主没考到130哭的地方都找不到。
考研每一门学科都要复习好几轮,也不知道楼主考什么专业,数学几?
基础差的话第一轮复习要弄清楚定理及其证明过程。如果应届本科生又是学理科,平时成绩不错,高数,线性分都很高的话第一轮可以直接看教材做题。
第四篇:考研数学高数真题分类—中值定理
点这里,看更多数学资料
一份好的考研复习资料,会让你的复习力上加力。中公考研辅导老师为考生准备了【高等数学-中值定理知识点讲解和习题】,同时中公考研网首发2017考研信息,2017考研时间及各科目复习备考指导、复习经验,为2017考研学子提供一站式考研辅导服务。
第三章 中值定理
综述:中值定理的证明一直是考研数学的难点.在考研数学一的考试中,这一部分的出题的频率比较稳定,一般两年出一道大题.从考试的情况来看,考生在这一部分普遍得分率不高.其主要原因是练习不够,不熟悉常见的思想方法,以及对证明题惯有的惧怕心理.其实这一部分的题目也是有一定套路的,只要掌握一些常见的证明思路,在大多数情况下就都可以轻松应对了.本章需要用到的主要知识点有:闭区间上连续函数的性质(有界性、最值定理,介质定理),费马引理,罗尔定理,拉格朗日中值定理,柯西中值定理和积分中值定理.根据题目的形式,我们将这一部分的题目分为了3种类型:中值定理的简单应用(直接能作出辅助函数的),复杂的中值定理证明(需要对等式变形才能作出辅助函数的),证明存在两点,a,b使得它们满足某种等式.常考题型一:对中值定理内容的考查
1.【02—3 4分】设函数fx在闭区间a,b上有定义,在开区间a,b上可导,则()
A当fafb0时,存在a,b,使得f0
fxfB对任何a,b,有lim0 xC对fafb时,存在a,b,使f'0 D存在(a,b),使f(b)f(a)f()(ba).中公考研,让考研变得简单!
查看更多考研数学辅导资料
点这里,看更多数学资料
2.【04-3 4分】设f(x)在[a,b]上连续,且f(a)0,f(b)0,则下列结论中错误的是()
(A)至少存在一点x0(a,b),使得f(x0)>f(a).(B)至少存在一点x0(a,b),使得f(x0)>f(b).(C)至少存在一点x0(a,b),使得f(x0)0.(D)至少存在一点x0(a,b),使得f(x0)= 0.3.【96-2 5分】求函数f(x)式.1x在x0点处带拉格朗日型余项的n阶泰勒展开1x4.【03-2 4分】y2x的麦克劳林公式中x项的系数是.n常考题型二:闭区间上连续函数性质
5.【02-3 6分】设函数f(x),g(x)在[a,b]上连续,且g(x)0.利用闭区间上连续函数性质,证明存在一点[a,b],使
baf(x)g(x)dxf()g(x)dx.ab常考题型三:罗尔定理的使用
6.【08-2 4分】设f(x)x2(x1)(x2),求f(x)的零点个数()A0 B1
C2
D3 7.【07—123 11分】设函数f(x),g(x)在a,b上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)g(a),f(b)g(b),证明:存在(a,b),使得f()g().8.【00—123 6分】设函数fx在[0,]上连续,且fxdx0,0fxcosxdx0.试证:在0,内至少存在两个不同的点、012,使得f1f20.9.【96—2 8
分】设fx在区间
a,b上具有二阶导数,且fafb0,fafb0试证明:存在a,b和a,b,使f0,中公考研,让考研变得简单!
查看更多考研数学辅导资料
点这里,看更多数学资料
及f0.10.【03—3 8分】设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)f(1)f(2)3,f(3)1.试证:必存在(0,3),使f()0.11.【10—3 10分】设函数f(x)在0,3上连续,在0,3内存在二阶导数,且2f(0)f(x)dxf(2)f(3), 02(I)证明存在(0,2),使f()f(0);;(II)证明存在(0,3),使f()0.
