2012年考研数学:高数中的重要定理与公式及其证明(一)

时间:2019-05-15 09:36:04下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2012年考研数学:高数中的重要定理与公式及其证明(一)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2012年考研数学:高数中的重要定理与公式及其证明(一)》。

第一篇:2012年考研数学:高数中的重要定理与公式及其证明(一)

高数中的重要定理与公式及其证明

(一)文章来源:跨考教育

考研数学中最让考生头疼的当属证明题,而征服证明题的第一关就是教材上种类繁多的定理证明。如果本着严谨的对待数学的态度,一切定理的推导过程都是应该掌握的。但考研数学毕竟不是数学系的考试,很多时候要求没有那么高。而有些定理的证明又过于复杂,硬要要求自己掌握的话很多时候可能是又费时又费力,最后还弄得自己一头雾水。因此,在这方面可以有所取舍。

现将高数中需要掌握证明过程的公式定理总结如下。这些证明过程,或是直接的考点,或是蕴含了重要的解题思想方法,在复习的初期,先掌握这些证明过程是必要的。

1)常用的极限

lim

ln(1x)

x

1,lim

e1x

x

x0x0

1,lim

a1x

x

x0

lna,lim

(1x)1

x

a

x0

lima,1cosx

x

x0

【点评】:这几个公式大家在计算极限的过程中都再熟悉不过了,但有没有人想

过它们的由来呢?事实上,这几个公式都是两个重要极限lim(1x)xe与

x0

lim

sinxx

x0

1的推论,它们的推导过程中也蕴含了计算极限中一些很基本的方法技

巧。证明:

lim

ln(1x)

x

x0

1:由极限lim(1x)xe两边同时取对数即得lim

x0

ln(1x)

x

x0

1。

lim

e1x

x

x0

1:在等式lim

ln(1x)

x

x0

1中,令ln(1x)t

te1

t,则xet1。由于极限

过程是x0,此时也有t0,因此有lim

t0

1。极限的值与取极限的符号

是无关的,因此我们可以吧式中的t换成x,再取倒数即得lim

lim

a1xe

x

e1x

x

x0

1。

x0

lna:利用对数恒等式得lim

a1x

x

x0

lim

e

xlna

1

x0

x

x,再利用第二个极限可

xlna

得lim

1

x0

x

lnalim

e

xlna

1

x0

xlna

lna。因此有lim

a1x

x0

lna。

lim

(1x)1

x(1x)1

x

a

a

x0

a:利用对数恒等式得

lim

x0

lim

e

aln(1x)

1

x0

x

alim

e

aln(1x)

1ln(1x)

x

x0

aln(1x)

alim

e

aln(1x)

1

x0

aln(1x)

lim

ln(1x)

x

x0

a

上式中同时用到了第一个和第二个极限。

x

2sinsin

1cosx1cosx11limlimlim:利用倍角公式得lim222

x0x0x0x2xx2x0x

2

x

1

2。

2)导数与微分的四则运算法则

(uv)uv,d(uv)dudv(uv)uvuv,d(uv)vduudv()

vu

''

'

'

'

'

'

vuuvv

''

uvduudv,d()(v0)2

vv

【点评】:这几个求导公式大家用得也很多,它们的证明需要用到导数的定义。

而导数的证明也恰恰是很多考生的薄弱点,通过这几个公式可以强化相关的概念,避免到复习后期成为自己的知识漏洞。具体的证明过程教材上有,这里就不赘述了。3)链式法则

设yf(u),u(x),如果(x)在x处可导,且f(u)在对应的u(x)处可导,则复合函数yf((x))在x处可导可导,且有:

f((x))

【点评】:同上。4)反函数求导法则

'

f(u)(x)或

''

dydx

dydududx

设函数yf(x)在点x的某领域内连续,在点x0处可导且f'(x)0,并令其反函数为xg(y),且x0所对应的y的值为y0,则有:

g(y0)

'

1f(x0)

'

1f(g(y0))

'

dxdy

1dydx

【点评】:同上。

5)常见函数的导数

x

'

x

'

1,'

sinxlnx

'

cosx,cosxsinx,1x

x

,logax

'

'

