第一篇:烧碱制备工艺流程
烧碱的制备工艺简介
现代工业主要通过电解饱和NaCl溶液来制备烧碱。电解法又分为水银法、隔膜法和离子膜法,我国目前主要采用的是隔膜法和离子膜法,这二者的主要区别在于隔膜法制碱的蒸发工序比离子膜法要复杂,而离子膜法多了淡盐水脱氯及盐水二次精制工序。
目前我国主要采取隔膜电解法和离子膜电解法。在这次年产五万吨烧碱工艺流程序初步设计中我采取的是隔膜法制烧碱的氢气处理方法,并简要讨论工艺中的能耗情况。原料为粗盐(含大量杂质的氯化钠),根据生产工艺中的耗能情况,将烧碱制法分为整流、盐水精制、盐水电解、液碱蒸发、氯氢处理、固碱生产和废气吸收工序等七个流程。
图1 烧碱工艺总流程示意图
1-整流
2-盐水精制 3-电解
4-氯氢处理
5-液碱蒸发
6-固碱生产
1.1整流
整流是将电网输入的高压交流电转变成供给电解用的低压直流电的工序,其能耗主要是变压、整流时造成的电损,它以整流效率来衡量。整流效率主要取决于采用的整流装置,整流工序节能途径是提高整流效率。当然减少整流器输出到电解槽之间的电损也是不容忽略的。
1.2盐水精制 将工业盐用水溶解饱和并精制(除去Ca、M g、S 04等有害离子和固体杂质)获得供电解用精制饱和盐水,是盐水精制工序的功能。一 一次盐水精制:
一次澄清盐水的制备是氯碱生产工艺至关重要的工段,精制效果的好坏直接影响产品的质量和产量。传统性的一次盐水精制工艺,采用配水、化盐、加精制剂反应、澄清、砂滤,然后再经炭素烧结管过滤器过滤。近几年新建氯碱装置一次盐水工艺大都采用膜过滤技术制取精制盐水,该工艺路线省去了砂滤器、炭素烧结管过滤器。经生产实践证明,经膜过滤分离方法制得的一次盐水质量指标、设备投资等都比传统工艺理想。所以一次精制盐水工艺采用膜过滤器过滤工艺。采用膜过滤器(不预涂)
2+2+2-
图2 盐水一次精制流程图
二次盐水精制: 二次盐水精制采用螯合树脂塔进行吸附。离子膜法电解槽使用的高度选择性离子交换膜要求入槽盐水的钙、镁离子含量低于20wtppb,普通的化学精制法只能使盐水中的钙、镁离子含量降到10wtppb左右。若使钙、镁离子含量降到20wtppb的水平,必须用螯合树脂处理。二次盐水精制的主要工艺设备是螯合树脂塔,分二塔式和三塔式流程。塔的运行与再生处理及其周期性切换程序控制,可由程序控制器PLC实现,PLC与集散控制系统DCS可以实现数据通讯;也可以直接由DCS实现控制。建议采用三塔式流程。
图3 盐水二次精制流程图
1.3电解
精制的饱和食盐水进入阳极室;纯水(加入一定量的NaOH溶液)加入阴极室,通电后H2O在阴极表面放电生成H2,Na+则穿过离子膜由阳极室进入阴极室,此时阴极室导入的阴极液中含有NaOH;Cl-则在阳极表面放电生成Cl2。电解后的淡盐水则从阳极室导出,经添加食盐增加浓度后可循环利用。
阴极室注入纯水而非NaCl溶液的原因是阴极室发生反应为2H++2e-=H2↑;而Na+则可透过离子膜到达阴极室生成NaOH溶液,但在电解开始时,为增强溶液导电性,同时又不引入新杂质,阴极室水中往往加入一定量NaOH溶液。
具体流程:由二次盐水精制工序送来的精制盐水,通过盐水高位槽,进入电解槽的阳极液进料总管。其流量由每个电解槽的自调阀来控制,以保证阳极液的浓度达到规定值。进槽值由送入每台电解槽的直流电流进行串控制。浓度31%的高纯盐酸用来中和从阴极室通过离子膜渗透到阳极室的OH-离子,盐酸经过自动调节与阳极液一起送入阳极室。精制盐水在阳极室中进行电解,产生氯气,同时NaCL浓度降低。电解槽进、出口之间的NaCL
分
解
率
为
约
50%。
