第一篇:现浇箱梁支架地基处理及承载力验算
现浇箱梁支架地基处理
1、地基处理措施
现浇箱梁支架体系关键部位是桥下地基处理,桥梁施工范围内地基承载力应满足所承受的全部荷载,地基不发生沉陷现象。桥宽范围内先清除表面杂草和废弃垃圾等,基底碾压合格后(密实度90%),做1层5%石灰土(厚20cm)和一层道渣垫层(厚15cm)密实度压至96%以上(重型),个别软弱地段抛填片石,进行加固处理后填筑石灰土;最后浇注15cm厚C20素混凝土作为面层,在桥墩两侧各5米范围内灰土厚度为40cm、道渣厚度为15cm、混凝土厚度为20cm,顶面做好排水处理。(具体的地基处理根据现场试验和实际情况最后确定,地基处理见下图。)
151020砼道渣石灰土基 底
2、地基承载力验算
主线桥支架高度按6米计算,单根立杆的支架重量为:5*(0.6+0.9)*5+6*5=67.5kg。(φ48×3.5mm钢管每米自重3.84kg,加上扣件按5kg/m考虑)从支架、模板内力验算过程中得知各段立杆承受由纵梁传递来有荷载N分别为:21.244KN; 21.488 KN ;28.26 KN ;27.000 KN。立杆底托下用厚5cm×宽20cm的木板作垫板。
各段基础底面最大荷载P计算
0#~14#断面:(21.244+67.5*10-3*9.8)/(1.5*0.2)=73.0KN/m2; 14#~20#断面:(21.488+67.5*10-3*9.8)/(1.2*0.2)=92.3KN/m2; 24(27)
#~
26(29)
#断
面
:(28.26+67.5*10-3*9.8)/(1.2*0.2)=120.5KN/m2;
20#~
3#断
面
:
(27.000+67.5*10-3*9.8)/(0.9*0.2)=153.7KN/m2。
基础底面下浇注15cm厚C20素混凝土和填筑15cm厚道渣、20cm厚5%石灰土(道渣按18KN/m3,灰土按17.2KN/m3计算)。
用公式:pcz+pz≤fz,pz =b*p/(b+2Ztgθ)对5%石灰土地基进行验算。
pcz------垫层底面处土的自重压力(KN/m2); pz------垫层底面处的附加压力(KN/m2); fz------垫层底面处土层的地基承载力(KN/m2); b------基础底面的宽度(m);
p------基础底面压力(KN/m2),按最大值153.7(KN/m2)计算。
Z------基础底面下垫层的厚度(m); θ------垫层的压力扩散角,灰土取30°; pz
=b*p/
(b+2Ztg
θ)=0.2*153.7/(0.2+2*0.35*tg30°)=50.87(KN/m2);
pcz =24*0.15+17.2*0.2+18*0.15=9.74(KN/m2); 从地质报告的土层物理力学性质参数表中得知地基承载力荷载fz =95(KN/m2)。
pcz+pz =50.87+9.74=60.61≤fz =95,满足要求。
计算中未考虑面层C20混凝土的影响,如考虑此因素安全系数会更高。
在实际施工中再对5%石灰土进行试验,得出其各项详细参数,并通过用太沙基(K.Terzaghi)公式计算5%石灰土地基极限荷载来进行复核:
pu=0.4γbNγ+1.2cNc+γdNq pu------地基极限荷载,KPa;
γ------基础底面以下地基土的天然重量,KN/m3; c------基础底面以下地基土的粘聚力,KPa; d------基础埋深,m; b------基础边长,m;
Nγ;Nc;Nq------地基承载力系数,均为tgα=tg(45+φ/2)的函数,亦即φ的函数可直接计算或查有关图表确定。
考虑到支架底托直接立在地基表面上,没有埋深,所以: pu=0.4γbNγ+1.2cNc 地基承载力f= pu /K(K---地基承载力安全系数,K≥3.0)。
第二篇:现浇箱梁支架地基与基础处理?
①当采用满堂支架施工方案时,必须对支架范围内的泥浆池进行彻底清理和换填;原地面处理采用清除杂草、地基触探、回填碎石类土进行分层碾压、高出原地表30cm以上,最后在其上铺筑20cm厚的水泥稳定土垫层。并在周边开挖排水沟、覆盖塑料布防止雨水侵蚀。②当采用临时墩支架施工方案时,地基触探、碾压后、回填碎石类土进行分层碾压、高出地表30~50cm,根据临时墩支架跨距在桥跨内测量放线,放出临时墩跨距不大于8.5m的中心线,立模浇筑1231m的C25钢筋混凝土墩柱基础,并预埋钢结构板件。以备临时墩立柱联结。
③临时墩基础浇筑完毕后,周边回填宽度不小于3.5m的普通粘性土进行碾压密实,周边开挖排水沟,铺设塑料布,防止雨水侵蚀。
④支架现浇梁施工前,先对施工现场进行场地平整,对搭设支架场地进行加固处理,确保地基承载力达到满布荷载的要求,使梁体混凝土浇筑后不产生沉降。⑤支架地基处理可采用换填压实(压实度大于96%)、浆砌条石或浇筑混凝土扩大基础(条形基础)其断面尺寸应根据施工荷载及地基情况确定,条形基础顶面不小于20CM,浇筑混凝土时应注意支架连接用的预埋件的正确安装。
⑥如采用枕木、木板或型钢基础时,枕木、木板或型钢规格应根据施工荷载及地基情况等因素确定但其宽度不小于20CM,就位前在基顶部施洒细砂一层,使其与地基密贴,纵横交叉点有缝隙时应用薄钢板或木板等予以填充,不得留有空隙。
钓鱼论坛
http://www.xiexiebang.com
dsamdewisu28
第三篇:现浇箱梁碗扣式钢管支架体系验算.