1xlna,e

x

'

e,axexlna

【点评】:这些求导公式大家都很熟悉,但很少有人想过它们的由来。实际上,掌握这几个公式的证明过程,不但可以帮助我们强化导数的定义这个薄弱点,对极限的计算也是很好的练习。现选取其中典型予以证明。证明:

x

'

x

1

:导数的定义是f'(x)lim

f(xx)f(x)

x,代入该公式得)1

x

1

x0

x

'

lim

(xx)x

x

(1x

x

x0

xx)1

x

1

x0

(1lim

x

xxx

。最后一

步用到了极限lim

x0

(1x)1

x

a

x0

a。注意,这里的推导过程仅适用于x0的情形。的情形需要另行推导,这种情况很简单,留给大家。

'

sinxcosx:利用导数定义sinxlim

'

sin(xx)sinx

x,由和差化积公式得

x0

x0

lim

sin(xx)sinx

x

2cos(x

lim

x0

xx)sin

x

cosx。cosx'sinx的证明类

似。

lnx

'

'

1x

:利用导数定义lnxlim

1xlna

'

ln(xx)lnx

x

lnxlna

ln(1

lim

x0

x)

1x

x0

x。

logax的证明类似(利用换底公式logax)。

e

x

'

e

x

:利用导数定义e

x

'

lim

e

(xx)

e

x

x0

x

lime

x0

x

e

x

1

x

e。a

x

x

'

elna

x的证明类似(利用对数恒等式axexlna)。

第二篇:高数中的重要定理与公式及其证明(二)

在这里,没有考不上的研究生。

高数中的重要定理与公式及其证明

(二)考研数学中最让考生头疼的当属证明题,而征服证明题的第一关就是教材上种类繁多的定理证明。如果本着严谨的对待数学的态度,一切定理的推导过程都是应该掌握的。但考研数学毕竟不是数学系的考试,很多时候要求没有那么高。而有些定理的证明又过于复杂,硬要要求自己掌握的话很多时候可能是又费时又费力,最后还弄得自己一头雾水。因此,在这方面可以有所取舍。

现将高数中需要掌握证明过程的公式定理总结如下。这些证明过程,或是直接的考点,或是蕴含了重要的解题思想方法,在复习的初期,先掌握这些证明过程是必要的。

6)定积分比较定理

如果在区间[a,b]上恒有f(x)0,则有f(x)dx0 ab

推论:ⅰ如果在区间[a,b]上恒有f(x)g(x),则有f(x)dxg(x)dx;aabb

ⅱ设M和m是函数f(x)在区间[a,b]上的最大值与最小值,则有:m(ba)f(x)dxM(ba)ab

【点评】:定积分比较定理在解题时应用比较广,定积分中值定理也是它的推论。掌握其证明过程,对理解及应用该定理很有帮助。具体的证明过程教材上有。

7)定积分中值定理

设函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一点使得下式成立:

b

af(x)dxf()(ba)

【点评】:微积分的两大中值定理之一,定积分比较定理和闭区间上连续函数的推论,在证明题中有重要的作用。考研真题中更是有直接用到该定理证明方法的题目,重要性不严而喻。具体证明过程见教材。

跨考魔鬼集训营01

在这里,没有考不上的研究生。

8)变上限积分求导定理

如果函数f(x)在区间[a,b]上连续,则积分上限的函数(x)f(x)dx在[a,b]上ax

可导,并且它的导数是

dx'(x)f(x)dxf(x),axb dxa

设函数F(x)u(x)

v(x)f(t)dt,则有F'(x)f(u(x))u'(x)f(v(x))v'(x)。

【点评】:不说了,考试直接就考过该定理的证明。具体证明过程见教材。

9)牛顿-莱布尼兹公式

如果函数f(x)在区间[a,b]上连续,则有f(x)dxF(b)F(a),其中F(x)是ab

f(x)的原函数。

【点评】:微积分中最核心的定理,计算定积分的基础,变上限积分求导定理的推论。具体证明过程见教材。

10)费马引理:

设函数f(x)在点x0的某领域U(x0)内有定义,并且在x0处可导,如果对任意的xU(x0),有f(x0)f(x)或f(x0)f(x),那么f'(x0)0

【点评】:费马引理是罗尔定理的基础,其证明过程中用到了极限的保号性,是很重要的思想方法。具体证明过程见教材。

11)罗尔定理:

如果函数f(x)满足

(1)在闭区间[a,b]上连续;

(2)在开区间(a,b)上可导

(3)在区间端点处的函数值相等,即f(a)f(b)

