第一篇:高考重点18 不等式证明
www.xiexiebang.comm+„+Cnm,22mm(1+n)m=1+C1mn+Cmn+„+Cmn,46332927(小学)56954784(中学)www.xiexiebang.com=1,mCn=nCm=m·n,mCn>nCm,„,mmCmnmCmm+1m,mCm1n>0,„,mnCnn>n>0,∴1+C1+C22nn122mmnmnm+„+Cnm>1+Cmn+Cmn+„+Cmn,即(1+m)n>(1+n)m成立.8.证法一:因a>0,b>0,a3+b3=2,所以(a+b)3-23=a3+b3+3a2b+3ab2-8=3a2b+3ab2-6 =3[ab(a+b)-2]=3[ab(a+b)-(a3+b3)]=-3(a+b)(a-b)2≤0.即(a+b)3≤23,又a+b>0,所以a+b≤2,因为2ab≤a+b≤2,所以ab≤1.证法二:设a、b为方程x2-mx+n=0的两根,则mab,nab因为a>0,b>0,所以m>0,n>0,且Δ=m2-4n≥0
因为2=a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]=m(m2-3n)所以n=m2233m
将②代入①得m2-4(m2233m)≥0,即m383m≥0,所以-m3+8≥0,即m≤2,所以a+b≤2,由2≥m 得4≥m2,又m2≥4n,所以4≥4n,即n≤1,所以ab≤1.证法三:因a>0,b>0,a3+b3=2,所以
2=a3+b3=(a+b)(a2+b2-ab)≥(a+b)(2ab-ab)=ab(a+b)于是有6≥3ab(a+b),从而8≥3ab(a+b)+2=3a2b+3ab2+a3+b3=(a+b)3,所以a+b≤2,(下略)
证法四:因为a3b3ab32(2)(ab)[4a24b24aba2b22ab]3(ab)(ab)288≥0,所以对任意非负实数a、b,有a3b32≥(ab32)
因为a>0,b>0,a3+b
3=2,所以1=a3b3ab32≥(2),∴ab2≤1,即a+b≤2,(以下略)
证法五:假设a+b>2,则
46332927(小学)56954784(中学)www.edusx.net 免费数学资源网
①②
www.edusx.net 免费数学资源网 无需注册,免费下载,关注课件、试题、教案的打包下载和参考
a3+b3=(a+b)(a2-ab+b2)=(a+b)[(a+b)2-3ab]>(a+b)ab>2ab,所以ab<1,又a3+b3=(a+b)[a2-ab+b2]=(a+b)[(a+b)2-3ab]>2(22-3ab)因为a3+b3=2,所以2>2(4-3ab),因此ab>1,前后矛盾,故a+b≤2(以下略)46332927(小学)56954784(中学)www.edusx.net 免费数学资源网
第二篇:高考冲刺不等式的证明
高考冲刺不等式的证明
【本周授课内容】:不等式的证明
【重点】:正确使用不等式的基本性质与定理,理解并掌握证明不等式的常用方法。
【难点】:据所证不等式的结构特征选择证明方法以及把握不等式证明过程的基本过程及格式的规范。
主要内容及重点例题参考:
1.不等式证明的理论依据:不等式的概念和性质,实数的性质,以及一些基本的不等式:
(1)若a∈R,则|a|≥0,a2≥0。
(2)若a,b∈R,则a2+b2≥2ab。
(3)若a,b∈R+,则
(4)若a,b同号,则
(5)若a,b,c∈R+,则
2.证明不等式的基本方法:比较法(作差、作商),综合法,分析法,数学归纳法及反证法;另外还有如换元法、放缩法等。
3.例题分析:
例1.a,b,c∈R+,求证:a3+b3+c3≥3abc。
分析与解答:
证法一:(比较法)
∵ a3+b3+c3-3abc
=(a+b)3+c3-3a2b-3ab2-3abc
=(a+b+c)[a2+2ab+b2-ac-bc+c2]-3ab(a+b+c)
=(a+b+c)(a2+b2+c2-ab-ac-bc)
=(a+b+c)[
证法二(综合法):
∵ a3+b3=(a+b)(a2+b2-ab)≥(a+b)ab(当且仅当a=b时“=”成立)
b3+c3=(b+c)(b2+c2-bc)≥(b+c)bc(当且仅当b=c时“=”成立)
c3+a3=(a+c)(c2+a2-ca)≥(c+a)ca(当且仅当c=a时“=”成立)
∴ 2(a3+b3+c3)≥a2b+ab2+b2c+bc2+c2a+ca2
=b(a2+c2)+a(b2+c2)+c(a2+b2)
≥2abc+2abc+2abc=6abc。(当且仅当a=b=c时“=”成立)
∴ a3+b3+c3≥3abc。
例2.已知a,b,c为不等正数,求证:a2ab2bc2c>ab+cbc+aca+b。
≥+。≥2。≥。(6)若a,b∈R,则||a|-|b||≤|a+b|≤|a|+|b|。(a-b)2+(b-c)2+(c-a)2]≥0。∴ a3+b3+c3≥3abc。
分析:由于所证不等式两端都是幂和积的形式,且a,b,c为正数,可选用商值比较法。
证明:a,b,c为不等正数,不失一般性,设a>b>c>0,这时a2ab2bc2c>0,ab+cbc+aca+b>0。
=a(a-b)+(a-c)b(b-c)+(b-a)c(c-b)+(c-a)=()a-b()b-c()c-a
∵ a>b>c>0,∴ >1,a-b>0;>1,b-c>0;0<)b-c>1,(<1,c-a<0。)c-a>1。由指数函数的性质可知:()a-b>1,(∴ >1,即:a2ab2bc2c>ab+cbc+aca+b。