现浇箱梁满堂支架及模板施工方案 现浇箱梁满堂支架及模板施工方案
1、工程概况
三环路东北段B段道路工程(Ⅶ标段)桥梁工程主要包括:A匝道桥,设计起点桩号为AK0-0.039,终点桩号为AK0+292.961,全长293m,桥梁位于R=60m的平曲线内。上部结构分别采用普通钢筋混凝土及预应力混凝土连续箱梁,共四联,A匝道桥标准宽为
8.50m,下部结构桥墩采用椭圆型花瓶墩,基础采用钻孔灌注桩;B匝道桥,设计起点桩号为BK0-0.048,终点桩号为BK0+288.152,全长288.20m,桥梁位于R=60m的平曲线内,上部结构分别采用普通钢筋混凝土及预应力混凝土连续箱梁,共四联,B匝道桥标准宽为8.50m,下部结构桥墩采用椭圆型花瓶墩,基础采用钻孔灌注桩;C匝道桥分为两段, 第一段设计起点桩号为CK25+359.04,终点桩号为CK25+791.04,桥长为432m,桥梁位于R=1300m的平曲线内,第二段设计起点桩号为CK26+011.675,终点桩号为CK26+201.675,桥长为190m, 桥梁位于R=350m的平曲线内, 上部结构分别采用普通钢筋混凝土及预应力混凝土连续箱梁,第一段共四联,第二段共两联,第一段桥跨布置为(30x4)+(30x2+27)+(30x3)+(27x5)m,第二段桥跨布置为(20x2)+(30x5)m,C匝道标准桥宽为18.75m;洪湾主路高架桥设计起点桩号为K26+614,终点桩号为K27+040,全长426m,桥跨布置为右幅4x30+(30+27+36+33)+3x30+3x30=426m,左幅4x30+(30+33+36+27)+3x30+3x30=426m,采用现浇预应力混凝土连续箱梁,梁高1.8m。结合现场地质、地形以及各联箱梁的具体情况,采用碗扣式钢管满堂支架作为现浇箱梁支架。现就C匝道桥第一段第三联所采用的碗扣式钢管满堂支架体系进行验算。
2、检算依据
施工检算荷载计算项目按《公路桥涵施工技术规范》JTJ041-2000执行、《路桥施工计算手册》 人民交通出版社 2001年5月(周水兴、何兆益、邹毅松等编著)。
3、碗扣式钢管满堂支架体系设计概述
C匝道桥第一段第三联跨径均为30m,此联箱梁为等截面单箱双室箱梁结构,梁高
1.8米,桥面宽为18.75 米。支架立杆纵桥向布置为47×60cm,共48排;横向立杆布置为39×60cm,共40排;碗扣式钢管满堂支架体系由支架基础(80cm厚砂碎石垫层+20cm 1 现浇箱梁满堂支架及模板施工方案
厚C20砼)、υ48mm×3.5mm钢管立杆、横杆、剪刀撑(扣件式)、斜撑杆、可调托架、12×12cm方木横桥向分配梁、12×12cm方木顺桥向分配梁以及上铺15mm厚竹胶板组成。侧模板下布置12×12cm的纵桥向方木,间距为20cm,其下布置定型钢骨架,纵向间距80cm,定型钢骨架上下弦杆采用[10槽钢,立柱采用υ48mm×3.5mm钢管制作。
碗扣式钢管支架体系各组成部分所采用材料及相关参数如下: 模板:采用规格尺寸为2440×1220×15mm优质竹胶板。竹胶板密度为γ
=8.3KN/m3;抗弯强度[σw板竹胶板]=60.0MPa,弹性模量为Em=5000MPa。木方木:为马尾松,横向方木间距为60cm;纵向方木间距为20cm;方木密度为γ
=6.0KN/m3,方木抗弯强度为[σw方木]=12MPa,方木横纹抗剪强度[τj方木]=1.5MPa,弹性模量E方木=9.0×103MPa。横向方木直接铺设在碗扣式满堂支架立杆顶部的可调顶托
上。纵向方木铺设在横向方木上。υ48mm×3.5mm钢管:立杆间距为60×60cm,横杆层距(即立杆步距)为120cm,立杆竖向容许荷载[N]=33.1KN,其抗压强度值[σ钢管]=215MPa,钢材弹性模量为Eg=2.1 ×105MPa,截面积A=4.89×10-4m2,惯性矩I=1.215×10-7m4,抵抗矩W=5.078×10-6m3,回转半径i=1.578×10-2m,每米重量3.84Kg。支架在桥纵向每1.8m间距设置剪刀撑;立杆顶部安装可调顶托,立杆底部支立在底托上;底托下设置垫木,以确保基础受力均匀。
4、碗扣式钢管满堂支架验算 4.1 荷载标准值计算
梁端实体横隔梁下的底板模板受力最大,作为控制验算部位。分析相关荷载如下:
(1)竹胶板自重:q11=0.015×8.3=0.125KN/m2;纵向方木自重:q12=0.12×0.12×1 ×5×6.0=0.432KN/m;横向方木自重:q13=(0.12×0.12×1×2×6.0)/1.2=0.144 KN/m;
(2)C50钢筋混凝土自重:梁端 q2=1.8×26=46.8KN/m2。(3)计算支撑模板及直接支撑模板的小棱时施工荷载取均布荷载q31=2.5 KN/m2,另以集中荷载P=2.5KN进行检算。计算直接支撑小棱的梁时,施工均布荷载取q32=1.5 KN/m2。计算支架立柱时,取均布荷载q33=1.0 KN/m2。(4)振捣混凝土时产生荷载:q4=2.0 KN/m2。4.2 竹胶板强度及刚度验算 4.2.1 竹胶板计算模型 22 现浇箱梁满堂支架及模板施工方案
竹胶板计算模型取跨度为20cm的简支梁进行验算,计算范围为20×100cm。4.2.2 竹胶板强度验算(1)验算时荷载组合:
情况一:q竹胶板1=(0.125×1+46.8×1+2.5×1+2.0×1)×0.20=10.285KN/m。情况二:q 载P=2.5KN。(2)内力计算:
情况一:M1= q竹胶板1l2/8=10.285×0.202/8=0.051KN.m。情况二:M2= q竹胶板2l2/8+P×l/4=9.785×0.202/8+2.5×0.20/4=0.174KN.m。(3)强度验算:
W=bh2/6=1×0.0152/6=3.75×10-5m3 σ=Mmax/W=M2/W=0.174×103/(3.75×10-5)=0.0464×108Pa =4.64MPa<[σw板竹胶板2 =(0.125×1+46.8×1+2.0×1)×0.20=9.785KN/m,且承受集中荷]=60.0MPa 强度满足要求。4.2.3 竹胶板刚度验算
对于现浇混凝土模板验算刚度时,按照最不利原则,取恒、活荷载均布线荷载标准值进行验算
I=bh3/12=1×0.0153/12=2.813×10-7m4 ν1=5 q竹胶板1l4/(384EI)= 5×10.285×103×0.204/(384×5×109×2.813×10-7)=0.152×10-3m ν2=5 q竹胶板2l4/(384EI)+Pl3/48EI= 5×9.785×103×0.204/(384×5×109×2.813 ×10-7)+2.5×103×0.203/(48×5×109×2.813×10-7)=0.441×10-3m<0.20/400=0.500×10-3m 刚度满足要求。4.3 纵向方木强度及刚度验算 4.3.1 纵向方木计算模型
纵向方木其下横向方木间距为60cm,纵向方木每根长度为3m;故纵向方木计算模型取五跨等跨连续梁进行验算。4.3.2 纵向方木强度验算
(1)强度验算时荷载组合:
情况一:q纵向方木1=(0.125+46.8+0.432+2.5+2.0)×0.20=10.371KN/m。现浇箱梁满堂支架及模板施工方案 情况二:q P=2.5KN。纵向方木2 =(0.125+46.8+0.432+2.0)×0.20=9.871KN/m 且承受集中荷载(2)内力计算:
情况一:M1max= 0.105q纵向方木1l2=0.105×10.371×0.62=0.392KN.m Q1max= 0.606q纵向方木1l=0.606×10.371×0.6=3.771KN 情况二:M2max=0.105q纵向方木2l2+0.158Pl =0.105×9.871×0.62+0.158×2.5×0.6=0.610KN.m。Q2max= 0.606q纵向方木2l+P=0.606×9.871×0.6+2.5=6.089KN(3)强度验算:
W=bh2/6=0.12×0.122/6=2.88×10-4m3 σ=Mmax/W=M2max/W=0.610×103×10-6/(2.88×10-4)=2.12MPa<[σw方木]=12MPa 抗弯强度满足要求。
τ=3Qmax/(2bh)=3×6.089×103×10-6/(2×0.12×0.12)=0.634MPa<[τj方木]=1.5MPa 抗剪强度满足要求。4.3.3 纵向方木刚度验算
按照最不利原则,取恒、活荷载均布线荷载标准值对其刚度进行验算 I=bh3/12=0.12×0.123/12=1.728×10-5m4 ν1=0.664×5q纵向方木1l4/384EI= 0.664×5×10.371×103×0.604/384×9×109× 1.728×10-5=0.747×10-4m<0.6/400=1.5×10-3m ν2=0.664×5q纵向方木2l4/384EI+1.097×Pl3/48EI = 0.664×5×9.871×103× 0.604/384×9×109×1.728×10-5+1.097×2.5×103×0.63/48×9×109×1.728×10-5=1.505×10-4m<0.6/400=1.5×10-3m 刚度满足要求。4.4 横向方木强度及刚度验算 4.4.1 横向方木计算模型
横向方木其下立杆间距为60×60cm,横向方木每根长3m,计算模型取五跨等跨连续梁进行验算。
4.4.2 横向方木强度验算
(1)强度验算时荷载组合:
现浇箱梁满堂支架及模板施工方案
q横向方木=(0.125+46.8+0.432+0.144+1.5+2.0)×0.6=30.601KN/m。(2)内力计算:
M=0.105q横向方木l2=0.105×30.601×0.62=1.157 KN.m。
Q= 0.606q横向方木l=0.606×30.601×0.6=11.127KN(3)强度验算:
W=bh2/6=0.12×0.122/6=2.88×10-4m3 σ=M/W=1.157×103×10-6/(2.88×10-4)=4.017MPa<[σ 要求。
τ=3Q/(2×b×h)=3×11.127×103×10-6/(2×0.12×0.12)=1.159MPa<[τ =1.5MPa 抗剪强度满足要求。4.4.3 横向方木刚度验算
对于现浇混凝土模板支架横向方木的刚度进行验算
I=bh3/12=0.12×0.123/12=1.728×10-5m4 ν=0.664×5q横向方木l4/384EI= 0.664×5×30.601×103×0.604/384×9×109×1.728 ×10-5=0.220×10-3m<0.6/400=1.5×10-3m 刚度满足要求。4.5 碗扣式钢管满堂支架立杆的强度及稳定性验算 支架立杆间距为60×60cm,横杆层距(即立杆步距)为120cm,每米重量38.4N。支架在桥纵向每1.8m间距设置剪刀撑;立杆顶部安装可调顶托,立杆底部支立在底托上;底托下设置垫木,以确保基础受力均匀。第三联箱梁C10墩身处支架最高为10.7m,按最不利原则以该处碗扣式钢管满堂支架布设情况来考虑扣件杆件自重: 计算一跨支架的重量
立杆总长:48×40×10.7=20544m 横杆总长:(47×40+48×39)×0.6×9=20260.8m 剪刀撑总长:13×2×8×16×2.16=7188.48m 支架总重量:(20544+20260.8+7188.48)×38.4=1842941.952N 支架荷载:1842941.952/28.2×23.4=2.793KN/m2。4.5.1 立杆荷载计算 立杆间距为60×60cm,单根立杆所受荷载为: j方木w方木]=12MPa抗弯强度满足]
现浇箱梁满堂支架及模板施工方案
P=(0.125+0.432+0.144+2.793+46.8+1.0+2.0)×0.6×0.6=19.186KN。4.5.2 立杆强度验算
分配到每根碗扣式支架立杆荷载:
N=P=19.186KN<[N]=33.1KN 满足步距为120cm的承载力要求。
4.5.3 碗扣式钢管满堂支架立杆稳定性验算
每根立杆承受轴向压力N=P=19.186KN,取横杆层距(即立杆步距)L0=120cm,验算
立杆的稳定,支架立柱采用多层水平、纵向横杆、斜撑杆等构件连接成整体支架体系,碗扣式钢管满堂支架立杆稳定性验算时按照轴心受压构件考虑,即按照σ=N/υA≤[σ钢管]=215MPa进行验算。截面积A=4.89×10-4m2,回转半径i=1.578×10-2m。
λ= L0/i=1.2/1.578×10-2=76.046<[λ]=150 查《路桥施工计算手册》λ=76.0461时,立杆轴心受压构件纵向弯曲系数υ=0.676 σ=N/υA=19.186×103×10-6/(0.676×4.89×10-4)=58.040 MPa≤[σ钢管]=215MPa 满足稳定性要求。
4.6 立杆地基承载力验算
地基承载力根据基础底面积而定,地基容许承载力应满足:P=N/Ab=19.186/0.36=53.3KPa。
根据试验检验报告得知,第三联箱梁地基基础天然状态下抗压强度为50~100KPa。经过对局部软弱地基(如鱼塘、打桩用泥浆池、承台处回填土等)进行换填,以及对满堂支架天然地基进行碾压,采用80cm厚的砂碎石垫层+20cm厚C20混凝土作为支架基础,基础承载力能够满足容许承载力P≥53.3KPa要求。
5、施工时注意事项
碗扣式钢管满堂支架体系受钢管材料质量(如钢管厚度不足、碗扣式支架顶底托不合格、钢管不铅直、锈蚀等)、地基处理情况(如未压实、地基不均匀、积水等)和人为因素(施工时不严格认真、节点未错开、节点未装好等)等不利因素影响较多,因此施工时应加强对支架体系的材料、搭设、验收等环节进行质量控制及现场监督管理,确保工程施工安全。
第四篇:水中现浇箱梁支架搭设方案
支架搭设方案
(水中现浇箱梁)
中铁二十局一处苏州市 官渎里立交工程项目经理部 二OO二年四月十七日
目 录
一、工程概况
二、施工方法及施工方案
1、临时支墩布设
2、贝雷梁支架的布设
3、贝雷梁的架设
4、支架搭设
三、附图
1、H桥(H20-C30)支架结构布置图
2、C桥(C28-C30)支架结构布置图
3、B桥(B29-B32)支架结构布置图
四、计算资料
1、C桥支架布设计算资料
2、B桥支架布设计算资料
3、临时桩坐标一览表
水中现浇箱梁支架搭设方案
一、工程概况:
苏州市官渎里立交工程共有三座跨河,分别为B、C、H三线桥,所跨河道为苏浏河坝基桥段,与新建坝基桥平行跨越。三桥中,B线桥B29-B32为一联四跨现浇钢筋砼连续箱梁,C桥C27-C30,H桥H19-C30均为一联三跨现浇预应力砼连续箱梁。三桥中以C线桥跨径最大,为3×34m,而以B桥的桥面最宽,其最宽处达19m,为渐变段。
三桥均为现浇箱梁跨河,因此施工存在一定的难度,尤以对现浇箱梁的支架有更高,更严的要求。需水面上搭设现浇箱梁支架,且同时需考虑桥下通航。支架搭设的成功与否,直接关系到整个官渎里立交工程的成败。为确保整个工程顺利进行,按时、保质、高效的完成水中现浇箱梁施工任务,经过多种方案详细比较、筛选,我标段拟在水中布设临时钻孔桩支墩,在支墩横梁上架设贝雷梁跨越,然后在其上铺设工字钢,形成基础,搭设碗扣支架,铺底模的方法搭设水中支架。具体搭设方案见下。