12.【93—3 6分】假设函数f(x)在[0,1]上连续,在(0,1)内二阶可导,过点A(0,f(0)),B(1,f(1))的直线与曲线yf(x)相交于点C(c,f(c)),其中0c1,证明:在(0,1)内至少存在一点,使f()0
【小结】:1.对命题为f(n)()0的证明,一般利用以下三种方法:
(1)验证为f(n1)(x)的最值或极值点,利用极值存在的必要条件或费尔马定理可得证;
(2)验证f(n1)(x)在包含x于其内的区间上满足罗尔定理条件.(3)如果f(x)在某区间上存在n个不同的零点,则f(n)(x)在该区间内至少存在一个零点.2.证明零点唯一性的思路:利用单调性;反证法.4.证明函数在某区间上至少有两个零点的思路有:证明该函数的原函数在该区间上有三个零点;先证明至少有一个零点,再用反证法证明零点不是唯一的.(这些结论在证明题中不能直接应用,应用它们的时候需要写出证明过程,但记住它们对复杂一点的证明题是很好的思路提示.)
4.费马引理、罗尔定理、拉格朗日中值定理和柯西中值定理的证明过程都是需要掌握的,它们不但是直接的考点。所涉及的思想方法在中值定理的证明过程中也有重要应用。
中公考研,让考研变得简单!
查看更多考研数学辅导资料
点这里,看更多数学资料
常考题型四:柯西中值定理的使用
13.【03—2 10分】设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,f(x)0.若极限limxaf(2xa)存在,证明:
xa(1)在(a,b)内f(x)0;(2)在(a,b)内存在点,使
b2a2baf(x)dx2; f()22(3)在(a,b)内存在与(2)中相异的点,使f()(ba)2bf(x)dx.aa
14.【08-2 10分】(I)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点[a,b],使得
baf(x)dxf()(ba);
(II)若函数(x)具有二阶导数,且满足,(2)(1),(2)点(1,3),使得()0.(x)dx,则至少存在一
23常考题型五:辅助函数的构造
15.【09—123 11分】(Ⅰ)证明拉格朗日中值定理:若函数fx在a,b上连续,在(a,b)可导,则存在a,b,使得fbfafba
fxA,(Ⅱ)证明:若函数fx在x0处连续,在0,0内可导,且limx0则f0存在,且f0A
16.【98-12 6分】设yf(x)是区间[0,1]上的任一非负连续函数.(1)试证存在x0(0,1),使得在区间0,x0上以f(x0)为高的矩形面积,等于在区间x0,1上以yf(x)为曲边的梯形面积.(2)又设f(x)在区间(0,1)内可导,且f(x)2f(x),证明(1)中的x0是唯一的.xx17.【13—3 10分】设函数f(x)在[0,]上可导,f(0)0且limf(x)2,证明
中公考研,让考研变得简单!
查看更多考研数学辅导资料
点这里,看更多数学资料
(1)存在a0,使得f(a)1
(2)对(1)中的a,存在(0,a),使得f'()1.a18.【95—1 8分】假设函数fx和gx在a,b上存在二阶导数,并且gx0,fafbgagb0,试证:
(1)在开区间a,b内,gx0;
ff(2)在开区间a,b内至少存在一点,使.gg19.【96—3 6分】设fx在区间0,1上可微,且满足条件f12试证:存在0,1,使f120xfxdx,f0.20.【01—3 9分】设fx在区间0,1内可导,且满足上连续,在0,1f1kxe1xfxdxk1证明至少存在一点0,1,使得f'11f
21.【99—3 7分】设函数fx在区间0,1内可导,且上连续,在0,11k01.试证: f0f10,f12(1)存在1,1,使f; 2(2)对任意实数,必存在0,,使得ff1.22.【13—12 10分】设奇函数f(x)在[1,1]上具有二阶导数,且f(1)1.证明:
(0,1)(I)存在,使得f()1;(II)存在1,1,使得f()f()1。
【小结】:
1.构造辅助函数的方法:1).将待证明结论中的改为x;2).通过初等变换将等式化为容易积分的形式;3).积分求出原函数,积分常数取作0;4).将等式两边移到一边,即中公考研,让考研变得简单!