那么在(a,b)内至少存在一点(ab),使得f'()0。

【点评】:罗尔定理,拉格朗日中值定理,柯西中值定理是一脉相承的三大定理;它们从形式上看是由特殊到一般,后面的定理包含前面的定理,但实际上却是相互蕴含,可以相互推导的。这几个定理的证明方法也就是与中值有关的证明题主要的证明方法。中值定理的证明是高数中的难点,一定要多加注意。具体证明过

在这里,没有考不上的研究生。

程见教材。

12)拉格朗日中值定理:

如果函数f(x)满足

(1)在闭区间[a,b]上连续;

(2)在开区间(a,b)上可导

那么在(a,b)内至少存在一点(ab),使得f'()

【点评】:同上。

13)柯西中值定理:

如果函数f(x)和g(x)满足

(1)在闭区间[a,b]上连续;

(2)在开区间(a,b)上可导

f'()f(b)f(a)那么在(a,b)内至少存在一点(ab),使得'。g()g(b)g(a)f(b)f(a)。ba

【点评】:同上。

第三篇:高数中的重要定理与公式及其证明(六)

在这里,没有考不上的研究生。

高数中的重要定理与公式及其证明

(六)考研数学中最让考生头疼的当属证明题,而征服证明题的第一关就是教材上种类繁多的定理证明。如果本着严谨的对待数学的态度,一切定理的推导过程都是应该掌握的。但考研数学毕竟不是数学系的考试,很多时候要求没有那么高。而有些定理的证明又过于复杂,硬要要求自己掌握的话很多时候可能是又费时又费力,最后还弄得自己一头雾水。因此,在这方面可以有所取舍。

现将高数中需要掌握证明过程的公式定理总结如下。这些证明过程,或是直接的考点,或是蕴含了重要的解题思想方法,在复习的初期,先掌握这些证明过程是必要的。

7)二元函数偏导数存在与可微的关系

如果函数zf(x,y)在点(x,y)可微,则函数在该点连续且两个偏导数均存在,并且zzzxyoxy 【点评】:学到多元函数时第一个困扰我们的就是多元函数的可微与可导不再等价,它们与连续性的关系也变得更为复杂了。下面希望能通过几个定理与反例来将这个关系说清楚。

证明:

由可微的定义可知存在只与(x,y)有关而与x,y实数A,B使得zAxByo

现证明A在点(x,y)附近成立。zf(xx,y)f(x,y),由偏导数定义可知,这等价于证明A

lim。x0xx

由于zAxByo成立,因此f(xx,y)f(x,y)Axox

Axoxoxf(xx,y)f(x,y)limAlim则lim。x0x0x0xxx

由高阶无穷小的定义可知lim

也即Aoxxx00。因此,有Alimx0f(xx,y)f(x,y)。xz。x

跨考魔鬼集训营0

1在这里,没有考不上的研究生。

同理,可证Bz。y

证毕 注1:关于二元函数可微,偏导数存在、连续和偏导数连续的关系可以用下图来表示:

也就是说:偏导数连续的函数必然可微,可微的函数必然连续并且存在偏导数,但连续和偏导数存在这两个概念本身是互不包含的(也就是说连续的函数不一定存在偏导数,偏导数存在的函数也不一定连续)。注二:例如:

1)函数f(x,y)xy,在(0,0)连续,但偏导数不存在。

xy22x2y2,xy02)又如函数f(x,y),在(0,0)处的偏导数是存在的。

0,x2y20因为fx(0,0)limx0'f(x,0)f(0,0)0lim0,同理我们可以得到fy'(0,0)0 x0xx0

x212x22,limf(x,y)2 而limf(x,y)2xyxy2x225x5x0x0

也就说(x,y)沿不同路径趋于(0,0)得到的极限值是不一样的。因此二重极限(x,y)(0,0)limf(x,y)不存在。进而可得到f(x,y)在(0,0)点处不连续。

注三:如果二元函数f(x,y)的两个偏导数都存在且偏导数作为二元函数是连续的,则该二元函数是可微的。这也是一个定理,证明过程不需要掌握,但定理的结论要熟记。

跨考魔鬼集训营02

第四篇:2018考研高数重要定理证明微积分基本定理

2018考研高数重要定理证明微积分基本定理

来源:智阅网

微积分基本定理是考研数学中的重要定理,考察的频率较高,难度也比较大,下面详细的讲解一下,希望大家有所收获。

微积分定理包括两个定理:变限积分求导定理和牛顿-莱布尼茨公式。

变限积分求导定理的条件是变上限积分函数的被积函数在闭区间连续,结论可以形式地理解为变上限积分函数的导数为把积分号扔掉,并用积分上限替换被积函数的自变量。注意该求导公式对闭区间成立,而闭区间上的导数要区别对待:对应开区间上每一点的导数是一类,而区间端点处的导数属单侧导数。花开两朵,各表一枝。我们先考虑变上限积分函数在开区间上任意点x处的导数。一点的导数仍用导数定义考虑。至于导数定义这个极限式如何化简,笔者就不能剥夺读者思考的权利了。单侧导数类似考虑。

“牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。”这段话精彩地指出了牛顿-莱布尼茨公式在高数中举足轻重的作用。而多数考生能熟练运用该公式计算定积分。不过,提起该公式的证明,熟悉的考生并不多。

该公式和变限积分求导定理的公共条件是函数f(x)在闭区间连续,该公式的另一个条件是F(x)为f(x)在闭区间上的一个原函数,结论是f(x)在该区间上的定积分等于其原函数在区间端点处的函数值的差。该公式的证明要用到变限积分求导定理。若该公式的条件成立,则不难判断变限积分求导定理的条件成立,故变限积分求导定理的结论成立。

注意到该公式的另一个条件提到了原函数,那么我们把变限积分求导定理的结论用原函数的语言描述一下,即f(x)对应的变上限积分函数为f(x)在闭区间上的另一个原函数。根据原函数的概念,我们知道同一个函数的两个原函数之间只差个常数,所以F(x)等于f(x)的变上限积分函数加某个常数C。万事俱备,只差写一下。将该公式右侧的表达式结合推出的等式变形,不难得出结论。

上面讲述的微积分基本定理是考研数学的高频考点,考生们要认真学习其解题方法,并且学会运用。汤神《考研数学接力题典1800》可以检验大家的复习效果,总结做题经验,对我们现阶段的复习帮助很大。

第五篇:考研数学:高数重要公式总结(基本积分表)

凯程考研

历史悠久,专注考研,科学应试,严格管理,成就学员!

考研数学:高数重要公式总结(基本积

分表)

考研数学中公式的理解、记忆是最基础的,其次才能针对具体题型进行基础知识运用、正确解答。凯程小编总结了高数中的重要公式,希望能帮助考研生更好的复习。

其实,考研数学大多题目考查的还是基础知识的运用,难题异题并不多,只要大家都细心、耐心,都能取得不错的成绩。考研生加油哦!凯程考研,考研机构,10年高质量辅导,值得信赖!以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。

凯程考研

历史悠久,专注考研,科学应试,严格管理,成就学员!

凯程考研:

凯程考研成立于2005年,具有悠久的考研辅导历史,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。凯程考研的宗旨:让学习成为一种习惯; 凯程考研的价值观:凯旋归来,前程万里; 信念:让每个学员都有好最好的归宿;

使命:完善全新的教育模式,做中国最专业的考研辅导机构; 激情:永不言弃,乐观向上;

敬业:以专业的态度做非凡的事业;

服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。

特别说明:凯程学员经验谈视频在凯程官方网站有公布,同学们和家长可以查看。扎扎实实的辅导,真真实实的案例,凯程考研的价值观:凯旋归来,前程万里。

如何选择考研辅导班:

在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。

师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经

凯程考研,考研机构,10年高质量辅导,值得信赖!以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。

凯程考研

历史悠久,专注考研,科学应试,严格管理,成就学员!

验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。判断师资力量关键在于综合实力,因为任何一门课程,都不是由

一、两个教师包到底的,是一批教师配合的结果。还要深入了解教师的学术背景、资料著述成就、辅导成就等。凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。

对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。在凯程官方网站的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。对于如此高的成绩,凯程集训营班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。最好的办法是直接和凯程老师详细沟通一下就清楚了。

凯程考研历年战绩辉煌,成就显著!