二、施工方法及施工方案:
1、临时支墩布设
根据B、C、H线三桥各自的特点及跨径,为确保水中支架的安全,拟在三桥每跨中加设一个临时支墩,以缩小贝雷梁跨径,从而缩小支架材料的跨中弯矩,达到既安全又节省材料的效果。水中临时支墩拟采用跨中附近布置一排横桥向钻孔桩,其数量根据桥宽来决定,H桥和C桥为两根,B桥则采用三根桩,桩径均采用1m,桩顶标高高出水面40cm,钻孔桩横桥向布置在箱梁底板边缘下方,来承受箱梁主要荷载。以C线桥为例,C桥临时钻孔桩布置在跨中桥梁中心线两侧,两桩中心间距为6m。临时钻孔桩桩长经过计算,为确保安全拟采用25m,其承载力完全满足现浇箱梁支架施工要求。钻孔桩施工方法同主桥的钻孔桩施工,以确保其质量。水中钻孔桩施工完毕后,即可在其上接桩进行墩柱浇注,临时支墩均为桩柱一体式,经调查,为满足紧急情况下通航要求,净空拟按5m计算。据此,从贝雷梁底标高进行推算,从而确定临时支墩的高度,立柱拟采用1.0m的圆柱,在立柱顶部两边预埋上两根角铁,并在立柱中心预埋一块A3钢板,以稳定横梁工字钢。同时在桩与立柱交接处预埋一块A3钢板,加设一道钢横系梁,材料采用工字钢,以增加钻孔桩的横向稳定性。
2、贝雷梁支架布设
根据现浇箱梁支架的需要,为确保施工质量及进度,经过多种方案比较,我标段拟采用水中跨为贝雷梁跨越,因贝雷梁整体刚性好,强度大。为保证一定的净空和净宽,需在两端和跨中设置支墩,跨中支墩采用桩柱一体式,两端则拟采用钢管支墩,同样,以C线为例,因为C桥的桥宽和跨径比H线桥大,在同样标准下,满足了C桥,也就能满足H桥。B桥虽桥宽有所增加,但B桥钻孔桩增加到三根,同样也能满足要求。在C桥28#墩上承台布置12根φ600×6mm的钢管桩,用I30b工字钢连接,上搁横桥向一排4I30b工字钢,并连成一个整体,作为支撑贝雷梁的横梁。在C29#一侧,在承台上布置两个钢支墩,每个支墩由4根φ600×6mm的钢管构成,其底部和顶部各焊接一块A3钢板,调平,在其上同样也搭设一根横梁,横梁由4根I30b工字钢构成。上述布置经过计算,其受力情况满足要求。C28和C29#墩的钢支墩长度不相等,但必须满足使其各自顶上所支承的4根I50b工字钢横梁在同一标高上,从而保证贝雷梁在同一高度。水中横梁标高由立柱来控制。水中临时支墩上的横梁,因C线桥两临时桩间距较大,经过计算,横梁拟采用4根I50b工字钢作为横梁,用钢板将4根焊成一个整体。在横梁两端和焊接处加筋板,以增加受力和强度。横梁与立柱顶上的预埋钢板焊接,并固定在两预埋的角铁之间,以增加横梁的稳定性。B、C、H三桥跨中临时墩上的横梁均采用4根I50b的工字钢,以力求保险。横梁顶通过标高来控制水平。在承台的布置的钢管支墩,所采用的φ600×6mm的钢管,其承载力完全满足贝雷梁架设的要求。钢管的上、下两端均焊接一块70×70cm、2cm厚的A3钢板,下底的A3钢板通过地脚螺栓和承台连在一起,以增加支墩的稳定性。各钢管支墩之间均通过水平缀条和斜撑连接。钢管支撑与横梁之间也通过焊接的方式固定在一起。这样在承台上的所有钢管支墩就连成一个整体,大大提高了支墩的稳定性。
3、贝雷梁的架设
钢管支墩和临时钻孔桩支墩的横梁搭设完毕,标高符合要求后,即可在其上架上纵桥向的贝雷梁,贝雷梁采用上下加强型双排单层贝雷梁,经过计算,综合桥宽和跨径,B桥在B29-B30#一跨布置6组12片,其余为5组10片贝雷梁,在C桥、H桥分别为4组8片双排单层贝雷梁跨越。经过计算,此种布置形式完全能够满足现浇箱梁的施工,其强度挠度均能达到规范要求。每组贝雷梁与横梁之间能过U形卡子与横梁连接,用螺栓拧紧,必要时通过在横梁上加焊角铁的方法来固定贝雷梁。每组贝雷梁的安放位置经过计算,保证受力均匀,分布合理。
贝雷梁为定型钢构件,其标准尺寸为1.5×3 m,因此,在布置临时支墩的时候,应尽量考虑使支点位置位于两片贝雷梁的接头处,或者是贝雷梁腹杆加强处,临时支墩位置不一定在跨中,但以最大跨径34m来计算,仍能满足施工要求,故在架设贝雷梁时对此可不与考虑。C29-C30之间有一部份地基位于水中,所以对C28-C29跨贝雷梁予以延长9m到岸边,在岸上设一临时支墩来支撑贝雷梁。一跨4组成5组贝雷之间,通过角铁或者是法兰连接,形成拉杆,以增加贝雷梁的自身稳定性。拉杆位置每隔6m左右设置一道,贝雷梁的架设应严格按要求施工,保证其受力效果。经计算,整个水中支架共计需用540片左右加强型贝雷梁。
4、支架搭设
贝雷梁架设完毕,便可在上面铺设一层I20b工字钢,用来分布上面传递下来的荷载,同时也就用作上层碗扣件支架的基础,即同于以后陆地上施工时的地基。I20b工字钢横桥向布置,间距控制在1m,在横梁处适当予以加密,工字钢与贝雷梁之间全部用U形卡子连接,螺栓拧紧,I20b工字钢铺完以后,即同于陆地上箱梁施工的基础,在其上搭设碗扣件支架铺设方木和底模,搭设要求同陆地上施工要求,其施工方法见现浇梁施工方案。
水中支架验算
水中现浇箱梁支架的计算,主要是验算贝雷梁的挠度、强度以及在临时支墩上的横梁验算。C线桥桥宽为9.5m,跨径为34m,在桥宽和跨径上都比H线桥要大,因此,以同样的标准搭设H桥支架,在验算支架时,满足了C桥同时也就满足了H线桥。B桥因处于变截面上,以B29#~B31#一跨桥面最宽,B30#~B31#墩跨径最大,所以以B29#~B30#墩一跨的重量来验算B30#~B31#一跨的跨径,这样,在整个B桥上也都适应。
一、C线桥支架计算:(C28#~C29#)
1、荷载组合:
(1)砼自重:g1=506/(34×3)×2.6=12.9T/m
3(2)竹胶板重量:
C线桥每延米底模竹胶板用量为S1=12.18m2,取竹胶板比重ρ=0.8T/m3,厚度为h =1.5cm竹胶板,则每延米竹胶板重量为:
g2=12.18×0.0015×0.08≈0.015T/m
(3)底模用方木重量:
在1m断面范围内共设置3根横向10×10cm的,纵向9根15×15cm的方木,共计总重量为:
g3=0.8×(0.1×0.1×10×3+0.15×0.15×1×9)≈0.4T/m
(4)碗扣件支架(取纵向为0.9m一排)
经计算贝雷梁以上至箱梁底以下的碗扣件支架搭设平均高度为7m,在每一延米范围内:
立杆:3×14.02×9≈0.38T
横杆:3.97×9×5=0.18T
顶托、底托:(6.75+6.45)×9=0.119T
平均每延米范围内,碗扣件支架重量为:g4=0.68T/m
(5)横向I20b工字钢自重:
g5=0.311T/m
(6)一片上下加强型贝雷梁自重:
贝雷片自重:0.27T
加强弦杆2根:2×80=0.16T
插销:2×0.003=0.006T
支承件:0.021T
一片上加强型贝雷梁自重为:g6=0.27+0.16+0.006+0.021≈0.5T
因此,贝雷梁以上部分砼,底模方木,碗扣件支架总重量为:
q1=(12.9+0.015+0.4+0.68)=14T/m
拆合成砼自重为ρ=(14×34×3)/506≈2.822T/m3
计算时为安全起见,考虑到部分施工荷载的影响,对I20b工字钢以部份重量按砼自重ρ=3.0T/ m3来计算考虑。
则有:q1=506×3.0/34×3≈14.822T/m2、C28-C29顶层I20b工字钢验算:
C28-C29一跨拟采用4组8片加强型双排单层贝雷梁跨越,四片梁最大间距2.13m(见附后布置图),在贝雷梁上铺设一层I20b工字钢,横桥向间距为1.0m,长度采用10m长。
(1)平均分配到I20b工字钢上的均布荷载计算:
一跨长度为34m,则所需工字钢根数约为32根
则有:q2=(14.822×34)/(32×10)=1.581T/m
(2)强度计算