每个阳极室都有两个挠性软管,一个连接进料总管,另一个连接出料总管。电解后产生的氯气和淡盐水混合物通过软管汇集排入阳极液总管,并在总管中进行气体
和
液
体
分
离。
氯气在氯气总管中进行汇集后送入淡盐水储槽顶部。在此,氯气中的水分被分离并滴落,然后氯气被送往界外。氯气压力由自调阀控制。淡盐水送入淡盐水储槽底部,然后用淡盐水循环泵一部分经液位自调控制送往脱氯工序;另一部分送往电解槽,进槽淡盐水流量由自动控制。阴极液在阴极室电解产生氢气和烧碱,碱液进入阴极液循环槽,通过阴极液循环泵一部分经阴极液冷却器进入碱高位槽后,进入电槽,这部分电解液进槽前加纯水稀释,纯水量自调由直流电和碱串级控制;另一部分电解液经液位自调控制送入碱冷却器冷却至约45℃后送往碱储槽,然后送往罐区。氢气在阴极液出口总管中分离,并在氢气主管线中进行汇集后,送到碱液循环槽顶部。氢气中的水分被分离并滴落,然后氢气送往界外。氢气压力由自调阀控制,与氯气压力串级控制,使氢气和氯气之间压差保持在设定范围内(5KPa)。
图4 精制盐水电解示意图
图5 电解反应方程式
1.4 氯氢处理
氯气处理工序均包括氯气洗涤、冷却除雾、干燥、压缩;氢气处理均包括氢气洗涤、压缩、脱氧、干燥。
离子膜法制碱时,建议氯气处理工艺方案:湿氯气经氯水洗涤,钛管换热器,氯气除盐、降温后经一段填料塔、二段泡罩塔干燥,使氯气含水量≤50wtppm,氯气输送选用大型离心式氯气压缩机(透平压缩机)。通常根据氯气压缩机压力的不同,将氯气液化方式分为高压法、中压法和低压法三种。高压法消耗冷冻量少,不需要制冷机,能耗低。但对氯气处理工艺、氯气输送设备的要求高,增加投资费用。因此,国内一般采用中、低压液化方法生产液氯。如下图所示。
图6
电解后氯气处理示意图
1-氯气洗涤塔;2-鼓风机;3-Ⅰ段冷却器;4-Ⅱ段冷却器;5-水雾捕集器;
6-填料干燥塔;7-泡罩干燥塔;8-酸雾捕集器;9-氯压机
氢气处理工艺:电解出来的饱和湿氢气中含有大量的水和其他气体,一般采用间接法和直接法除去以达到工艺要求。由于在本次设计中不充分考虑热综合利用,所以采用直接法进行氢气的处理,可以简化工艺流程,节约投资费用。它是由电解槽中出来的氢气经氢气缓冲罐后进入一段洗涤塔洗去一部分的杂质及使氢气冷却至50℃后在经二段洗涤塔除杂质及冷却至30℃,之后再经过丝网除雾器除去盐和碱的雾沫后,用罗茨鼓风机抽送至分配台进行下一阶段的分配。氢气处理工艺流程图见下:
湿氢气缓冲罐一段洗涤塔二段洗涤塔除雾器去用户
4、淡
盐
水
脱
氯
工
序
电解槽出来的淡盐水和氯氢处理来的氯水混合后,用31%的高纯盐酸将PH值调节到约1.5,送入脱氯塔的顶部。脱氯塔的压力为-70~75Kpa,由真空泵进行控制。脱氯塔出口处游离氯降低到50mg/L,脱出的氯气汇入氯气总管,也可送入废气吸收塔。
脱氯后的淡盐水先用NaOH把PH调到9~11,再将亚硫酸钠储槽中配制的浓度为10wt%的亚硫酸钠溶液用亚硫酸钠泵加入到淡盐水管道中,以彻底除去残余的游离氯。游离氯含量为0的脱氯盐水送回一次盐水工序化盐。1.5 液碱蒸发
将电解槽生产的液碱通过蒸发系统用蒸汽加热将一部分水蒸出,并将绝大部分盐(N a C I)分离出去,从而获得成品液碱。
1.6 固碱生产
将蒸发获得的液碱采用大锅熬煮或升膜一降膜一闪蒸方法进一步浓缩生产固碱,其主要消耗是燃料(煤、重油、氢气)。因此,固碱生产节能主要是充分利用燃料燃烧热量和节约燃料的流程等。
第二篇:煤粉制备系统工艺流程简介
水泥厂煤粉制备系统工艺流程简介