评述:例1的证法一与例2都是应用比较法证明不等式,求差比较法的基本步骤是“作差——变形——判定差式的正负”;求商比较法的基本步骤是“作商——变形——判定商式大于1或小于1”,应注意,求商比较法一般用于各字母均为正数的不等式的证明。
例3.已知a,b,c∈R,求证:
分析:不等式的左端是根式,而右端是整式,应设法通过适当的放缩变换将左式各根式的被开方式转化为完全平方式。
证明:∵ a2+b2≥2ab,∴ 2(a2+b2)≥a2+2ab+b2=(a+b)2,++≥(a+b+c)。
即a2+b2≥,两边开方,得:≥|a+b|≥(a+b)
同理可得≥(b+c),≥(c+a)
三式相加,得:
++≥(a+b+c)
例4.已知a,b,c∈R+,且a+b+c=1,求证:(1)
分析:利用基本不等式,采用综合法解决问题。
(1)证法一:++=+,∴ abc≤+,∴ ++≥9,(2)a2+b2+c2≥。=3+≥27,+++++≥3+2+2+2=9。证法二:∵ 1=a+b+c≥3
∴
++≥3≥3=9。
(2)∵ 1=a+b+c,∴ 1=(a+b+c)2=a2+b2+c2+2ab+2ac+2bc
≤a2+b2+c2+(a2+b2)+(a2+c2)+(b2+c2)=3(a2+b2+c2)。
∴ a2+b2+c2≥。
评述:利用综合法由因导果证明不等式,就要揭示出条件与结论之间的因果关系,为此要着力分析已知与求证之间的差异与联系,不等式左右两端的差异和联系,如例4是个条件不等式的证明问题。给出的特定条件是a+b+c=1,在分析所证不等式左右两端的差异后,合理应用已知条件,进行有效的变换就是证明不等式的关键。
例5.已知|a|<1,|b|<1,求证:|
分析:利用分析法证明。
证明:要证||<1成立,只要证|a+b|<|1+ab|,|<1。
只要证(a+b)2<(1+ab)2,即a2+b2+2ab<1+2ab+a2b2,只要证a2+b2-1-a2b2<0,只要证(a2-1)(1-b2)<0,只要证(a2-1)(b2-1)>0。∵ |a|<1,|b|<1,∴ a2<1,b2<1,∴(a2-1),(b2-1)同号,∴(a2-1)(b2-1)>0成立,∴ |
例6.已知a,b是不等正数,且a3-b3=a2-b2,求证:1 分析:已知条件中等式两端和求证结论中不等式两端有次数上的差异,因此在证明中应采用从已知条件出发,施行降次变换,或从求证结论出发,施行升次变换的方法。 证明:a,b是不等正数,且a3-b3=a2-b2,a2+ab+b2=a+b 3(a+b)<4(a+b)2=a2+2ab+b2>a2+ab+b2=a+b3(a+b)2<4(a+b)a+b>1。|<1。a+b< 3(a2+2ab+b2)<4(a2+ab+b2)a2-2ab+b2>0(a-b)2>0。 成立。即(a-b)2>0一定成立,故a+b< 评述:分析法是从求证的不等式出发,逐步寻求使不等式成立的条件,直至所需条件被确认成立,就断定求证的不等式成立。分析法的思路是:执果索因:从求证的不等式出发,探索使结论成立的充分条件,直至已成立的不等式。在例6中证明a+b>1采用的是综合法。证明a+b< 常常是相互配合交替进行的。 例7.已知a,b,c∈(0,1),求证:(1-a)b,(1-b)c,(1-c)a中至少有一个不大于 证明:假设(1-a)b>,(1-b)c>,(1-c)a>。采用的是分析法,事实上,推理论证中,由因导果和执果索因两种方法 ∵ a,b,c∈(0,1),∴ 1-a,1-b,1-c∈(0,1),∴ >,+>,+>,>。 三式相加,得: 由平均值定理可知:++≤++= 与上式相矛盾,故假设不成立。 ∴(1-a)b,(1-b)c,(1-c)a中至少有一个不小于。 评述:反证法:基本思路是“假设——矛盾——肯定”,采用反证法证明不等式时,从与结论相反的假设出发,推出矛盾的过程中,每一步推理都必须是正确的。由于本题(例7)题目的结论是:三个数中“至少有一个不大于 复杂,会出现多个由异向不等式组成的不等式组,一一证明十分繁杂,而对结论的否定是三个数“都大于 明了,为推出矛盾提供了方便,故采用反证法是适宜的。 4.课后练习: (1)已知x∈R,求证:1+2x4≥x2+2x3 (2)已知a,b∈R,a≠b,求证:a2+ab+b2>0。”,情况比较”,结构简单 (3)求证log56·log54<1。提示:先化成常用对数,然后用均值不等式,有 (4)设x≠0,求证:x+≥2或x+≤-2。 不等式证明 1.比较法: 比较法是证明不等式的最基本、最重要的方法之一,它可分为作差法、作商法 (1)作差比较: ①理论依据a-b>0 a>b;a-b=0 a=b;a-b<0 a ⑴作差:对要比较大小的两个数(或式)作差。 ⑵变形:对差进行因式分解或配方成几个数(或式)的完全平方和。⑶判断差的符号:结合变形的结果及题设条件判断差的符号。 注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。(2)作商法:①要证A>B(B>0),只要证 ;要证A0),只要证 ②证明步骤:作商→变形→判断与1的关系 常用变形方法:一是配方法,二是分解因式 2.综合法:所谓综合法,就是从题设条件和已经证明过的基本不等式和不等式的性质推导出所要证明的不等式成立,可简称为由因导果。常见的基本不等式有 |a|≥0, a2b22ab,abab 2,ababab 分析法:从求证的不等式出发,逐步寻求使不等式成立的充分条件,直至所需条件被确认成立,就断定求证的不等式成立,这种证明方法叫分析法,分析法的思想是“执果索因”:即从求证的不等式出发,探求使结论成立的充分条件,直至已成立的不等式。 基本步骤:要证„„只需证„„,只需证„„ 4 分析综合法 单纯地应用分析法证题并不多见,常常是在分析的过程中,又综合条件、定理、常识等因素进行探索,把分析与综合结合起来,形成分析综合法。