查看更多考研数学辅导资料
点这里,看更多数学资料
是所需辅助函数.(n)2.如果要证明的等式为f()P()fn10,则令辅助函数为F(x)eP(x)dxf(n1)x。然后证明该函数满足罗尔定理,即可得到想要的结论。对命题为f(n)()0的证明,一般利用以下两种方法:方法一:验证为f(n1)(x)的最值或极值点,利用极值存在的必要条件或费尔马定理可得证;方法二:验证f(n1)(x)在包含x于其内的区间上满足罗尔定理条件.常考题型六:双中值问题
23.【05—12 12分】已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)0,f(1)1,证明:
(1)存在(0,1), 使得f()1;
(2)存在两个不同的点,(0,1),使得f()f()1.24.【10—2 10分】设函数f(x)在闭区间0,1上连续,在开区间0,1内可导,且111f(0)0,f(1),证明:存在(0,),(,1),使得f()f()=22.32225.【98—3 6分】设函数fx在a,b上连续,在a,b内可导,且fx0.试
febea证存在,a,b,使得e.fba【小结】:
1.等式中含有两个参数,的题目一般需要用两次柯西中值定理:由f(b)f(a)f()f(b)f(a)f()f(),得到f(b)f(a)g(b)g(a),g(b)g(a)g()h(b)h(a)h()g()f(b)f(a)f()f()f()h(b)h(a),从而有g(b)g(a)h(b)h(a),h()g()h()再通过初等变换得到需要证明的等式.2.当要证明的等式关于,具有轮换对称性时或题目中明确要求,不相同时,通常的做法是:选取适当的点c(a,b),在a,c和c,b上分中公考研,让考研变得简单!
查看更多考研数学辅导资料
点这里,看更多数学资料
别应用中值定理,然后得到所需要证明的等式.常考题型七:泰勒中值定理的使用
26.【01-1 7分】设yf(x)在(1,1)内具有二阶连续导数且f"(x)0,试证:(1)对于(−1,1)内的任意x0, 存在唯一的(x)∈(0,1),使f()xf0()立;
(2)lim(x)x0xf'()xx成1.227.【96-1 8分】 设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|a,|f(x)|b,其中a,b都是非负常数,c是(0,1)内任一点,证明|f(c)|ba2.228.【99-2 8分】设函数fx在闭区间1,1上具有三阶连续导数,且f10,f11,f00,证明:在开区间1,1内至少存在一点,使f3
29.【01-2 8分】设f(x)在区间[a,a](a0)上具有二阶连续导数,(f0)0,(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明在[a,a]上至少存在一点,使af()33aaf(x)dx.参考答案:
1.【02—3 4分】
B 2.【04-3 4分】 D 3.【96-2 5分】
1x2xn12nnn1f(x)12x2x(1)2x(1)(01)n21x(1x)(ln2)n4.【03-2 4分】
n!5.【02-3 6分】略 6.【08-2 4分】 D
中公考研,让考研变得简单!
查看更多考研数学辅导资料
点这里,看更多数学资料
在紧张的复习中,中公考研提醒您一定要充分利用备考资料和真题,并且持之以恒,最后一定可以赢得胜利。更多考研数学复习资料欢迎关注中公考研网。
中公考研,让考研变得简单!