在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下国内最高学府清华大学五道口金融学院金融硕士29人,占五道口金融学院录取总人数的约50%,五道口金融学院历年状元均出自凯程.例如,2014年状元武玄宇,2013年状元李少华,2012年状元马佳伟,2011年状元陈玉倩;考入北大经院、人大、中财、外经贸、复旦、上财、上交、社科院、中科院金融硕士的同学更是喜报连连,总计达到150人以上,此外,还有考入北大清华人大法硕的张博等10人,北大法学考研王少棠,北大法学经济法状元王yuheng等5人成功考入北大法学院,另外有数10人考入人大贸大政法公安大学等名校法学院。北师大教育学和全日制教育硕士辅导班学员考入15人,创造了历年最高成绩。会计硕士保录班考取30多人,中传郑家威勇夺中传新闻传播硕士状元,王园璐勇夺中传全日制艺术硕士状元,(他们的经验谈视频在凯程官方网站有公布,随时可以查看播放。)对于如此优异的成绩,凯程辅导班班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。

考研路上,拼搏和坚持,是我们成功的必备要素。

凯程考研,考研机构,10年高质量辅导,值得信赖!以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。

凯程考研

历史悠久,专注考研,科学应试,严格管理,成就学员!

王少棠

本科学校:南开大学法学

录取学校:北大法学国际经济法方向第一名 总分:380+ 在来到凯程辅导之前,王少棠已经决定了要拼搏北大法学院,他有自己的理想,对法学的痴迷的追求,决定到最高学府北大进行深造,他的北大的梦想一直激励着他前进,在凯程辅导班的每一刻,他都认真听课、与老师沟通,每一个重点知识点都不放过,对于少棠来说,无疑是无比高兴的是,圆梦北大法学院。在复试之后,王少棠与凯程老师进行了深入沟通,讲解了自己的考研经验,与广大考北大法学,人大法学、贸大法学等同学们进行了交流,录制为经验谈,在凯程官方网站能够看到。

王少棠参加的是凯程考研辅导班,回忆自己的辅导班的经历,他说:“这是我一辈子也许学习最投入、最踏实的地方,我有明确的复习目标,有老师制定的学习计划、有生活老师、班主任、授课老师的管理,每天6点半就起床了,然后是吃早餐,进教室里早读,8点开始单词与长难句测试,9点开始上课,中午半小时吃饭,然后又回到教室里学习了,夏天比较困了就在桌子上睡一会,下午接着上课,晚上自习、测试、答疑之类,晚上11点30熄灯睡觉。”

这样的生活,贯穿了我在辅导班的整个过程,王少棠对他的北大梦想是如此的坚持,无疑,让他忘记了在考研路上的辛苦,只有坚持的信念,只有对梦想的勇敢追求。

龚辉堂

本科西北工业大学物理

考入:五道口金融学院金融硕士(原中国人民银行研究生部)作为跨地区跨校跨专业的三凯程生,在凯程辅导班里经常遇到的,五道口金融学院本身公平的的传统,让他对五道口充满了向往,所以他来到了凯程辅导班,在这里严格的训练,近乎严苛的要求,使他一个跨专业的学生,成功考入金融界的黄埔军校,成为五道口金融学院一名优秀的学生,实现了人生的重大转折。

在凯程考研辅导班,虽然学习很辛苦,但是每天他都能感觉到自己在进步,改变了自己以往在大学期间散漫的学习状态,进入了高强度学习状态。在这里很多课程让他收获巨大,例如公司理财老师,推理演算,非常纯熟到位,也是每个学生学习的榜样,公司理财老师带过很多学生,考的非常好。在学习过程中,拿下了这块知识,去食堂午餐时候加一块鸡翅,经常用小小的奖励激励自己,寻找学习的乐趣。在辅导班里,学习成绩显著上升。

在暑期,辅导班的课程排得非常满,公共课、专业课、晚自习、答疑、测试,一天至少12个小时及以上。但是他们仍然特别认真,在这个没有任何干扰的考研氛围里,充实地学习。

在经过暑期严格的训练之后,龚对自己考入五道口更有信心了。在与老师沟通之后,最终确定了五道口金融学院作为自己最后的抉择,决定之后,让他更加发奋努力。

五道口成绩公布,龚辉堂成功了。这个封闭的考研集训,优秀的学习氛围,让他感觉有

凯程考研,考研机构,10年高质量辅导,值得信赖!以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。

凯程考研

历史悠久,专注考研,科学应试,严格管理,成就学员!