反证法:先假设所要证明的不等式不成立,即要证的不等式的反面成立,如要证明不等式M 具体放缩方式有公式放缩和利用某些函数的单调性放缩。常用的技巧有:舍去一些正项或负项;在和或积中换大(或换小)某些项;扩大(或缩小)分式的分子(或分母)等,放缩时要注意不等号的一致性。放缩法的方法有: ⑴添加或舍去一些项,如:a21a;n(n1)n ⑵将分子或分母放大(或缩小)⑶利用基本不等式,如:lg3lg5(n(n1)2⑷利用常用结论: n(n1)lg3lg5)lg15lg16lg4 2Ⅰ、k1k1k1k12k; Ⅱ、1111; k2k(k1)k1k1111(程度大)2k(k1)kk1kⅢ、12k11111();(程度小)2k1(k1)(k1)2k1k17 换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。如: 已知x2y2a2,可设xacos,yasin; 已知x2y21,可设 xrcos,yrsin(0r1); x2y2已知221,可设xacos,ybsin; abx2y2已知221,可设xasec,ybtan; ab8、判别式法:判别式法是根据已知或构造出来的一元二次方程,一元二次不等式,二次函数的根、解集、函数的性质等特征确定出其判别式所应满足的不等式,从而推出欲证的不等式的方法。 9、其它方法 最值法:恒成立 恒成立 构造法:通过构造函数、方程、数列、向量或不等式来证明不等式; 不等式的证明 (一)●知识梳理 1.均值定理:a+b≥2ab; ab≤(ab2)2(a、b∈R+),当且仅当a=b时取等号.2.比较法:a-b>0a>b,a-b<0a<b.3.作商法:a>0,b>0,ab>1a>b.特别提示 1.比较法证明不等式是不等式证明的最基本的方法.作差后需要判断差的符号,作差变形的方向常常是因式分解后,把差写成积的形式或配成完全平方式.2.比商法要注意使用条件,若●点击双基 1.若a、b是正数,则 ab2ab>1不能推出a>b.这里要注意a、b两数的符号.、ab、2abab、a2b22这四个数的大小顺序是 A.ab≤ab22≤2abab≤ a2b22 B.a2b2≤ab≤ ab2≤ 2abab2 C.2abab≤ab≤ab22≤ a2b2 D.ab≤ab2≤ ab22≤ 2abab 解析:可设a=1,b=2,则ab2=43232,ab=2,2ababa2=,14252b2===2.5.答案:C 2.设0<x<1,则a=2x,b=1+x,c=A.a 解析:∵0<x<1,B.b 11x中最大的一个是 C.c D.不能确定 ∴1+x>2x=4x>2x.∴只需比较1+x与∵1+x-∴1+x<11x11x11x2的大小.=- x2=.1x11x1x<0,答案:C 3.(2005年春季上海,15)若a、b、c是常数,则“a>0且b2-4ac<0”是“对任意x∈R,有ax2+bx+c>0”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 必要条件 解析:当a>0,b2-4ac<0时,ax2+bx+c>0.反之,ax+bx+c>0对x∈R成立不能推出a>0,b-4ac<0.反例:a=b=0,c=2.故选A.答案:A 4.(理)已知|a+b|<-c(a、b、c∈R),给出下列不等式: ①a<-b-c;②a>-b+c;③a<b-c;④|a|<|b|-c;⑤|a|<-|b|-c.其中一定成立的不等式是____________.(把成立的不等式的序号都填上)解析:∵|a+b|<-c,∴c<a+b<-c.∴-b+c<a<-b-c.故①②成立,③不成立.∵|a+b|<-c,|a+b|≥|a|-|b|,∴|a|-|b|<-c.∴|a|<|b|-c.故④成立,⑤不成立.答案:①②④ (文)若a、b∈R,有下列不等式:①a+3>2a;②a+b≥2(a-b-1);③a+b>a3b2+a2b3;④a+1a 222 552 2≥2.其中一定成立的是__________.解析:①a2+3-2a=(a-1)2+2>0,∴a2+3>2a; ②a2+b2-2a+2b+2=(a-1)2+(b+1)2≥0,∴a2+b2≥2(a-b-1); ③a+b-ab-ab=a(a-b)+b(b-a)=(a2-b2)(a3-b3)=(a+b)(a-b)2(a2+ab+b2).∵(a-b)≥0,a+ab+b≥0,但a+b符号不确定,∴a5+b5>a3b2+a2b3不正确; ④a∈R时,a+答案:①② 1a22 255322 332 2≥2不正确.5.船在流水中在甲地和乙地间来回行驶一次的平均速度v1和在静水中的速度v2的大小关系为____________.解析:设甲地至乙地的距离为s,船在静水中的速度为v2,水流速度为v(v2>v>0),则船在流水中在甲乙间来回行驶一次的时间 t=sv2v+sv2v=v2v22v2s2v22,平均速度v1=22st2= vv2.∵v1-v2=∴v1<v2.v2vv22-v2=- v2v2<0,答案:v1<v2 ●典例剖析 【例1】 设a>0,b>0,求证:(a21b)2(b111a)2≥a2+b2.剖析:不等式两端都是多项式的形式,故可用比差法证明或比商法证明.证法一:左边-右边= (a)(b)ab(ab)(aabb)ab(ab)(a2abb)(aab(ab)33-(a+b) = == b)(abab)2≥0.ab∴原不等式成立.证法二:左边>0,右边>0,左边右边=(ab)(aab(aabb)b)= aabbab≥ 2ababab=1.∴原不等式成立.评述:用比较法证不等式,一般要经历作差(或商)、变形、判断三个步骤.