查看更多考研数学辅导资料
第五篇:费马大定理的启示
“费马大定理”的启示
“设想你进入大厦的第一间房子,里面很黑,一片漆黑,你在家具之间跌跌撞撞,但是你搞清楚了每一件家具所在的位置,最后你经过6个月或者再长些的时间,你找到了开关,拉开了灯,突然整个房间充满光明,你能确切地明白你身在何处。然后,你又进入下一个房间,又在黑暗中摸索了6个月。因此每一次这样的突破,尽管有的时候只是一瞬间的事,有时候是一两天的时间,但它们实际上是之前许多个月在黑暗中跌跌撞撞的最终结果,没有前面的这一切它们是不可能出现的”——1996年3月,维尔斯因证明费马大定理获得沃尔夫奖
作为一个数学老师,数学是大多数学生讨厌的学科,而我们教师更多的只是告诉、教会学生就这么用,就这么做。怎么才能让学生不那么讨厌数学呢?我想应该从尊重数学开始。
当我第二次翻看《明朝那些事》时,我不禁又一次感慨:历史原来可以这样写?历史就应该这样写。本着这样的思维,在严谨的数学叙事中加上事件节点人物的历史,可能更有意思一些,最起码,让学生喜欢读,读的有趣味。从而使学生明白伟大的数学家是怎么影响整个世界的。尊重应该从这里开始。
这个念头一直萦绕脑海,直到我无意中打开选修3-1,才鼓舞起余勇,翻找资料,以费马大定理为主线说说几千年来数学家们前仆后继的历史。
222xyz
首先,我们来看一个公式:。
有人说:“这不就是勾股定理吗?直角三角形的两条直角边的平方等于斜边的平方。谁不知道?”
没错我们中国人知道勾股定理十分久远,公元前1100年,西周开国时期,周公与商高讨论测量时,商高就提到过“勾广三,股修四。径隅五”。这段话被记载于《周脾算经》中。而西方记载勾股定理的是哥伦比亚大学图书馆的泥版“普林顿322”大约公元前1900~公元前1600年的事。
但是中国人说的数学严格的说,应该叫算学。我国古代就有丰富的数学典籍注1,但是你看这些书籍的章节结构,就不难看出它鲜明的特点——实用。比如:《九章》中的方田、粟米、差分、少广、商功、均输等,就字面意思也能看出它就是为了解决实际问题。
我们中国就是一个实用的民族,就比如勾股定理,你拿去用就可以,不用计较为什么这样,这也就是为什么我们的典籍中很少有公理和定律的原因了。所以在世界主流数学史中,我国数学家是没有太多地位的,说起这个就不得不说有一个让国人气愤的事情,1972年,美国数学史家莫里斯·克莱因的《古今数学思想》注2序言里有这么一段话:“为了不让本书内容漫无目的的铺张,所以有些民族的数学我们就自动忽略了,如:日本、玛雅、中国。”他还说:“他们的数学对世界人类的主流思想是没有什么贡献的。”很让人不服气的说法,但是你回到数学历史的主流,不难发现我国的算学,跟世界主流数学的目的就不一样。
言归正传,我们回到古希腊。说道古希腊,就不得不提一个人——毕达哥拉斯。我们引以为豪的勾股定理,在初中的课本中也是用的毕达哥拉斯定理来引入的。毕达哥拉斯定理和勾股定理的区别就在于他们要证明这个结论。从这里你就可以发现东西方数学的区别,西方数学史这种死心眼般的研究精神,完全就是一种剔除了理性的宗教迷狂,是一种不出于实用的目的完全的智力上的比拼竞赛。就是佛教里的“贪嗔痴”!比如那些著名的数学问题:“四色问题”,不就是四种颜色就可以区分出复杂地图的行政区域么,放在我国,知道了就可以,但是在西方就一定要搞清楚为什么?还有“哥德堡七桥问题”,就是不重复的走过七座桥,对中国人来说我们讲究的是说走就走的旅行,神经病才研究这个,有这功夫,走两遍不就观光了吗?这就是实用主义和智力竞赛之间的区别。从一开始就分道扬镳了。