按最不利的受力情况,简支状态来计算
查表得:I20b工字钢
Ix=2500cmWx=250cm则跨中最大弯矩为Mc=1/8qLMc=1/8×1.581×10×2.132=8.966KN·m
由强度公式б=Mc/Wx可得
бmax=Mc/Wx=8.966×103/250×10-6≈35.864MPa<[б]=210MPa强度符合要求
(3)挠度计算
因I20b工字钢上以荷载较多,可视其为均布荷载,故挠度公式为:
fmax=5qL4/384EI
fmax=(5×1.581×104×2.13×103)(/384×210×109×2500×10-8)≈0.81mm
而允许挠度f允=L/400≈4mm
有fmax=0.81mm 3、C28-C29一跨纵桥向贝雷梁验算 (1)贝雷梁上所受的均布荷载计算 a、I20b工字钢上部重量按砼比重ρ=3.0T/m来计算,则有: G1=ρ〃v=14.882×34≈506T b、32根I20b工字钢重量: G2=32×10×0.0311=9.952T c、四组8片加强型贝雷梁自重: G3=0.5×12×2×4=48T 则平均分布到贝雷梁上的均布荷载为: q3=(506+9.952+48)/(4×34)=4.147T/m (2)强度计算 根据布置图:取计算跨径Lo=16.5m 查公路计算手册,双排单层(加强型)贝雷梁: Ix=1154868.8cm 4Wx=15398.8cm按最不利情况计算(取简支状态) 跨中弯矩:Mc=1/8qL2 Mc=1/8×4.147×10×16.52=1411.3KN·m 而手册中,贝雷梁允许承受最大弯矩为M允=3375 KN·m Mc=1411.3KN·m 则由公式б=Mc/Wx可得 бmax=Mc/Wx=1411.3×103/15398.3×10-6≈91.653MPa<[б]=210MPa强度符合要求 (3)挠度计算 由挠度公式:f=5qL4/384EI可得 fmax=(5×4.147×104×16.54×103)/(384×210×109×1154868.8×10-8)≈16.5mm 而允许挠度f=L/400≈37.5mm挠度符合要求 (4)支点处剪力计算 QA=QB=qL/2=(16.5×4.147×10)/2=342.13KN QA=QB=342.13KN b、取实际受力情况,按连续梁计算 (1)强度计算 弯矩计算 由力学近似公式求得: M=Km〃q·L2,取弯矩系数Km=0.07 则有:M=0.07×4.147×10×16.52=790.32KN·m符合要求 бmax=Mc/Wx=790.32×103/15398.3×10-6≈51.325MPa<[б]=210MPa强度符合要求 (2)挠度计算 由近似公式可得f=Kw×(q×L4/100EI),取挠度系数Kw=0.521 则有:fmax=(0.521×(4.147×104×16.54×103))/(100×210×109×1154868.8×10-8)≈6.6mm挠度符合要求 (3)支点处剪力计算 由近似公式可得 Q=Kv〃q·L,取剪力系数Kv=0.625 则有:Q=0.625×4.147×10×16.5=427.66KN 4、C28-C29临时支墩上横梁计算 C桥临时支墩拟采用φ1.0m的钻孔桩,钻孔桩中心间距为6.14m,拟采用4根I50b工字钢组焊成一根整横梁。 (1)荷载计算 a、横梁以上部份总重量为:G4=G1+G2+GG4=506+9.952+48=563.952T 则临时墩上横梁所承受的荷载为: Q=1/2G4=1/2×563.952=281.98T b、4根9m长I50b工字钢自重为: G5=4×9×0.101=3.636T 则平均分布于单根I50b工字钢上的均布荷载为q5=0.101T/m c、四组贝雷梁作用于横梁上,可视为四个集中荷载 则有:P1=P2=P3=P4=(G4×1/2)/4=G4/8≈704.94KN RA=RB=(1/2G4+G5)/2≈(281.98+3.636)/2≈1428.1KN (2)强度计算 由公式可得,跨中弯矩为Mc 则有Mc=P1L1+P2L2-1/2q5L32-RAL4 =704.9×(2.01+2.13/2)+704.9×2.13/2+1/2×0.101×(4.5/2)2-1428.1×3.07 =-1456.4KN·m 查表得,I50b工字钢:Ix=48560cm 4Wx=1940cm所以单根I50b工字钢所能承受的最大弯矩为: M=[б] ×Wx=210×109×1940×10-6=407.4KN·m 4根共计承受总弯矩为:M总=4×407.4≈1629.6 KN·m Mc=1456.4 KN·m< M总=1629.6 KN·m 故采用4根I50b工字钢符合要求 5、C28-C29一跨跨中临时桩桩长计算 (1)荷载计算 a:P1=RA=RB=1428.1KN b:按桩长为22m考虑,则桩本身重量为: P2=ρv=2.5×π×(1。05/2)2×22≈476KN (2)按单桩轴向容许承载力计算 P=ρj/K 计算时,取安全系数K=2,则有ρ=1/2ρj P=P1+P2=1904KN 则有p=1/2ρj =1/2UΣLiτi+λMoA{[бo]+K2γ2(h-3)} (3)参数取定: ①临时桩桩径采用1.0m,则周长取C=2πr=π×1.05=3.3m ②λ:桩入土长度影响的修正系数 取λ=0.85 ③考虑孔底沉淀淤泥影响的清孔系数:取mo=0.7 ④A:桩底截面积:A=πr2=π×(0.52)2=0.85m 2⑤[бo]:对临时桩按[бo]=0来考虑 ⑥k2:地基土容许承载力随深度的修正系数:取k2=3 ⑦γ2;查地质堪察报告:取γ2=19KN/m 3⑧τ:取极限摩阻力按取τ=30KPa 由公式得: 1904=1/2×3.3×h×30+0.85×0.7×0.85×{0+3×19×(h-3)} 反求得:h=25m 注:在此计算中: ①不考虑桩底的承载力 ②安全系数取K=2 ③极限摩阻力取偏小值τ=30KPa ④按桩长为20m来考虑桩自重 二、B桥支架计算 B桥的支架验算,因详细的施工图未到,故拟采用以B29#-B30#一跨的重量来验算最大跨径,B30#-B31#墩。根据布置图取计算跨径Lo=12m,经计算B29-B30#墩平均截面积为9.877m2。 ①荷载计算 a、每延米砼自重:q6=9.877×3=29.631T/m b、B30-B31#墩跨径为25m 则该跨砼重量:G5=25×29.631=740.775T c、5组10片加强型贝雷梁自重:G6=0.5×2×5×8=40T d、贝雷梁上I20b工字钢重量G7 承I20b工字钢平均长度为16m,跨径为25m,则: G7=25×16×0.0311=12.44T e、横梁自重G8 B线桥临时支墩上横梁也拟采用4根I50b工字钢,长度为15m 则:G8=5×16×0.101=8.08T ②B30-B31#墩纵向贝雷梁计算 a、按最不利受力情况简支状态来计算 平均分配到每延米贝雷梁上的荷布荷载为: q7=(G5+G6+G)/L=(740.775+40+12.44)/5×24=6.61T/m 则有Mc=1/8qL2 Mc=1/8×6.61×10×122=1189.8KN〃m 查手册得,加强型双排单层贝梁 Ix=1154868.8cm4 Wx=15398.3cm允许最大弯矩:M允=3375KN〃m Mc=1189.8KN〃m< M允=3375KN〃m符合要求 бmax=Mc/Wx=1189.8×103/15398.3×10-6=77.3MPa<[б]=210MPa强度符合要求 (2)挠度计算 由公式f=5qL4/384EI