变形的主要手段是通分、因式分解或配方.在变形过程中,也可利用基本不等式放缩,如证法二.下面的例3则是公式法与配方法的综合应用.【例2】 已知a、b、x、y∈R且求证:xxa+ 1a> 1b,x>y.>yyb.剖析:观察待证不等式的特征,用比较法或分析法较适合.证法一:(作差比较法) ∵又xxa1a-1byyb(xa)(yb)= bxay,>且a、b∈R+,∴b>a>0.又x>y>0,∴bx>ay.∴bxay(xa)(yb)>0,即 xxa> yyb.证法二:(分析法)∵x、y、a、b∈R,∴要证+ xxa> yyb,只需证明x(y+b)>y(x+a),即证xb>ya.而由1a>1b>0,∴b>a>0.又x>y>0,知xb>ya显然成立.故原不等式成立.思考讨论 该例若用函数的单调性应如何构造函数? 解法一:令f(x)=再令g(x)=∵1axxa,易证f(x)在(0,+∞)上为增函数,从而 xxa> yyb.mmx,易证g(x)在(0,+∞)上单调递减.+>1b,a、b∈R.∴a<b.mma∴g(a)>g(b),即> mmb,命题得证.xy解法二:原不等式即为 axa1> byb1,为此构造函数f(x)= xx1,x∈(0,+∞).xa易证f(x)在(0,+∞)上为单调增函数,而xy> yb,∴axa1>byb1,即 xxa> yyb.【例3】 某食品厂定期购买面粉.已知该厂每天需用面粉6 t,每吨面粉的价格为1800元,面粉的保管等其他费用为平均每吨每天3元,购面粉每次需支付运费900元.(1)求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?(2)若提供面粉的公司规定:当一次购买面粉不少于210 t时,其价格可享受9折优惠(即原价的90%),问该厂是否考虑利用此优惠条件?请说明理由.解:(1)设该厂应每隔x天购买一次面粉,其购买量为6x t,由题意知,面粉的保管等其他费用为3[6x+6(x-1)+„+6×2+6×1]=9x(x+1).设平均每天所支付的总费用为y1元,则y1=900x1x[9x(x+1)+900]+6×1800 =+9x+10809≥ 2900x9x+10809 =10989.当且仅当9x=900x,即x=10时取等号,即该厂应每隔10天购买一次面粉,才能使平均每天所支付的总费用最少.(2)若厂家利用此优惠条件,则至少每隔35天,购买一次面粉,平均每天支付的总费用为y2元,则 y2==1x[9x(x+1)+900]+6×1800×0.90 +9x+9729(x≥35).100x900x令f(x)=x+(x≥35),x2>x1≥35,则 f(x1)-f(x2)=(x1+= 100x1)-(x2+ 100x2) (x2x1)(100x1x2)x1x2 ∵x2>x1≥35,∴x2-x1>0,x1x2>0,100-x1x2<0.∴f(x1)-f(x2)<0,f(x1)<f(x2),即f(x)=x+100x,当x≥35时为增函数.∴当x=35时,f(x)有最小值,此时y2<10989.∴该厂应该接受此优惠条件.●闯关训练 夯实基础 1.设x>0,y>0,且xy-(x+y)=1,则 A.x+y≤22+2 B.x+y≥22+2 D.x+y≥(2+1) 2C.x+y≤(2+1)解析:∵x>0,y>0,∴xy≤(由xy-(x+y)=1得(∴x+y≥2+22.答案:B xy2xy2).2)2-(x+y)≥1.2.已知x、y∈R,M=x2+y2+1,N=x+y+xy,则M与N的大小关系是 A.M≥N B.M≤N C.M=N D.不能确定 解析:M-N=x+y+1-(x+y+xy)==121222[(x2+y2-2xy)+(x2-2x+1)+(y2-2y+1)] [(x-y)2+(x-1)2+(y-1)2]≥0.答案:A 3.设a>0,b>0,a+解析:a+ 22b22b2=1,则a1b2的最大值是____________.12b2b22=1a+ = 32.a2∴a1b2=2·a·答案:32412b2212332=2·2=.≤2· ab24.若记号“※”表示求两个实数a和b的算术平均数的运算,即a※b=,则两边均含有运算符号“※”和“+”,且对于任意3个实数a、b、c都能成立的一个等式可以是____________.解析:∵a※b=ab2ba2,b※a=,∴a※b+c=b※a+c.答案:a※b+c=b※a+c.思考:对于运算“※”分配律成立吗? 即a※(b+c)=a※b+a※c.答案:不成立 5.当m>n时,求证:m3-m2n-3mn2>2m2n-6mn2+n3. 证明:∵(m3-m2n-3mn2)-(2m2n-6mn2+n3)=m3-3m2n+3mn2-n3=(m-n)3,3又m>n,∴m-n>0.∴(m-n)>0,即(m3-m2n-3mn2)-(2m2n-6mn2+n3)>0.故m-mn-3mn>2mn-6mn+n. 6.已知a>1,λ>0,求证:loga(a+λ)>loga+λ(a+2λ).证明:loga(a+λ)-log(a+λ)(a+2λ)=lg(a)lga2322223-lg(a2)lg(a) =lg(a)lgalg(a2)lgalg(a) ∵a>1,λ>0,∴lga>0,lg(a+2λ)>0,且lga≠lg(a+2λ).∴lga·lg(a+2λ)<[(=[lg(a2lgalg(a2)2lg(a)22)]2a)2]<[ 2]=lg(a+λ).∴lg(a)lgalg(a2)lgalg(a)2>0.∴loga(a+λ)>log(a+λ)(a+2λ).培养能力 7.已知x>0,y>0,若不等式x+y≤mxy恒成立,求实数m的最小值.分析:∵x+y≤mxy恒成立,xxyxxyyy∴m≥恒成立.