毕达哥拉斯就是前文那个公式的发现者。毕达哥拉斯(约公元前580~约前500)古希腊数学家、哲学家。他的信徒们组成了一个唯心主义学派——毕达哥拉斯学派。这个政治和宗教团体旨在用“数”去描述世间一切,他们从数学中感受到了整个世间那种美妙,他们认为数就是世界的规律。这也难怪,没有手机食物单调,娱乐空乏的年代,人们尤其是那些高智商圣贤智力充裕的人们找到了这个世界上让他兴奋的事情——从事“数”的研究,他的门徒们发现原来世间一切,上帝就是通过“数”来统治世界的。比如:音乐,和音好听,是因为一根弦是另一根弦的整数倍。凡此种种,这不就是天神的暗示么,我们就应该在数中生活啊,我们的一切包括生命就应该奉献、祭祀给这些数。公正的说这个学派早期它推动了数学研究发扬了这种精神,但后期也阻碍了数学的发展,著名的数学史上“第一次数学危机”就是又这个学派成员西帕索斯发现了2,从而颠覆了毕达哥拉斯学派的数学信仰,因为毕达哥拉斯终生的信仰就是,世间一切都是由整数构成,小数是两个整数的比,而西帕索斯发现一个问题:当x=y=1时,z等于什么?现在的初中生都知道是2。,而根据那个时候的数系,这推翻了毕达哥拉斯的世界理论依据。因为根号2是一个无限不循环小数,无法被两个整数表示。我们来证明根号2永远不能化成分数即可。这里又要用到反证法(高中数学课本有证明过程我复制了一下),我们先假设√2=a/b(a,b都是正整数不用说了吧)。现在,我们平方一次,a^2/b^2=2,于是,a^2=2*(b^2),这样一看,a^2就是偶数了,那么,a必然也是偶数。那就设a=2m吧,(2m)^2=2*(b^2),4*(m^2)=2*(b^2),b^2=2*(m^2),再一看,b也成偶数了,好吧,设为2n。现在问题来了,根号2不仅可以化成a/b,还可以化成m/n,而且,后者更简洁。按照同样的方法,可以一直化简下去,而分数必然存在最简形式,不可能无限化简,于是得出矛盾。所以,根号2永远不能化成分数。毕达哥拉斯最后没有办法解决,就像坚持日心说的布鲁诺一样西帕索斯本人也就被同门扔到河里杀害。此后30年数系才进一步扩充到了实数领域。
考虑到希腊文明的数学挺牛的,而这个毕达哥拉斯还不够牛,只是名气比较大而已,所以,我们得让古希腊人多出场几位。接下来,我可以推荐两个与费马大定理有关的重量级人物。
一个是欧几里得,欧几里得最大的贡献体现在几何学,最牛的著作叫《几何原本》。不过,他也有很多数论成就,所以,在费马大定理的故事中,他的名字会反复出现,根号2是无理数是他第一个证的,有无穷多个素数是他第一个证的,算术基本定理也是他第一个证的。罗胖不是提到“比如说我们学平面几何都知道,由那么简单的几个公理,居然可以推出如此缤纷的一个定理的世界”,第一个系统性(这个系统太牛逼了)地干这个事情的人就是欧几里得。至于那么简单的公理到底是几个?这个是有数字的,23个定义,5条公理,5条公设,这是所有推导的基础。当然,《几何原本》也有一些不严谨的地方,却仍然笑傲江湖两千年,直到希尔伯特写出《几何基础》,才算彻底完善了欧几里得几何。不过,欧几里得还是给后人挖了一个坑,就是他的第五公设比较啰嗦,怎么看都不像一个公理而像一个定理。于是,无所牛人前赴后继去证明这个东西,却发现,所有宣称证明了第五公设的人,其证明都陷入了循环论证的陷阱中,换句话说,证来证去只是它自己不同的变形而已。