fmax=(5×6.61×104×123×103)/(384×210×109×1154868.8×10-8)≈7.4mm fmax=7.4mm (3)剪力验算 QA=QB=qL/2=1/2×6.61×10×12=396.6KN< Q允=490.5KN剪力符合要求 b、取实际受力情况,按连续梁计算 (1)强度计算 查公路手册,连续梁弯矩计算公式为: M=Km〃qL2取弯矩系数=0.07 则有:M=0.07×6.61×10×122=666.3KN·m M=666.3 KN·m 由强度公式б=Mc/Mx可得 [б] =Mc/Mx=666.3×103/15398.3×10-6=43.3MPa<[б]=210MPa强度符合要求 (2)挠度验算 由挠度计算公式f=Kw×qL4/100EI可得,取挠度系数Kw=0.521 fmax=(0.521×6.61×104×124×103)/(100×1154868.8×10-8×210×109)≈3mm挠度符合要求 (3)剪力计算 由公式Q=Kv〃qL得,取剪力系数Kv=0.625 Q=0.625×6.61×10×12=495.78>Q允=490.5KN 剪力略大于容许剪力,在支点处对贝雷梁适应用槽钢予以加强 3、B桥横梁计算 B桥临时桩拟采用3根,以B29-B30#墩之间桥面最宽,因此,B29-B30之间的钻孔桩间距最大,按取两桩中心间距L=6.8m来计算,横梁拟采用4根I50b工字钢组焊而成。 (1)荷载计算 a、横梁以上部份重量:G9=(G5+G6+G7)×1/2 G9=(740.775+40+12.44)×1/2=396.61T b、横梁上均布荷载q8=0.101T/m (2)强度计算 取实际受力情况:按连续梁计算,由连续梁弯矩近似计算公式可得 M=Km〃P〃L取Km=-0.333 则有:M=-0.333×661.1×6.8≈1497KN·m 4根I50b工字钢所承受的跨中最大弯矩为: M总=4× [б] ×Wx =4×210×109×1940×10-6=1629.6KN·m M=1497 KN·m< M总=1629.6KN·m 故采用4根I50b工字钢用作横梁,符合要求 (3)挠度计算 由挠度近似计算公式可得f=Kw×FL4/100EI可得,取挠度系数Kw=2.508 fmax=(2.508×6.61×104×6.83×103)/(100×210×109×4×48560×10-8)≈12.8mm f允=L/400=17mm fmax=12.8mm< f允=17mm挠度符合要求 4、B线桥临时桩桩长计算 B线桥临时桩所承受的最大轴向压力为:RA=1349KN,而C线桥25m桩所承受的反力为:1428KN。B线桥桩所承受的力小于C线桥,故C桥的桩长在B桥同样适应,为安全起见B桥临时桩桩长采用L=25m。 临时钻孔桩桩长计算 根据单桩轴向受压容许承载力公式计算 [P]=1/2U∑Liτi+λmoA{[бo]+k2γ2(h-3)} 以最大跨径的C线桥为例 C桥平均每联重531T,按跨中取1/3重量,则分配到每根临时钻的重量为:P=1/6×531=88.5吨 取k=2的安全系数,则P=88.5×2=177吨≈1770KN 1、参数确定: (1)临时桩桩径采用1.0m,则周长取C=2πr=π×1.3=4.084m (2)λ:桩入土长度影响的修正系数 取λ=0.85(3)考虑孔底沉淀淤泥影响的清孔系数:取mo=0.7(4)A:桩底截面积:A=πr2=π×(0.52)2=0.85m 2(5)[бo]:桩底取处土的容许承载力: 取[бo]=170KPa (6)k2:地基土容许承载力随深度的修正系数:取k2=3(7)γ2;坝基桥附近土层:eo=0.8~0.085,查地质资料:取γ2=19KN/m 3(8)τ:极限摩阻力:取τ=45KPa 由公式: ∴1770=1/2×4.084×h×45+0.88×0.7×0.85{170+3×19×(h-3)=91.89h+0.506×(170+57(h-3)) 解方程得: ∴1770=91.89h+0.506×[170+57h-171] = 91.89h+86.02+28.842h-86.526 h=14.66m 取h=15m来进行施工 2、C28-C29跨中贝雷梁计算 (1)上层32根10m长I20b工字钢重量为:G1=32×10×0.0311=9.952T 采用 且加强型的双排单层贝雷梁,计算路径取17.5m 则平均分配到每组贝雷梁上的均布荷载为(取1.5的不均匀折成系数) q=(506+9.952)×1.5/(4×36)=5.375T/m 查手册,加强型双排单层贝雷梁: IX=1154868.8cmWX=15398.3cm则跨中弯矩: Mc=1/8qL2=1/8×5.375×17.52=205.762T〃m=2057.62KN〃m 查手册,双排单层贝雷梁允许跨中弯矩为M=3375KN〃m Mc=2057.62KN·m<3375KN,故弯矩满足要求 fmax=5qL4/384EI=(5×5.375×104×17.54×103)/(384×210×109×1154868.8×10-8)=2.71cm δmax=Mc/Wx=2057.62/153983×10-6=133MPa<[δ]=210MPa强度符合要求 水中支架验算 一、顶层I20工字钢验算: 1、综合考虑,为简化计算,确保安全,计算受力图示均按简支梁来计算,砼比重按ρ=3T/m3来考虑 以C28-C29一跨来计算,该跨砼体积为:V=506/3=168.67m则该跨砼自重G=506T,该跨跨径为L=34m 则平均每延米吨位数为:q1=506T/34m=14.89T/m (1)计算顶层I20工字钢,间距按1.0m来考虑,下层四组8片贝雷梁间距为1.6m,平均分配到每根I20工字钢的均布荷载为: q=506/32×10=1.582T/m 取1.5的不均匀折诚系数:则q=1.582×1.5=2.372T/m 跨中最大弯矩计算:Mc=1/8×2.372×1.62=0.759 T〃m=7.59KN·m 查表得:I20b工字钢: IX=2500cm 4WX=250cm3 则бmax=Mc/Wx=7.59×103/250-6=30.36MPa<[δ]=210MPa fmax=(5qL4)/(384EI)=(5×2.372×104×1.64×103)/(384×210×109×2500×10-8)=0.386mm (2)横桥向的横梁计算 先按2根I40b工字钢进行验算 4组36m长贝雷梁自重:(双排单层加强型),按每节24.5KN来计算(查手册) 一组为12节,4 组共计48节,则自重为: G1=48×24.5KN/节=1176KN 则三排横梁共计承重为: G=(506+9.95+117.6)×1.5/3=316.78T 以跨径最大的水中临时墩来考虑: 先拟采用3根I40b工字钢作横梁,长度采用9m RA=RB=316.78/2=158.39T=1583.9KN 则Mc=P1L1+P2L2=PAL =791.95×4.46+791.95×2.23-1583.9×2.5=1338.4KN·m 查表得I40b工字钢:IX=22780cm4 WX=1140cm3 I40b容许应力[δ]=210MPa ∴容许弯矩:W=[δ] ×WX=210×109×1140×10-6=239.4KN〃m 则每排所需I40b工字钢根数为:n=1338.4/239.4≈6根 若取I56b工字钢来计算: IX=68512.5 WX=2246.69 则容许弯矩M=[δ] ×WX=210×109×2446.69×10-6=513.8 则n=1338.4/513.8=3根 