原煤由汽车运至原煤堆场,预均化堆场最大储量3700t,有效储量3300t,储存期7.12天,经板式喂料机由皮带输送至原煤预均化堆场预均化及储存,堆料能力150t/h,取料能力80t/h,原煤均化后由皮带送至煤磨原煤仓。
煤磨制备采用一台3.8(7.75+3.5)m风扫式煤磨系统,设计原煤水分≤8.5%,原煤进料粒度≤25mm,产品细度R80≤6%时,生产能力41t/h。
原煤经原煤仓、定量给料机喂入煤磨系统,在磨内进行烘干与粉磨,煤粉由出磨气体带入煤磨动态选粉机,分离出的粗粉返回磨头再次粉磨,细粉随气体进入高浓度煤磨专用袋式除尘器,收集下的煤粉送入带有荷重传感器的煤粉仓。煤粉制备系统利用窑尾废气作为烘干热源。
煤粉仓下设有分解炉及窑头喂煤计量系统,计量后的煤粉气力输送至窑尾分解炉燃烧器和窑头多通道煤粉燃烧器。
第二章 煤粉制备系统启停操作及注意事项
第一节 煤粉制备系统设备启停操作
2.1.1 煤磨系统开停机顺序 2.1.1.1 煤磨系统开机顺序(1)煤磨辅助系统组(2)煤粉输送设备组(3)收尘、排风机组(4)启动煤磨主电机
(5)启动煤磨喂料组(定量给料机)2.1.1.2 煤磨系统停机顺序与开机顺序相反。2.1.2 煤磨系统的联锁
(1)减速机稀油站,进出口大瓦稀油站跳→煤磨跳→定量给煤机跳。(2)煤磨排风机跳→煤磨选粉机跳→煤磨跳→定量给煤机跳。2.1.3 运行前的准备工作
(1)现场对系统设备进行巡检,确认设备是否具备开机条件。
(2)进行联锁检查,确认现场所有设备均打到“中控”位置,并处于备妥状态。(3)开机前通知巡检员、窑操。
(4)检查原煤仓、煤粉仓料位,原煤仓料位不足则启动原煤预均化输送组。(5)通知质管部做好取样准备。
(6)通知巡检员确认灭火系统可随时投入运行。(7)检查各档板、闸阀位置是否正确,动作是否灵活。2.1.4 正常操作过程
2.1.4.1 窑尾废气作为烘干热源
(1)联系窑操及巡检员,检查煤粉制备系统具备启动条件,确认袋收尘温度,各挡板关闭,检查关闭冷风阀及热风阀;
(2)启动煤磨辅助设备组,确认各润滑系统正常。高压油泵启动后10min 煤磨方可启动。如果油温过低,则先投入电加热;
(3)启动煤粉输送设备组,调整煤粉仓入口气动开关阀开度;
(4)启动煤磨排风机正常后,启动袋收尘组,启动高效选粉机,待电流稳定后调节相应档板,使磨入口处
保持微负压(-100Pa ~-150 Pa),联系窑操,启动煤磨热风风机,缓慢调整煤磨各风门开度,使磨机出口温度和袋收尘入口温度逐渐达到正常工作温度;(5)启动煤磨主电机组,并通知化验室;
(6)逐渐调整各风门、挡板开度,注意系统温度变化,控制出磨气体温度≤75℃;
(7)启动原煤喂料机,依据原煤的情况和煤粉质量的要求,根据磨机电流、差压、进出口气体温度、选粉机电流等参数调整给料机喂煤量。同时调整各档板开度,确保煤磨稳定运行;
(8)如果启用热风炉作热源,则热风炉出口温度保持在200~250℃,磨进口热源切换至热风炉。其余操作同上,控制磨产量,保证质量。2.1.5煤粉制备系统正常调整 2.1.7.1 喂煤量的控制
(1)磨机在正常操作中,在保证出磨煤粉质量的前提下,尽可能提高磨机的产量,喂料量的多少是通过给料机速度来调节,根据化验室提供的原煤质量,喂料量的 多少可根据磨机的电流、进出口温度、差压、选粉机电流等参数来决定,在增减喂料量的同时,调节各档板开度,保证磨机出口温度;
(2)原煤水分增大,喂煤量要减少,反之则增加,也可用调节热风量的办法来平衡原煤水分的变化;(3)原煤易磨性变好,喂煤量要增加.反之则减少;
(4)煤磨出口负压增加,差压增大,电流下降,说明喂煤量过多,应适当减少喂煤量;