这个第五公设真正的问题在哪里呢?很简单,欧几里得几何叫平面几何,这个第五公设只在平面几何中成立,而别的公理或公设却都是具有普遍适用性的。修改一下第五公设,别的公理不变,非欧几何就诞生了。事实上,非欧几何遇到的最大障碍不是数学家解决这个问题的水平不够,而是来自传统观念的压力。高斯早就研究过非欧几何,但迟迟不敢发表,因为担心遭受各种攻击。还有一个波尔约,研究非欧几何成就斐然,可惜被高斯一盆凉水浇灭了激情。再一个就是罗巴切夫斯基,名气最大的非欧几何创始人,生前遭受各种打击,仍不屈不挠传播罗氏几何,死后多年才被承认,被赞誉为“几何学中的哥白尼”。这三个人不约而同地研究了非欧几何中的双曲几何情形,却留下一种椭圆几何情形,让黎曼捡了个漏。不过,黎曼搞定这种情形可不是凭运气,他从思路上就领先其他人了,其他人都是从公理系统出发研究,黎曼手握微分几何之武器直接玩起了曲率,不仅补充了椭圆几何的情形,还一举统一了欧氏平面几何、罗氏双曲几何和他的椭圆几何。这种牛逼人的牛逼事儿讲起来还是蛮有意思的。
好啦,下一个古希腊人,丢番图。欧几里得写了本《几何原本》,成了几何学的一代宗师,丢番图写了本《算术》,也是数论中的经典之作,他本人也荣登“代数学之父”的宝座。他提出的丢番图方程让无数后人为之奋斗,至今仍有大量问题未能解决。《算术》是本好书,费马有空就抱着读,费马大定理就是读《算术》的心得。
按照时间顺序,下一个该费马出场了。费马这辈子活得可是够值了。官场得意、婚姻美满、家庭幸福、子女争气,更牛逼的是,一个业余爱好让他名垂青史。读读别的数学家的故事,贫困、疾病、家庭不幸,还是来自同行的打击,各种问题层出不穷,简直就是“天才多磨难”,而费马的小日子,滋润得让人嫉妒。而且,费马这人不像同行那么玩命死磕,不就一业余爱好嘛,玩票心态就好了。结果,很多灵感嗖嗖地冒出来,挡都挡不住。后来人们一总结,这家伙比很多职业数学家成就还大:解析几何的发明者之一,对于微积分诞生的贡献仅次于牛顿和莱布尼茨,概率论的主要创始人之一,以及17世纪数论界第一人。不过,费马还是干了一件不厚道的事儿,就是在费马大定理的问题上,他宣称自己有了一个美妙的证法,就是不说,害得数学家们为之死磕了三百多年。
接下来,该欧拉上场了。欧拉是有史以来最多产的数学家,虽然眼睛不好使,但心算能力却是一流,简直是一台人体计算机。成就太多太多,就只好省略了。我们知道几件事就够了。欧拉无比牛逼,却仅仅证明了费马大定理n=3的情形,说明费马大定理真的很难。此外,罗胖提到哥德堡七桥问题,想说明西方人这种琢磨精神和中国人不同,其实,这个论据不充分,论点也不对,中国人也搞出了很多孤立的趣题和难题,这一点,东西方人是相似的。区别在哪儿呢?区别在于西方有欧拉这种数学家,他不是搞明白一个孤立问题就完事儿啦,而是由此出发,上升到理论高度,圆满地解决一类问题,更牛逼的是,一群数学家马上跟进,搞出更多东西,直到形成系统仍在推进,这就是我一直强调的数理系统的可怕之处。其实,这个哥德堡七桥问题本质上就是一笔画问题,中国人恰好也研究过,但中国人只是把它当成一种游戏,从来没想过要搞出一个数学分支。而到了西方人那里,“七桥问题”的研究是图论研究的开端,同时也为拓扑学的起源。顺便说下,“四色问题”和“七桥问题”是同类问题,属于图论,也可以看成拓扑学问题。别看“七桥问题”被欧拉轻松搞定,这个“四色问题”看似简单,却是一道难度绝不亚于费马大定理的难题。爱因斯坦的老师闵可夫斯基就曾经在学生面前夸下海口要证明之,结果失败只好放弃。最后,这个证明是依靠计算机完成的,虽然计算机的证明无法核对,这让很多数学家很不爽,但是,这提供了证明问题的新思路,也标志着计算机将在数学世界中发挥更大的作用,你能说,这种问题的研究没有意义吗?更何况,在证明的过程中,虽然多次失败,数学家们得到的东西可比问题本身多得多,这正是证明难题的意义,它会催生出很多宝贝,从而进一步完善数理体系。