材料计算(C桥) C28-C29贝雷梁考虑向C30方向延桥6m(两节) 1、则C桥共计需贝雷片:(36+6)/3×8=112片(加强型)2、9m长I56b工字钢: 3×3×9=54m,共计重:54×0.115=6.21T 3、I20b工字钢:单根长10m 10×32=320m G=320×0.0311=9.952T 4、φ700×10mm的钢护筒,两根单根长:C28#墩 临时立柱顶到箱梁底高度为:(0.012+0.15+0.2+1.5+0.56+0.08)=2.502m 临时墩柱顶标高:C28=15.224-2.502=12.722m C29=14.564-2.802=12.062m 则φ200的长度为:9.722m 8根φ245的钢管:长度:9.562m φ32精轧螺纹钢:4根,长度:3.5m B桥计算 B桥因图纸未到,加上安全因素,平均按每延米35T来考虑计算荷载,以B30~B31#墩为例,取计算跨径25m 则该跨总重量为:25×35=875T 1、计算贝雷梁 拟彩和5组加强型双排单层贝雷梁 则平均每组贝雷梁承重为:q=875/5=175T 按计算跨径为27m来计算,则平均每延米承得为6.482T/m,按13米的跨径来检算贝雷梁 查表得:IX=1154868.8cm 4WX=15398.3cm3 则跨中弯矩:Mc=1/8qL2=1/8×6.482×132=136.94T/ m=1369.4KN〃m Mc<3375KN〃m的容允弯矩:安全系数K=2.46 fmax=(5qL4)/(384EI)=(5×6.482×104×134×103)/(384×210×109×1154868.8×10-8)=9.94mm δmax=Mc/Wx=1369.4×103/15398.3×10-6=96.7MPa<[δ]=210MPa强度符合要求 B桥临时墩顶横梁计算 一、重量计算: 5组贝雷梁重: G1=45×24.5KN/节=1102.5KN=110.25T 该跨砼自重按:每延米35T来考虑,则重点为875T 则总重为:G总=875+110.25=985.25T 在跨中中间宽度15m的贝雷梁计算 钻孔桩拟定桩距采用6m 平均每片横梁上承受荷载:983.25/3=328.42 平均到每组贝雷梁的荷载为:328.42/5=65.7T 由公式可得:先计算B点处的最大弯矩 MB支=KM〃PL 取修正系数Km=0.203 =-0.203×657KN×6m=800.23KN·m ∴fmax=(5qL4)/(384EI)=(5×800.23×104×64×103)/(384×210×109×1154868.8×10-8)=5.6mm δmax=Mc/Wx=800.23×103/15318.3×10-6=52MPa<[б]=210MPa强度符合要求 B桥材料计算 B29#-B30#跨径:20米 B30#-B31#跨径:2.5米 B31#-B32#跨径:23米 贝雷梁片数: 21米:56片 25米:64片 23米:64片 横梁:40片+5×6=70片 共计用贝雷梁片数为:56+64+64+70=254片 C桥材料计算: 贝雷梁:(36+6)/3×8=112片 H桥 共需贝雷片:128片 三种桥共计需用贝雷片:245+128+112=485片 水中现浇箱梁支架验算 B、C、H三线桥中,以C28-C29一跨跨径最大,而以B29-B30一跨桥面最宽,处于变截面段,在同样条件下,以B桥和C桥来验算支架,也就满足了H桥,现就以C桥和B桥来进行检算。 一、1、综合考虑,为简化计算,保证安全,所有计算受力图示均按简支状态来计算。 2、结合我单位长期的施工经验,对砼比重按P=3T/m3来考虑,取值时,其内已包含了该部份砼数量的施工模板,机具、人群,操作荷载及砼自重。 3、计算时,从安全角度出发,统一取1.5的不均匀折减系数。 二、C28-C29一跨顶层I20b工字钢验算 1、重量计算 查图纸可得,该跨砼自重为G1=506/3×3=506T 则该跨平均每延米自重为:q1=506/34=14.89T/m 取I20b工字长度为10m长计算,下层用作支承的双排单层贝雷梁间距为1.6m,I20b工字钢纵桥向间距为1.0m。 则平均分配到每根I20b工字钢的均布荷载q2为: q2=(506/32×10)×1.5=2.372T/m 2、I20b工字钢强度和挠度验算 查表得I20b工字钢: IX=2500cm 4WX=250cm4 跨中最大弯矩Mc Mc=1/8qL2=1/8×2.372×1.62=0.759T·m 由公式可知: бmax=Mc/Wx=0.759×10×103/250×10-6=30.36MPa<[б]=210MPa f max=5qL4/384EI=(5×2.372×104×1.64×103)/(384×210×109×2500×10-8)=0.386mm f max=0.386 三、C28-C29纵桥向4组贝雷梁验算 1、荷载组合: (1)上层32根10m长I20b工字钢自重:GG2=32×10×0.311=9.952T (2)经设计和计算,贝雷梁采用4组加强型双排单层,查手册得: 双排单层贝雷梁:IX=1154868.8cm 4Wx=15398.3cm3 每节(3m)贝雷梁自重:按24.5KN来计算,取计算跨径为17.5m 4组36m长贝雷梁自重:G3=36/3×4×24.5=1176KN 则平均分配到每组贝雷梁上的均布荷载为:qq3=(506+9.95+117.6)×1.5/(4×36)=6.6T/m (3)跨中弯矩Mc=1/8q3L2 Mc=1/8×6.6×17.52=252.66T·m≈2526.6KN·m 查手册,双排单层贝雷梁允许最大跨中弯矩为:Mo=3375KN·m Mc=2526.6KN·m< Mo=3375KN·m 弯矩符合要求 (4)бmax=Mc/Wx=2526.6×103/15398.3×10-6=164.1MPa<[б]=210MPa 强度符合要求 (5)f max=5qL4/384EI=(5×6.6×104×17.54×103)/(384×210×109×1154868。8×10-8)=33mm f允许=L/400=175000/400=43.8mm f max=33 (6)支点处剪力验算 支点处剪力QA=G/2=(6.6×17.5×10)/2=577KN 允许剪力Q允=490.5KN QA>Q允故在支点处对贝雷梁应予以加强 四、支墩上横梁验算 按采用3根I56a工字钢来考虑: 3根9m长I56工字钢自重为G4 G4=3×9×0.1062=2.87T 横梁跨中弯矩Mc计算 三排横梁共计承重为G5 G5=(506+9.95+117.6+2.87)=636.42T 则每排横梁承重:G=212.14×1.5=318.21T 支点处支座仅力为:RA=RB=318.21/2=159.11T 每排横梁共计受四个集中荷载: P1=P2=P3=P4=318.21/2=79.56T 则跨中弯矩为Mc=P1L1+P2L2-RA〃L ∴Mc=795.6×4.46+795.6×2.23-1591.1×2.5=1344.82KN〃m 查表得I56a工字钢: IX=68512.5cm 4WX=2446.69cm则跨中允许弯矩Mo=[б] ×WX ∴Mo=210×109×2446.69×10-6=513.8KN·m ∴3根I56a工字钢允许弯矩为: M允=3×513.8=1541.4KN·m>1344.82 KN·m 故采用3根I56a工字作横梁符合要求 五、B桥纵桥向贝雷梁计算 B桥因图纸未到,参考C桥箱梁自重为q1=14.89T/m,考虑安全原因,B桥砼自重按q5=35T/m来考虑计算,现计B30-B31一跨25m来计算 1、荷载计算 (1)砼按q5=35T/m来计算,忽略I20b工字的重量 则砼自重为:G6=35×25=875T (2)采用5组加强型双排单层贝雷梁,该跨跨径为25m 5组贝雷梁自重:G7=27/3×5×24.5=110.25T 则平则分配到每组贝雷梁上均布荷载:qq4=(875+110.25)/5×27=7.298T/m×1.5=10.95T 按13m跨径来验算贝雷梁 跨中弯矩为Mc Mc=1/8qL2=1/8×10.95×132=231.32T·m Mc=2313.2KN·m f max=5qL4/384EI=(5×10.95×104×134×103)/(384×210×109×1154868。