质的飞跃,成功的喜悦四处飞扬。

另外,在去年,石继华,本科安徽大学,成功考入五道口金融学院,也就是说,我们只要努力,方向正确,就能取得优异的成绩。师弟师妹们加油,五道口、人大、中财、贸大这些名校等着你来。

黄同学(女生)本科院校:中国青年政治学院 报考院校:中国人民大学金融硕士 总分:跨专业380+ 初试成绩非常理想,离不开老师的辛勤辅导,离不开班主任的鼓励,离不开她的努力,离不开所有关心她的人,圆梦人大金融硕士,实现了跨专业跨校的金融梦。

黄同学是一个非常腼腆的女孩子,英语基础算是中等,专业课是0基础开始复习,刚刚开始有点吃力,但是随着课程的展开,完全能够跟上了节奏。

初试成绩公布下来,虽然考的不错,班主任老师没有放松对复试的辅导,确保万无一失,拿到录取通知书才是最终的尘埃落地,开始了紧张的复试指导,反复的模拟训练,常见问题、礼仪训练,专业知识训练,每一个细节都训练好之后,班主任终于放心地让她去复试,果然,她以高分顺利通过复试,拿到了录取通知书。这是所有凯程辅导班班主任、授课老师、生活老师的成功。

张博,从山东理工大学考入北京大学法律硕士,我复习的比较晚,很庆幸选择了凯程,法硕老师讲的很到位,我复习起来减轻了不少负担。愿大家在考研中马到成功,也祝愿凯程越办越好。

张亚婷,海南师范大学小学数学专业,考入了北京师范大学教育学部课程与教学论方向,成功实现了自己的北师大梦想。特别感谢凯程的徐影老师全方面的指导。

孙川川,西南大学考入中国传媒大学艺术硕士,播音主持专业。在考研辅导班,进步飞快,不受其他打扰,能够全心全意投入到学习中。凯程老师也很负责,真的很感谢他们。

在凯程考研辅导班,他们在一起创造了一个又一个奇迹。从河南理工大学考入人大会计硕士的李梦说:考取人大,是我的梦想,我一直努力,肯定能够成功的,只要我们不放弃,不抛弃,并且一直在努力前进创造成功的条件,每个人都能够成功。正确的方法+不懈的努力+良好的环境+严格的管理=成功。我相信,每个人都能够成功。

凯程考研,考研机构,10年高质量辅导,值得信赖!以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。

下载2012年考研数学:高数中的重要定理与公式及其证明(一)word格式文档
下载2012年考研数学:高数中的重要定理与公式及其证明(一).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    考研数学定理证明

    考研数学定理证明不一定会考,或者说是好像近几年也就是09年的考题出过一道证明题(拉格朗日中值定理的证明)。但准备时最好把课本上几个重要定理(比如中值定理)的证明看下,做到......

    考研数学高数重要知识点(合集5篇)

    考研数学高数重要知识点摘要:从整个学科上来看,高数实际上是围绕着、导数和积分这三种基本的运算展开的。对于每一种运算,我们首先要掌握它们主要的计算方法;熟练掌握计算方法......

    高数中需要掌握证明过程的定理

    高数中的重要定理与公式及其证明(一) 考研数学中最让考生头疼的当属证明题,而征服证明题的第一关就是教材上种类繁多的定理证明。如果本着严谨的对待数学的态度,一切定理的推导......

    考研高数局部保号性在定理证明中的应用

    Born To Win 考研数学:局部保号性在定理证明中的应用 学习函数极限的性质的时候,有一个重要的性质叫做函数极限的局部保号性,也称为局部保序性,今天跨考教育数学教研室邵伟如老......

    高等数学考研几个重要定理的证明

    几个重要定理的证明1、 罗尔定理(考过)如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)上可导,且f(a)= f(b),则在开区间(a,b)内至少存在一点£,使得f'()=0.证:∵函数f(x)在闭区间[a,b]上连续∴由......

    考研数学高数真题分类—中值定理[5篇范文]

    点这里,看更多数学资料 一份好的考研复习资料,会让你的复习力上加力。中公考研辅导老师为考生准备了【高等数学-中值定理知识点讲解和习题】,同时中公考研网首发2017考研信息,2......

    2019考研数学:高数各章节重要考点汇总(★)

    一、函数极限连续 1、正确理解函数的概念,了解函数的奇偶性、单调性、周期性和有界性,理解复合函数、反函数及隐函数的概念。 2、理解极限的概念,理解函数左、右极限的概念以及......

    考研.数学 高数总结3

    定积分理论 一、实际应用背景 1、运动问题—设物体运动速度为vv(t),求t[a,b]上物体走过的路程。 (1)取at0t1tnb,[a,b][t0,t1][t1,t2][tn1,tn], 其中tititi1(1in); (2)任取i[xi1,xi](......