下一个,该讲高斯了。高斯的贡献就不说了,这种神级人物,有多大贡献都是正常的,我讲讲他的两个毛病吧。第一个,就是研究问题时,只发表成熟而完善的证明,却不让别人捕捉到他的证明思路的蛛丝马迹。这非常不好,他的思路会给别人很多启发,反而是证明步骤,可利用价值低多了。另一个就是,高斯本人很牛逼,可是,却没干过什么提携后生的事情,反而不利于别人成长。也不是说他故意打击人家,就是别人觉得他牛逼,想请他指点一二时,他要么压根儿不理睬,要么冷冰冰的。前文提到的阿贝尔,其成果寄给高斯看,让高斯给扔了,伽罗华临死前写的东西也没忘给高斯寄一份儿,估计高斯也没看,波尔约(这次可是他朋友的儿子)研究非欧几何的成果,想得到他的支持,他说自己早就研究过了,波尔约于是心灰意冷。当然,高斯虽然有缺点,但他由于过于牛逼,世人赞扬崇拜唯恐不及,缺点也就没人计较了。
伽罗华肯定也是要谈的,但是,前面讲的伽罗华的故事太多了,这里不再赘述。就说一点,有人认为伽罗华是一个好色之徒,这是不公平的。一来,他是法国人,他只是做了一个正常法国男人会做的事情;二来,他也没有到处沾花惹草;三来,这件事本身就可能是一个圈套,作为一个激进的共和派青年,政府早就想把他弄死。说到底,伽罗华是一个数学天才,但运气不好,他之所以政治上这么激进,也是数学方面处处碰壁郁闷无处发泄造成的。当然了,伽罗华的悲剧也有自身缺点,就是写东西太简洁,年轻人容易浮躁,天才更是年少轻狂,思想本来就已经非常超前了,又不表述清楚,那些前辈们怎么会认真看呢?
前面提到的这些人都是大神,年轻时就很牛逼,然后牛逼了一辈子(虽然有的人一辈子也很短)。事实上,数学这个东西,最牛逼的思想往往是年轻人创立的,年长者只能为数学大厦添个砖加个瓦,却很少再有开山之举。一个数学家,如果到三十岁还没搞出什么成就,这辈子基本上就这样了。所以,数学界的最高奖菲尔兹奖只发给40岁以下的人,放宽到40岁,已经把各种意外都考虑进去了,可是,怀尔斯却是意外中的意外。他年轻时实在不够牛逼,三十多岁还在埋头苦干,到了四十岁却一举成名。我想,与其把怀尔斯的故事看成一个牛逼数学家的创奇,不如看成一个老屌丝逆袭的励志故事。都说数学家成名要趁早,比如他的同行陶哲轩同学,人家7岁进高中,9岁进大学,10岁、11岁、12岁参加国际数学奥林匹克竞赛分别拿下铜奖、银奖、金奖,20岁获得博士学位,24岁当教授,31岁时拿下菲尔兹奖。而31岁的怀尔斯在干嘛,默默无闻。混到33岁时,怀尔斯终于决定要干点什么了,命运也正好给了他一个机会。1985年,德国数学家格哈德·弗赖指出了谷山-志村猜想和费马大定理之间的关系,1986年,美国数学家里贝特证明了这一命题。怀尔斯意识到自己的机会来啦,费马大定理绕了一大圈,竟然和自己现在最擅长的领域椭圆曲线有关,必须赌一把了。于是,怀尔斯开始了长达七年的闭关修炼,当然了,修炼的时候还得偶尔放放风,因为之前不够牛,教授的位置不牢固,不发表论文会下岗的。修炼的过程前面讲过,就不说了,总之,博采众家之长,功力大大加深,七年之后出山,一举震动江湖。