∴m的最小值就是的最大值.解:∵x+y≤mxy恒成立,xxyy∴m≥恒成立.∵x>0,y>0,∴xy≥(x2xx2yyy)2= x2y.∴xxyy≤=2.∴m的最小值为2.评述:分离参数法是求参数的范围问题常用的方法,化归是解这类问题常用的手段.8.有点难度哟! 求证:在非Rt△ABC中,若a>b,ha、hb分别表示a、b边上的高,则必有a+ha>b+hb.证明:设S表示△ABC的面积,则 S=12aha=12bhb=12absinC.∴ha=bsinC,hb=asinC.∴(a+ha)-(b+hb)=a+bsinC-b-asinC =(a-b)(1-sinC).∵C≠π2,∴1-sinC>0.∴(a-b)(1-sinC)>0.∴a+ha>b+hb.探究创新 9.设二次函数f(x)=ax+bx+c(a>0),方程f(x)-x=0的两根x1、x2满足1<x1<x2<1a2.(1)当x∈(0,x1)时,证明x<f(x)<x1;(2)设函数f(x)的图象关于直线x=x0对称,求证x0<证明:(1)令F(x)=f(x)-x,∵x1、x2是方程f(x)-x=0的根,∴F(x)=a(x-x1)(x-x2).当x∈(0,x1)时,由于x1<x2,∴(x-x1)(x-x2)>0.又a>0,得F(x)=a(x-x1)(x-x2)>0,即x<f(x).又x1-f(x)=x1-[x+F(x)]=x1-x+a(x1-x)(x-x2)=(x1-x)[1+a(x-x2)],∵0<x<x1<x2<1ax12.,x1-x>0,1+a(x-x2)=1+ax-ax2>1-ax2>0,∴x1-f(x)>0,即f(x)<x1.综上,可知x<f(x)<x1.(2)由题意知x0=- b2a.∵x1、x2是方程f(x)-x=0的根,即x1、x2是方程ax2+(b-1)x+c=0的根,∴x1+x2=-∴x0=-b2ab1a.=.ax1ax212a=a(x1x2)12aax12ax12.又∵ax2<1,∴x0<=●思悟小结 1.比较法有两种形式:一是作差,二是作商.用作差法证明不等式是证明不等式中最基本、最常用的方法.它的依据是不等式的基本性质.2.步骤是:作差(商)→变形→判断.变形的目的是为了判断.若是作差,就判断与0的大小关系,为了便于判断,往往把形式变为积或完全平方式.若是作商,两边为正,就判断与1的大小关系.3.有时要先对不等式作等价变形再进行证明,有时几种证明方法综合使用.4.在应用均值定理求最值时,要把握定理成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”.若忽略了某个条件,就会出现错误.●教师下载中心 教学点睛 1.在证明不等式的各种方法中,作差比较法是一种最基本、最重要的方法,它是利用不等式两边的差是正数还是负数来证明不等式,其应用非常广泛,一定要熟练掌握.2.对于公式a+b≥2ab,ab≤(ab2)2要讲清它们的作用和使用条件及内在联系,两个公式也体现了ab和a+b的转化关系.拓展题例 【例1】设a、b∈R,关于x的方程x2+ax+b=0的实根为α、β.若|a|+|b|<1,求证:|α|<1,|β|<1.证法一:∵α+β=-a,αβ=b,∴|α+β|+|αβ|=|a|+|b|<1.∴|α|-|β|+|α||β|<1,(|α|-1)(|β|+1)<0.∴|α|<1.同理,|β|<1.证法二:设f(x)=x+ax+b,则有 f(1)=1+a+b>1-(|a|+|b|)>1-1=0,f(-1)=1-a+b>1-(|a|+|b|)>0.∵0≤|a|<1,∴-1<a<1.∴-122<-a2<12.∴方程f(x)=0的两实根在(-1,1)内,即|α|<1,|β|<1.评述:证法一先利用韦达定理,再用绝对值不等式的性质恰好能分解因式;证法二考虑根的分布,证两根在(-1,1)内.【例2】 是否存在常数C,使得不等式数x、y恒成立?试证明你的结论.解:当x=y时,可由不等式得出C=下面分两个方面证明.先证≥2xy.再证xx2yx2xy23x2xy+ yx2y≤C≤ xx2y+ y2xy对任意正 .+yx2y≤ 23,此不等式3x(x+2y)+3y(2x+y)≤2(2x+y)(x+2y)x2+y2+y2xy≥ 23,22此不等式3x(2x+y)+3y(x+2y)≥2(x+2y)(2x+y)2xy≤x+y.综上,可知存在常数C= 23,使对任何正数x、y不等式恒成立.6.3 不等式的证明 (二)●知识梳理 1.用综合法证明不等式:利用不等式的性质和已证明过的不等式以及函数的单调性导出待证不等式的方法叫综合法,概括为“由因导果”.2.用分析法证明不等式:从待证不等式出发,分析并寻求使这个不等式成立的充分条件 的方法叫分析法,概括为“执果索因”.3.放缩法证明不等式.4.利用单调性证明不等式.5.构造一元二次方程利用“Δ”法证明不等式.6.数形结合法证明不等式.7.反证法、换元法等.特别提示 不等式证明方法多,证法灵活,其中比较法、分析法、综合法是基本方法,要熟练掌握,其他方法作为辅助,这些方法之间不能截然分开,要综合运用各种方法.●点击双基 1.(2005年春季北京,8)若不等式(-1)a<2+数a的取值范围是 A.[-2,C.[-3,3232n (1)nn1对任意n∈N恒成立,则实 *)) B.(-2,D.(-3,3232)) 解析:当n为正偶数时,a<2-1n,2-121n为增函数,∴a<2-=32.1n当n为正奇数时,-a<2+而-2-1n,a>-2- 1n1n.为增函数,-2- 32<-2,∴a≥-2.故a∈[-2,答案:A).2.(2003年南京市质检题)若< a11b<0,则下列结论不正确的是 ... B.ab<b D.