(5)煤磨出口负压降低、差压变小、出口温度升高,说明喂煤量减少,应适当增加喂煤量,同时应注意原煤仓、给料机、进口斜管等处是否堵塞导致断煤。2.1.7.2 煤磨差压
煤磨差压的稳定对煤磨的正常运转至关重要。差压的变化主要取决于煤磨的喂煤量、通风量、煤磨出口温度、磨内隔仓板的堵塞情况。在差压发生变化时,先看原煤仓下煤是否稳定;如有波动,通知巡检员检查处理,并在DCS上作适当调整稳定煤磨喂料量。如原煤仓下煤正常,查看磨出口温度变化,若有波动,可通过改变各档板来稳定差压。如因隔仓板堵塞导致差压变化则止料抽粉,无效后停磨后进行处理。2.1.7.3 煤磨进、出口温度
煤磨出口温度对保证煤粉水分合格和煤磨稳定运转具有重要作用,尤其是风扫煤磨更为敏感。出口温度主要通过调整喂煤量、热风档板和冷风档板来控制(出口温度控制在(60~80 ℃); 2.1.7.4 煤粉水分(控制指标≤0.5%)
为保证出磨煤粉水分达标,根据喂煤量、差压、出入口温度等因素的变化情况,通过调整各风门、档板开度,保证煤磨出口温度在合适范围内。2.1.7.5 煤粉细度(控制指标(R80≤6%)
为保证煤粉细度达标,在煤磨操作中,通过调整选粉机转速、喂料量和系统通风量来加以控制。若出现煤粉过粗,可增大选粉机转速、降低系统的通风量、减少喂煤量等方法来控制;若出现煤粉过细,可降低选粉机转速、增大系统的通风量、增加喂煤量等方法进行调节。如果细度或水分一个点超标,要在交接班记录上分析原因提出纠正措施,如连续两个点超标要汇报值长,并采取措施,如连续三个点超标,必须汇报公司主管领导组织分析处理。2.1.7.6 袋收尘进口风温:
袋收尘进口风温太高时(进口风温控制在70~75 ℃),要适当降低磨出口风温,袋收尘进口风温太低<65 ℃ 时,有可能导致结露和糊袋,应适当提高磨出口风温。2.1.7.7 袋收尘出口风温(出口风温>65 ℃)
正常情况下出口风温略低于进口风温,若高于进口风温且持续上升,判断为袋收尘内着火,应迅速停止主排风机,关闭袋收尘进出口阀门,采取灭火措施:若出口风温低于进口风温比正常时差值大且差压上升,判断为袋收尘漏风应立即通知巡检员检查处理。保持袋收尘出口风温不要太低,以防结露糊袋。2.1.7.8 煤粉仓锥部温度(6O~70 ℃)
若出现异常持续升温,应通知巡检员检查。根据温升和现场检查情况,可采取及时投用二氧化碳灭火
装置,防止锥部温度继续升高的措施。
2.1.7.9 设备的正常生产过程中应随时注意观察煤磨、选粉机、排风机等设备的运转状况,尤其是转动部分的轴承温度变化情况,发现异常或温升超限应及时采取有效措施。2.1.8 煤磨停运操作
2.1.8.1 煤磨正常停运操作步骤
(1)停止原煤输送组,确认原煤仓料位,如长时间停磨(预计8h以上)应将原煤仓放空,以防结块自燃;(2)同窑操、巡检员、化验室联系做好停磨准备;
(3)关小热风档板开度,开大冷风档板开度,调节给料机喂煤量至最小,降低煤磨出口温度;
(4)当煤磨出口温度下降至60℃时,关闭入磨热风档板,停煤磨高温风机,停磨喂料组,5~10min 后停磨主电机,如果较长时间停磨应将磨内积粉抽空 ;
(5)停磨20min后,通知巡检员检查袋收尘灰斗及煤粉输送设备内有无煤粉积存,抽空后可停风机设备组和煤粉输送设备组。
(6)关闭收尘器入口和出口档板,经常密切关注系统温度,防止系统着火。(7)煤磨低压油泵在停磨后运转48h停运;
(8)停磨后按相关规程对系统进行检查,并注意以下几点: 1)确认入磨热风档板、袋收尘进口阀门,主排风机入口档板全关。
2)系统停运时间较长时,原则上应烧空煤粉仓,若因窑系统原因不能烧空时,视粉仓温度变化情况,适当充入氮气或二氧化碳;