但是,数学家对待证明的态度是非常严谨的,数学证明一旦通过就永远正确,他们必须对后人负责,所以,怀尔斯的论文需要经过严格审查。六个顶级数学家开始对怀尔斯天书般的论文进行漫长的死磕,终于有一天,一个叫尼克·凯兹的发现了漏洞。说来也巧,当初怀尔斯论文发表前,想找个人内测一下,找的就是尼克·凯兹,那个时候,这哥们儿没发现问题,这都公开了,却揪出问题了,这让怀尔斯情何以堪:你丫是不是在逗我?事实上,这是个大问题,足以破坏怀尔斯的证明。至此,怀尔斯逆袭受挫,如果漏洞不能修复,不会有人为费马大定理的证明道路上多一个失败者而惋惜。好在这时怀尔斯已经混成了终身教授,不用担心下岗的风险了,宅在家里好好研究就行了。这次,他还找了一个助手,叫泰勒,这人是他之前的学生,一个牛逼而又值得信任的人,又经过将近一年的奋斗,终于填补了漏洞且简化了证明。怀尔斯一跃成为武林泰斗,这一次,地位无人撼动。接下来,我们要给怀尔斯几句颁奖词:他不一定是最聪明的,也不一定有着耀眼头衔,但一定以科学为生命,一定坚韧、谦和并一步一个脚印向前走。在这里,我还要提一下两个人:谷山丰和志村五郎。志村五郎是一个勤奋的人,很多地方和怀尔斯气质很像,而谷山丰,是一个真正的天才。谷山-志村猜想是费马大定理证明过程中最重要的一环,可是,在怀尔斯享受各种荣誉的时候,却很少有人愿意提及他们(虽然谷山丰在30多年前就自杀了,但志村五郎还在)。数学的世界,有时候,也是只认成功者。讲这件事,也是提醒大家:在费马大定理的故事中,怀尔斯不是唯一的主角,无数人为之奋斗过,他们甘为基石,他们也是英雄。
费马大定理的故事,至此终于可以结束了。
回顾人类解开宇宙奥秘的各个节点,探得进化论,主要靠达尔文;揭示力学原理,主要靠牛顿;艰深的相对论,可能有许多天才不懂,但创建它,也全凭一个爱因斯坦。发现元素周期律,创建精神分析理论,还有宇宙大爆炸、DNA分子结构模型……都只有一个两个人。唯独这个中学生都能看懂的费马大定理,各路英雄好汉,有的退避三舍,有的自愧无力,有的倾尽其力也只抓上一鳞半爪,连万能的计算机也无可奈何。但是,我们不仅仅要看到它的困难,更要看到困难背后的意义,费马大定理是一只“会下金蛋的鹅”(希尔伯特语):因为它,扩展了“无穷递降法”和虚数的应用;催生出库默尔的“理想数论”;促成了莫德尔猜想、谷山--志村猜想得证;拓展了群论的应用;加深了椭圆方程的研究;找到了微分几何在数论上的生长点;发现了伊利瓦金—弗莱切方法与伊娃沙娃理论的结合点;推动了数学的整体发展和研究……费马大定理催生出一批又一批重量级数学家,这是货真价实的事实,也是真正的厉害之处。“一个民族有一些关注天空的人,他们才有希望;一个民族只是关心脚下的事情,那是没有未来的。”
注1我国古代就有丰富的数学典籍,如:前文中的《周脾算经》、东汉末年比美《几何原本》的《九章算术》、公元400年的数学入门读物《孙子算经》,而盛唐时的李淳风,就是那个有名的“推背图”的道学家,他在算学馆整理编注了著名的《算学十书》虽然水平很次,没能培养出什么像样的数学家,但不可否认对盛唐的商业和天文历法有积极推动作用,此后各种不提,直到共济会的利玛窦和我国的徐光启共同翻译了《几何原本》等海外著作。但奇怪的是中国的数学新著往往都出现在乱世和盛世。数学家也星光璀璨,如:祖冲之,秦九韶,刘徽、杨辉,等。
注2《古今数学思想》不仅在科学界,在整个学术文化界都广泛、持久的影响。