|a|+|b|>|a+b| 2A.a<b C.ba2 21b +ab>2 1a解析:由<<0,知b<a<0.∴A不正确.答案:A 3.分析法是从要证的不等式出发,寻求使它成立的 A.充分条件 C.充要条件 答案:A B.必要条件 D.既不充分又不必要条件 4.(理)在等差数列{an}与等比数列{bn}中,a1=b1>0,an=bn>0,则am与bm的大小关系是____________.解析:若d=0或q=1,则am=bm.若d≠0,画出an=a1+(n-1)d与bn=b1·q y n- 1的图象,O1m n x 易知am>bm,故am≥bm.答案:am≥bm (文)在等差数列{an}与等比数列{bn}中,a1=b1>0,a2n+1=b2n+1>0(n=1,2,3,„),则an+1与bn+1的大小关系是____________.解析:an+1=a1a2n121ab1ab≥a1a2n1=b1b2n1=bn+1.答案:an+1≥bn+1 5.若a>b>c,则 + 1bc1bc_______ 3ac.(填“>”“=”“<”) 1ab解析:a>b>c,(1+)(a-c)=(+ 1bc)[(a-b)+(b-c)] ≥2(ab)(bc)1·2(ab)(bc)=4.3ac∴ab+1bc≥ 4ac>.答案:> ●典例剖析 【例1】 设实数x、y满足y+x2=0,0<a<1.求证:loga(ax+ay)<loga2+ 18.剖析:不等式左端含x、y,而右端不含x、y,故从左向右变形时应消去x、y.xy证明:∵a>0,a>0,∴ax+ay≥2axy=2axx.∵x-x2=xy 214-(x-112)2≤ 114,0<a<1,∴a+a≥2a4=2a8.1∴loga(a+a)<loga2a8=loga2+xy 18.1评述:本题的证题思路可由分析法获得.要证原不等式成立,只要证a+a≥2·a8即可. 【例2】 已知a、b、c∈R,且a+b+c=1.求证:(1+a)(1+b)(1+c)≥8(1-a)(1-b)(1-c).剖析:在条件“a+b+c=1”的作用下,将不等式的“真面目”隐含了,给证明不等式带来困难,若用“a+b+c”换成“1”,则还原出原不等式的“真面目”,从而抓住实质,解决 + xy 问题.证明:∵a、b、c∈R且a+b+c=1,∴要证原不等式成立,即证[(a+b+c)+a]·[(a+b+c)+b][(a+b+c)+c]≥8[(a+b+c)-a]·[(a+b+c)-b]·[(a+b+c)-c].也就是证[(a+b)+(c+a)][(a+b)+(b+c)]·[(c+a)+(b+c)]≥8(b+c)(c+a)(a+b).① ∵(a+b)+(b+c)≥2(ab)(bc)>0,(b+c)+(c+a)≥2(bc)(ca)>0,(c+a)+(a+b)≥2(ca)(ab)>0,三式相乘得①式成立.故原不等式得证.【例3】 已知a>1,n≥2,n∈N*.求证:na-1<a1n+ .a1n证法一:要证na-1<即证a<(a1n,+1).n令a-1=t>0,则a=t+1.也就是证t+1<(1+∵(1+tntntn)n.+„+Cnn(tn)n=1+C1na1nn)n>1+t,即na-1<成立.证法二:设a=xn,x>1.于是只要证即证xnx1n>x-1,n-11x1n-1>n.联想到等比数列前n项和1+x+„+xn- 2= xn1x1,① ② 倒序x+x+„+1=nxn1x1.①+②得2·x1x1=(1+xn-1)+(x+xn-2)+„+(xn-1+1) >2xn1+2xn1+„+2xn1>2n.∴xn1x1>n.思考讨论 本不等式是与自然数有关的命题,用数学归纳法可以证吗?读者可尝试一下.●闯关训练 夯实基础 1.已知a、b是不相等的正数,x= a2b,y=ab,则x、y的关系是 A.x>y 解析:∵x2=y2=a+b=12 B.y>x 2C.x>2y D.不能确定 (a+b)2= 12(a+b+2ab),(a+b+a+b)> (a+b+2ab)=x2,又x>0,y>0.∴y>x.答案:B 2.对实数a和x而言,不等式x+13ax>5ax+9a成立的充要条件是____________.解析:(x3+13a2x)-(5ax2+9a3)=x3-5ax2+13a2x-9a3 =(x-a)(x2-4ax+9a2) =(x-a)[(x-2a)+5a]>0.∵当x≠2a≠0时,有(x-2a)2+5a2>0.由题意故只需x-a>0即x>a,以上过程可逆.答案:x>a 3.已知a>b>c且a+b+c=0,求证:b2ac<3a.22证明:要证b2ac<3a,只需证b-ac<3a,22 3即证b2+a(a+b)<3a2,即证(a-b)(2a+b)>0,即证(a-b)(a-c)>0.∵a>b>c,∴(a-b)·(a-c)>0成立.∴原不等式成立.4.已知a+b+c=0,求证:ab+bc+ca≤0.证法一:(综合法)∵a+b+c=0,∴(a+b+c)=0.展开得ab+bc+ca=-∴ab+bc+ca≤0.证法二:(分析法)要证ab+bc+ca≤0,∵a+b+c=0,故只需证ab+bc+ca≤(a+b+c)2,即证a+b+c+ab+bc+ca≥0,亦即证122222 a2b2c22,[(a+b)+(b+c)+(c+a)]≥0. 而这是显然的,由于以上相应各步均可逆,∴原不等式成立.证法三:∵a+b+c=0,∴-c=a+b.∴ab+bc+ca=ab+(b+a)c=ab-(a+b)2 =-a-b-ab=-[(a+22 b2)+ 3b42]≤0. ∴ab+bc+ca≤0.培养能力 5.设a+b+c=1,a2+b2+c2=1且a>b>c.求证:-<c<0.31证明:∵a+b+c=1,22∴(a+b)-2ab+c=1.