3)停磨后,生料磨操作员仍需密切监视系统各点温度,现场应继续巡检。2.1.8.2 煤磨紧急停运原因
当系统发生如下情况时,采取紧急停运措施:(1)系统发生重大人身、设备事故时;(2)袋收尘灰斗发生严重堵料时;(3)煤磨、袋收尘、煤粉仓着火时:(4)其它意外情况必须停磨时。2.1.9 运行中的注意事项
(1)正常运行中,操作员应重点监视喂煤量、回粉量、主电机电流、磨机进出口温度、差压、选粉机电流和转数、热风档板、冷风档板、主排风机档板开度等参数,发现问题要及时分析和果断处理,使这些参数控制在合适的范围内,确保系统完全、稳定、优质、高效运行;
(2)操作过程中,要密切关注袋收尘灰斗锥部温度变化,温度大于65℃或过低时,通知巡检员检查灰斗下料情况,并采取必要的处理措施(如敲打等)直至正常;
(3)当系统出现爆燃、或其它紧急事故时,立即关闭入磨热风档板,进行系统紧急停运;
(4)尽量将两煤粉仓控制在高料位(85%左右),勤观察煤粉仓顶部、锥部温度。锥部温度超过85℃且有上升趋势时,表明煤粉已经自燃,要采取紧急措施处理;
(5)在整个系统稳定运转的情况下,一般应避免调整选粉机各风门的开度,细度的调整主要是调整选粉机的转速,循环负荷必须控制在一定的范围内;
(6)无论在何种情况下,煤磨必须在完全静止状态下启动.严禁在筒体摆动的情况下启动;(7)严禁频繁启动煤磨。连续两次以上启动煤磨,必须取得电气技术人员同意方可操作;
(8)在煤磨启动前(预热过程中)和停运后最初一段时间内,一定要严格监视系统温升的变化,杜绝着火、爆燃现象的发生。
2.1.10 煤磨系统正常参数控制范围
(1)煤磨进口正常(最大)热风温度:300℃(2)煤磨出口正常(最大)气体温度:70(80)℃(3)煤磨进出口差压:1000~2500Pa
(4)煤磨袋收尘入口温度:小于80℃(5)煤磨袋收尘出口温度:65~80℃(6)煤磨主排风机进口风温:70℃(7)煤磨主排风机进口负压:7500Pa
第三篇:烧碱介绍
烧碱
其液体是一种无色,有涩味和滑腻感的液体。氢氧化钠在空气中可与二氧化碳反应而变质。
注意事项:密闭包装,贮于阴凉干燥处。与酸类、易(可)燃物等分储分运。皮肤(眼睛)接触,用流动清水冲洗。误食,用水漱口,饮牛奶或蛋清。急救措施
皮肤接触:应立即用大量水冲洗,再涂上3%-5%的硼酸溶液。眼睛接触:立即提起眼睑,用流动清水或生理盐水冲洗至少15分钟。或用3%硼酸溶液冲洗,就医。吸入:迅速脱离现场至空气新鲜处,必要时进行人工呼吸,就医。食入:应尽快用蛋白质之类的东西清洗干净口中毒物,如牛奶、酸奶等奶质物品。患者清醒时立即漱口,口服稀释的醋或柠檬汁,就医。灭火方法:雾状水、砂土、二氧化碳灭火器。
防护措施:
呼吸系统防护:必要时佩带防毒口罩。
眼睛防护:戴化学安全防护眼镜。防护服:穿工作服(防腐材料制作)。手防护:戴橡皮手套。其它:工作后,淋浴更衣。
泄露应急处理:
隔离泄漏污染区,周围设警告标志,建议应急处理人员戴好防毒面具,穿化学防护服。不要直接接触泄漏物,用清洁的铲子收集于干燥洁净有盖的容器中,以少量NaOH加入大量水中,调节至中性,再放入废水系统。也可以用大量水冲洗,经稀释的洗水放入废水系统。如大量泄漏,收集回收或无害处理后废弃。
健康危害:本品有强烈刺激和腐蚀性。粉尘或烟雾会刺激眼和呼吸道,腐蚀鼻中隔;皮肤和眼与NaOH直接接触会引起灼伤;误服可造成消化道灼伤,粘膜糜烂、出血和休克。碱液触及皮肤,可用5~10%硫酸镁溶液清洗;如溅入眼睛里,应立即用大量硼酸水溶液清洗;少量误食时立即用食醋、3~5%醋酸或5%稀盐酸、大量橘汁或柠檬汁等中和,给饮蛋清、牛奶或植物油并迅速就医,禁忌催吐和洗胃
第四篇:工艺流程
试样加工工艺流程
图号LY-01-01
1.用锯床切取试样宽度为C+10 mm。
2.将试样长度切至300+/-5mm(锯切)。
3.试样宽度方向铣切5mm。
4.铣切试样宽度方向另一面至宽度尺寸C。
5.画线,铣切试样一面凹槽部分,6.铣切试样另一面凹槽至宽度D。
深度(C-D)/2约为6mm。
7.打磨毛刺。
备注:按照图纸要求进行加工,试样对称。
图号LY-01-01
试样加工工艺流程
图号LY-03
1.用锯床切取试样宽度为60 mm。
2.将试样长度切至300+/-5mm(锯切)。
3.试样宽度方向铣切5mm。
4.铣切试样宽度方向另一面至宽度尺寸50。
5.画线,铣切试样一面凹槽部分,6.铣切试样另一面凹槽至宽度38。
深度约为6mm。
7.打磨毛刺。
备注:按照图纸要求进行加工,试样对称。
图号LY-03
试样加工工艺流程
图号:ZXCJ-01
1.用锯床切取试样宽度为20 mm(两条)。
2.将试样长度切至55mm(锯切3条)。
3.试样宽度方向铣切去5mm。
4.铣切试样宽度方向另一面至宽度10.2mm。
5.铣切接箍内圆面,铣切为平面。
6.铣切接箍外圆面至厚度尺寸5.2mm。
7.磨削试样四面至图纸尺寸。备注:按照图纸要求进行加工。
图号:ZXCJ-01
试样加工工艺流程
图号:ZXCJ-02
1.用锯床切取试样宽度为20 mm(两条)。
2.将试样长度切至55mm(锯切3条)。
3.试样宽度方向铣切去5mm。
4.铣切试样宽度方向另一面至宽度10.2mm。
5.铣切接箍内圆面,铣切为平面。
6.铣切接箍外圆面至厚度尺寸7.7mm。
7.磨削试样四面至图纸尺寸。备注:按照图纸要求进行加工。
图号:ZXCJ-02
试样加工工艺流程
图号:HXCJ-01
1.用锯床切取试样宽度为65 mm。
2.试样宽度方向铣切5mm。
3.铣切试样宽度方向另一面至宽度尺寸55mm。
4.锯切试样20mm三条。
5.试样宽度方向铣切去5mm。
6.铣切试样宽度方向另一面至宽度10.2mm。
7.铣切接箍内圆面,铣切为平面。
8.铣切接箍外圆面至厚度尺寸5.2mm。
9.磨削试样四面至图纸尺寸。
备注:按照图纸要求进行加工。
图号:HXCJ-01
试样加工工艺流程
图号:HXCJ-02
1.用锯床切取试样宽度为65 mm。
2.试样宽度方向铣切5mm。
3.铣切试样宽度方向另一面至宽度尺寸55mm。
4.锯切试样20mm三条。
5.试样宽度方向铣切去5mm。
6.铣切试样宽度方向另一面至宽度10.2mm。
7.铣切接箍内圆面,铣切为平面。
8.铣切接箍外圆面至厚度尺寸7.7mm。
9.磨削试样四面至图纸尺寸。
备注:按照图纸要求进行加工。
图号:HXCJ-02
试样加工工艺流程
图号:HXCJ-03
1.用锯床切取试样宽度为65 mm。
2.试样宽度方向铣切5mm。
3.铣切试样宽度方向另一面至宽度尺寸55mm。
4.锯切试样20mm三条。
5.试样宽度方向铣切去5mm。
6.铣切试样宽度方向另一面至宽度10.2mm。
7.铣切接箍内圆面,铣切为平面。
8.铣切接箍外圆面厚度尺寸至 10.2mm。
9.磨削试样四面至图纸尺寸。
备注:按照图纸要求进行加工。
图号:HXCJ-03
试样加工工艺流程
图号:HFW-JB-CJ-01
1.用锯床切取试样宽度65 mm长200mm。
2.试样宽度方向铣切5mm。
3.铣切试样宽度方向另一面至宽度尺寸55mm。
4.锯切试样20mm三条。