∴2ab=(a+b)2+c2-1=(1-c)2+c2-1=2c2-2c.∴ab=c-c.又∵a+b=1-c,∴a、b是方程x+(c-1)x+c-c=0的两个根,且a>b>c.令f(x)=x2+(c-1)x+c2-c,则 Δ011ccc032f(c)0.222222 6.已知2b2ca=1,求证:方程ax2+bx+c=0有实数根.a2c2证明:由2b2ca=1,∴b=.∴b=(2a2+2c)= 2a22+2ac+2c2=4ac+(a2-2c)2≥4ac.∴方程ax2+bx+c=0有实数根.7.设a、b、c均为实数,求证:证明:∵a、b、c均为实数,∴12121212a+ 12b+ 12c≥ 1bc+ 1ca+ 1ab.(12b12c12a+12c12b)≥ 12bc12ab≥≥≥ 11ab,当a=b时等号成立; ((++)≥)≥ bc1ca,当b=c时等号成立; . ≥ 1bc12a12ca三个不等式相加即得探究创新 12a+ 12b+ 12c+ 1ca+ 1ab,当且仅当a=b=c时等号成立.8.已知a、b、c、d∈R,且a+b=c+d=1,ac+bd>1.求证:a、b、c、d中至少有一个是负数.证明:假设a、b、c、d都是非负数,∵a+b=c+d=1,∴(a+b)(c+d)=1.∴ac+bd+bc+ad=1≥ac+bd.这与ac+bd>1矛盾.所以假设不成立,即a、b、c、d中至少有一个负数.●思悟小结 1.综合法就是“由因导果”,从已知不等式出发,不断用必要条件替换前面的不等式,直至推出要证的结论.2.分析法就是“执果索因”,从所证不等式出发,不断用充分条件替换前面的不等式,直至找到成立的不等式.3.探求不等式的证法一般用分析法,叙述证明过程用综合法较简,两法结合在证明不等式中经常遇到.4.构造函数利用单调性证不等式或构造方程利用“Δ≥0”证不等式,充分体现相关知识间的联系.●教师下载中心 教学点睛 1.在证明不等式的过程中,分析法和综合法是不能分离的,如果使用综合法证明不等式难以入手时,常用分析法探索证题途径,之后用综合法的形式写出它的证明过程,以适应学生习惯的思维规律.有时问题证明难度较大,常使用分析综合法,实现两头往中间靠以达到证题目的.2.由于高考试题不会出现单一的不等式的证明题,常常与函数、数列、三角、方程综合在一起,所以在教学中,不等式的证明除常用的三种方法外,还需介绍其他方法,如函数的单调性法、判别式法、换元法(特别是三角换元)、放缩法以及数学归纳法等.拓展题例 【例1】 已知a、b为正数,求证: (1)若a+1>b,则对于任何大于1的正数x,恒有ax+(2)若对于任何大于1的正数x,恒有ax+ xx1xx1>b成立; >b成立,则a+1>b.分析:对带条件的不等式的证明,条件的利用常有两种方法:①证明过程中代入条件;②由条件变形得出要证的不等式.证明:(1)ax+xx1=a(x-1)+ 1x1+1+a≥2a+1+a=(a+1)2.∵a+1>b(b>0),22∴(a+1)>b.(2)∵ax+而ax+xx1xx1>b对于大于1的实数x恒成立,即x>1时,[ax+ 1x1xx1]min>b,=a(x-1)+ 1+1+a≥2a+1+a=(a+1)2,1a当且仅当a(x-1)=故[ax+xx1x1,即x=1+>1时取等号.]min=(a+1)2.则(a+1)2>b,即a+1>b.评述:条件如何利用取决于要证明的不等式两端的差异如何消除.【例2】 求证:|ab|1|ab|≤ |a|1|a|+ |b|1|b|.x剖析:|a+b|≤|a|+|b|,故可先研究f(x)=证明:令f(x)= x1x1x(x≥0)的单调性.(x≥0),易证f(x)在[0,+∞)上单调递增.|a+b|≤|a|+|b|,∴f(|a+b|)≤f(|a|+|b|),即|ab|1|ab|≤|a||b|1|a||b|= |a|1|a||b||b|1|a||b|≤ |a|1|a||b|1|b|.思考讨论 1.本题用分析法直接去证可以吗? 2.本题当|a+b|=0时,不等式成立; 当|a+b|≠0时,原不等式即为 111|ab|≤ |a|1|a||b|1|b|.再利用|a+b|≤|a|+|b|放缩能证吗?读者可以尝试一下! 从高考角度谈谈不等式的证明 贾广素 在现实世界中,等是相对的,不等是绝对的.不等关系是现实生活中最普遍的数量关系,不等式是刻画不等关系的一种重要的数学模型.不等式与数、式、方程、函数、导数等知识都有着天然紧密的联系,是学习高等数学的重要基础.因此,在高考试题中,有关不等式的试题出现的频率比较高.这就要求我们对不等式知识掌握以下几个方面的内容: (1)了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景; (2)经历从实际情境中抽象出不等式模型的过程; (3)了解不等式的几何意义,并能用平面区域加以表示,能从实际情境中抽象出一些简单的二元线性规划问题并加以解决; (4)掌握基本不等式和一些常见的不等式,并能运用这些不等式求解一些简单的最值问题.(5)注重不等式知识与函数、方程等其它知识间的联系,加强不等式的应用意识.不等式的有关知识渗透在中学数学各个分支中,有着十分广泛的应用.诸如集合问题,方程(组)的解的讨论,函数的单调性的研究,函数定义域的确定、三角、数列、立体几何、解析几何中的最值问题、范围问题等都与不等式有着密切的联系,最终往往都可归结为不等式的求解或证明问题来处理.不等式的证明常用的一些方法主要有:比较法、综合法、分析法和反证法等,另外,放缩法也是证明不等式的主要变形技巧之一,放缩要有的放矢,目标可以从要证明的结论中.在证明不等式时,要依据题目、题设条件的特点和内在联系,选择适当的证明方法,并掌握相应的步骤和技巧.