5.试样宽度方向铣切去5mm。
6.铣切试样宽度方向另一面至宽度10.2mm。
7.铣板材表面,铣切出平面。
8.铣板材另一表面至厚度尺寸10.2/7.7/5.2mm。
9.磨削试样四面至图纸尺寸。
备注:按照图纸要求进行加工。
图号:HFW-JB-CJ-01
试样加工工艺流程
图号:LY-01-02
1.用锯床切取试样宽度等同于壁厚。
2.将试样切至所需的长度≥140mm。
3.打中心工艺孔,将试样车为直径18mm的圆棒
并倒角。
4.将试样中部直径粗车至13.5mm。
5.将试样中部直径精车至12.7mm。
备注:按照图纸要求进行加工。
图号:LY-01-02
试样加工工艺流程
图号:LY-02-01
1.用锯床切取试样宽度等同于壁厚。
2.将试样切至所需的长度≥84mm。
3.打中心工艺孔,将试样车为直径12mm的圆棒
并倒角。
4.将试样中部直径粗车至9.5mm。
5.将试样中部直径精车至8.9mm。
6.试样两端车螺纹。
备注:按照图纸要求进行加工。
图号:LY-02-01
试样加工工艺流程
图号:LY-02-02
1.用锯床切取试样宽度等同于壁厚。
2.将试样切至所需的长度≥70mm。
3.打中心工艺孔,将试样车为直径8mm的圆棒并
倒角。
4.将试样中部直径粗车至7mm。
5.将试样中部直径精车至6.25mm。
6.试样两端车螺纹。
备注:按照图纸要求进行加工。
图号:LY-02-02
试样加工工艺流程
图号:LY-02-03
1.用锯床切取试样宽度等同于壁厚。
2.将试样切至所需的长度≥60mm。
3.打中心工艺孔,将试样车为直径5mm的圆棒并
倒角。
4.将试样中部直径粗车至4.6mm。
5.将试样中部直径精车至4mm。
6.试样两端车螺纹。
备注:按照图纸要求进行加工。
图号:LY-02-03
试样加工工艺流程
图号:LY-02-04
1.用锯床切取试样宽度等同于壁厚。
2.将试样切至所需的长度≥56mm。
3.打中心工艺孔,将试样车为直径4mm的圆棒
并倒角。
4.将试样中部直径粗车至3mm。
5.将试样中部直径精车至2.5mm。
6.试样两端车螺纹。
备注:按照图纸要求进行加工。
图号:LY-02-04
第五篇:工艺流程
离子交换膜法电解制碱的主要生产流程
精制的饱和食盐水进入阳极室;纯水(加入一定量的NaOH溶液)加入阴极室,通电后H2O在阴极表面放电生成H2,Na+则穿过离子膜由阳极室进入阴极室,此时阴极室导入的阴极液中含有NaOH;Cl-则在阳极表面放电生成Cl2。电解后的淡盐水则从阳极室导出,经添加食盐增加浓度后可循环利用。
阴极室注入纯水而非NaCl溶液的原因是阴极室发生反应为2H++2e-=H2↑;而Na+则可透过离子膜到达阴极室生成NaOH溶液,但在电解开始时,为增强溶液导电性,同时又不引入新杂质,阴极室水中往往加入一定量NaOH溶液。
氯碱工业的主要原料:饱和食盐水,但由于粗盐水中含有泥沙、Ca2+、Mg2+、Fe3+、SO等杂质,远不能达到电解要求,因此必须经过提纯精制。
乙炔工段利用外购的电石和水在乙炔发生器中发生反应生成乙炔气体,乙炔气体经过压缩、清静、干燥后得到纯净的乙炔气体。
合成工段利用电解分厂生产的副产品氯气和氢气反应合成HCL,或者是由废盐酸和蒸汽通过脱析、脱水工序生成干燥HCL,进一步净化后供给VCM转化,部分HCL由氯乙烯分厂提供。
纯净的乙炔气体和HCL经过混合预热后发生反应转化为VCM单体,VCM再经过水洗碱洗、压缩、精馏后就送进VCM储罐等待参加聚合反应。
聚合工段使VCM和其他的各种辅剂发生聚合反应,反应产物经过汽提、干燥后成为产品包装出厂。