对于一些含有参数的不等式的求解问题时,应该注意分类讨论的思想,学会分析引起分类讨论的原因,合理分类,做到不重不漏.求解不等式的核心问题是不等式的同解变形,不等式的性质则是这些不等式变形的理论依据.在高考中,不等式问题主要集中于三个方面:不等式的性质和证明、不等式的求解和应用、不等式与函数、方程等知识间的联系与融合.本周主要讲述不等式的求解与证明问题.不等式的求解与证明一般没有固定的程序,方法因题而异,灵活多样,技巧性强.有时,一个不等式的证明方法就不止是一种,而且一种证法中又可能会用到几个技巧.但基本思路却是一样的,即把原来的不等式转化为明显成立的不等式.一.不等式证明的常用方法 1.1比较法 比较法证明不等式主要有两种形式:一种是差值比较法;另一种是商值比较法.1.2分析法 分析是解决问题的基础,这里所说的分析法是指先假设所给定的不等式成立,然后去寻 找不等式成立的充分条件,一直找到已知条件或明显成立的不等式为止.在具体操作时,也可以找充要条件,或先找必要条件再验证步步可逆即可.1.3综合法 1.4反证法 1.5放缩法 由不等式的传递性,为了证明AB,往往可以把A放大到C(AC)(或者把B缩小到D(BD)),然后改证CB(或证AD),或者证ACDB.1.6数学归纳法 凡是涉及到自然数n的不等式都可以考虑使用数学归纳法进行证明,只出现有限整数的不等式也可以通过加强命题使用数学归纳法.见例5.二.另外几种常见的证明不等式的方法 2.1 变量代换法 所谓变量代换法,就是通过对数学式的变形,以显化其内在结构本质.它常能化超越式为代数式、化无理式为有理式,化分式为整式、化高次式为低次式.其中,增量法是一个常用而有效的代换方法.在例4的证明过程中,令ai1bi,其实就是使用了变量代换法.2.2函数方法 所谓函数方法,就是将不等式的证明或求解问题转化为对函数性质的讨论,如函数的单调性、正负区间、值域等问题,甚至函数的凸凹性等.2.3构造法 构造法就是根据待证不等式的条件和结论所具有的特征,以条件中的元素为“元件”,以数学关系式为“支架”,构造出一种相关的数学模型,使待证不等式获得证明的一种方法.常见的构造法有: (1)代数构造法 以主元法或韦达定理、方程根的定义来构造函数、数列或方程来证明不等式.(2)几何构造 利用面积、余弦(勾股)定理、距离、斜率等来构造几何图形或解析几何中的点、曲线或问题来证明不等式; (3)构造反例或构造辅助命题 利用特殊情形构造反例说明不等式成立或构造辅助命题证明不等式成立.附:数学课要教数学 章建跃 相信读者看到标题会心生疑惑:难道我们在数学课上教的不是数学吗?的确,许多数学课教的不是数学! 为了说明上述观点,先引用世界知名几何学家伍鸿熙教授提出的数学的五个基本原则: 原则1 每个数学概念必须精确定义,而定义构成逻辑推理的基础; 原则2 数学表述要精确,在任何时候,什么已知什么未知都要很清楚; 原则3 每一个结论都是逻辑推理的结果,推理是数学的命脉,是解决问题的平台; 原则4 数学是连贯的,数学的概念和方法组成了一个逻辑严密的整体; 原则5 数学是目标明确的,每个数学概念和方法都有其目的。 这五个原则可以作为判断数学课是否教数学的基本标准。反观我们的课堂,与这些原则相悖的做法比比皆是。例如: 缺乏统领课堂的数学核心观念,在“构建前后一致的、逻辑连贯的学习过程,引导学生开展有序的推理”上缺乏思考和得力措施,致使每一堂课都变成了“从头开始”; 不重视知识的背景和基本思想,导致学生不了解为什么要引入这个概念、为什么要研究这个性质(本质上是不重视数学的连贯性); 概念教学走过场,“精确定义”就更谈不上了,有些老师甚至对什么是“精确定义”也不甚了了; 解题教学搞“题型+技巧”,教师常常讲解各种各样的“锦囊妙计”,而对“从概念和定理出发思考和解决问题”不予重视(本质上是对逻辑推理不重视); 例题、习题的选择标准是“新、奇、特”,使用大量缺乏相互关联的题目,目的是让学生熟练更多的技巧(本质上是缺乏方法的目的性); 为了“加大容量”,教师往往只要求“讲思路”,而对严格的逻辑推理过程及其表达缺少示范和要求;等等。 那么,该如何改变现状呢?本期陈立军老师的《“立体几何引言课”的教学实践与反思》可以给我们一些启发。作为《立体几何》的开篇课,陈老师围绕“为什么学”“学什么”“怎么学”三个问题,从一个有智力挑战性的(数学)问题和现实需要两方面引入课题;通过类比平面几何研究的问题和过程,引出立体几何可以研究的问题和线索;最后,通过一些典型问题,引导学生从平面几何的学习中得到启发,获得解决立体几何问题的方法,并强调了解决立体几何问题的普适性思路——“把空间问题转化为平面问题”。这样的“引言课”,较好地体现了数学的连贯性、目标的明确性、概念和方法的目的性等,特别是注重与平面几何的联系,使学生意识到立体几何的学习不是“从零开始”,“空间问题平面化”是基本原则,这样的认识为立体几何学习奠定了坚实的基础。如果在具体内容的教学中,继续强调概念的精确定义,在定义的基础上展开推理,并注重推理过程的逻辑严谨性,那么我们就可以肯定地说,陈老师的立体几何课教得好。实际上,这样的教学才真正发挥了立体几何课程的力量——培养和发展学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力、几何直观能力。 总之,按上述五条原则进行数学教学,是“数学课教数学”的基本要求,这样才能使学生在学会数学的过程中,提高思维能力,培养发现和提出问题的能力,分析和解决问题的能力;只有这样才能真正发挥数学的内在力量,实现“数学育人”。第三篇:不等式证明
第四篇:高考第一轮复习数学:不等式的证明
第五篇:从高考角度谈谈不等式的证明