8×10-8)=16.8mm бmax=Mc/Wx=2313.2×103/15398.3×10-6=150MPa<[б]=210MPa 强度符合要求 QA=QB=ql/2=10.95×10×13=711.75KN>490.5KN故在支点处对贝雷梁应予以加强 六、B线桥横梁验算 因B线桥较宽,该桥下用口作支撑贝雷梁用的横梁也随之加宽且B线桥临时支墩均为一排三根钻孔桩,所以B线桥的横梁拟采用双排单层贝雷梁,长度拟定为15m,在桥面中心布置三根钻孔桩,桩中心间距为6m。 1、一根横梁自重G8=15/3×24.5=12.25T 2、5组贝雷梁自重G9=G7=110.25T 3、砼自重G10=G6=875T ∴单根横梁所承受的总重量为G总=(875+110.25+12.25×3)=1022T 一根横梁有三个支撑点,上搁5组贝雷梁 则有: RA=RB=RC=1022/3×3=113.56T 每个集中荷载力为: P1=P2=P3=P4=P5=1022/3×5=38.14T 查手册经计算,多跨连续梁B点的弯矩为: MB支=Km×P×C=0.203×681.4×6≈830KN·m MB支=830KN·m 对B点剪力进行计算 QB=P4+P5-RB=68.14×2-113.56=27.72KN ∴бmax=Mc/Wx=830×103/15398.3×10-6=53.9MPa<[б]=210MPa 强度符合要求 现浇箱梁满堂支架施工技术探讨 [摘 要]满堂支架法是目前桥梁上部现浇连续箱梁采用最多的、最普遍的施工方法。本文结合工程实例,对现浇箱梁满堂支架的施工技术作一些探讨。 [关键词]现浇箱梁 满堂支架 施工技术 中图分类号:F332 文献标识码:A 文章编号:1009-914X(2017)11-0177-01 满堂支架法是目前桥梁上部现浇连续箱梁采用最多的、最普遍的施工方法。满堂支架的施工,是整个现浇箱梁施工的一个非常重要的、基础性的工艺环节。支架地基的承载力是否满足要求,支架的强度和稳定性是否符合要求,支架压载试验的数据是否准确、真实,这些环节将直接影响到施工安全和工程质量。本文结合工程实例,对现浇箱梁满堂支架的施工技术作一些探讨。 一、工程概况 某市政互通立交桥型布置为27.2+30+27.2m预应力混凝土连续箱梁,采用满堂式碗扣支架现浇,支架高度8-17m,梁体高度1.8m,顶板宽度L=12-16m,底板宽度8-12m,在与匝道连接部桥梁变宽,为单箱三室箱梁。桥面纵坡3.00%,桥面横坡2%。箱梁采用C50混凝土。 二、满堂支架施工技术 1、支架地基的处理 (1)场地平整。用挖掘机和推土机对原地面进行整平、压实,压实度达到96区要求,地基承载力在200Kpa以上,且无软弱下卧层。地基的处理范围至少宽出搭设支架之外0.5m。同时,为便于施工,同一跨内的标高尽量与路线设计标高一致。 (2)防积水措施为防止下雨积水造成地基浸泡,造成地基承载力降低,产生地面不均匀下沉,对梁施工质量造成影响,在支架顺桥向两侧设排水沟,以便将雨水及时排除,如逢下雨安排专人负责排除积水。 2、支架搭设 (1)支架的搭设采用WDJ满堂落地式碗扣支架,支架布距60cm×60cm。碗扣式支架型号为:WDJ48×3.5型,要求每根杆件做到无变形、无弯曲,杆件有变形和受伤以及碗托有破裂的严禁使用。立杆布距为60cm×60cm。横杆步距为90cm间距。纵横向水平拉杆按2个步距的间距设置。纵横向加设剪刀撑,其纵向角度控制在45°-65°,其下部在纵横向设置交会,交会点距地面的高度大于40cm,剪刀撑采用9米钢管,钢管长度搭接大于60cm,并采用双扣联接,扣件接头部位的外露钢管长度大于10cm。纵向铺设15cm×15cm方木;横向铺设10cm×10cm方木,跨中净间距为15cm,小横梁处净间距10cm。支架高度根据现场实测在为8-17米。 (2)腹板及翼板位置做定型排架,支架均为10cm×10cm方木。在排架上钉10×4cm木板条,净距10cm,以防止竹胶板变形过大。 (3)木排架的加固,除了纵向用木板两两相连,有部分加固作用外,在纵横方木相交处C20钻孔,用螺栓拧紧。 (4)通过底脚螺栓初步控制支架底面标高,计算立杆长度。 (5)测设顶托实际标高,并通过调整顶托螺旋来调整支架标高,调丝器不使用偏心杆件,出丝长度保持一致,并要求越短越好。 (6)模板拼装时,必须对缝平整,底板与腹板结合部,为防止漏浆采用“底包侧”方式,并加垫“L”型橡皮垫;腹板?c翼板结合部采用“腹顶翼”方式,防止浇筑过程中,因受扰动而造成漏浆。端部模板制作时应准确量测各部尺寸。 (7)顶托标高调整完毕后,在其上安放15×15cm的方木纵梁,在纵梁上间距30cm安放10×10cm的方木横梁,横梁长度随桥梁宽度而定,比顶板一边各宽出至少50cm,以支撑外模支架及检查人员行走。安装纵横方木时,应注意横向方木的接头位置与纵向方木的接头错开,且在任何相邻两根横向方木接头不在同一平面上。 (8)人行坡道坡度可为1:3,并在坡道脚手板下增设横杆,坡道可折线上升;人行梯架设置在尺寸为1.8×1.8m的脚手架框架内,梯子宽度为廊道宽度的1/2,梯架可在一个框架高度内折线上升。梯架拐弯处应设置脚手板及扶手。 3、支架的预压及预拱度 (1)预压的目的。为检查地基承载力及支架承受梁体荷载的能力,减少和消除支架产生的非弹性变形、方木间的间隙、地基瞬时沉降等并获取支架预压沉降观测值用来做设置预拱值的参考数据。 (2)加载的方法。支架的预压方式拟用沙袋或水袋预压。预压时间不少于7天,在预压前必须进行整体支架检查和验收,并对临时荷载的重量进行检验。预压时,根据箱梁的结构形式计算箱梁的重量,然后用沙袋(沙袋容砂体积1立方米,带吊带)或水袋按上部混凝土重量分布情况进行布载,加载重量按设计要求不小于恒载,拟定为恒载的1.2倍。因沙袋在下雨过程中会吸水增重,对支架稳定定造成影响,现场必须准备彩条布,下雨前及时将所有沙袋全断面覆盖遮雨。 (3)布点及观测。 ①加载前布设观测点,在地基和底模上沿支点、跨径的L/ 4、L/2等截面处横桥向腹板处各布设3个观测点,在跨径的L/2翼板处各布2个观测点,观测点的布设要上下对应,目的是既要观测地基的沉降量(垫木上),又要观测支架、方木的变形量(底模上),在观测点处采用钢钉标识或预埋钢筋的方法,保护观测点不扰动,以便测量预压前后及卸载后的标高。 ②加载顺序按混凝土浇筑的顺序进行,加载时沙袋堆放均衡平稳,不可重放或加载过于集中而损伤支架。加载时分三次进行,各次加载的重量分别为总重(梁体重量的1.2倍)的30%、30%和40%。加载完成后观测一次,加载12小时、加载24小时、加载48小时和加载完毕各观测一次,加上加载前观测一次,共6次,连续两次观测累计沉降量不超过3mm,即为趋于稳定,沉降稳定48小时且总预压时间不小于7天后,经监理工程师同意,即可进行卸载。卸载时先卸载完上层砂袋(卸载时要保证均匀,防止支架受过大偏压),再卸载下层砂袋,使支架受到的压力均匀减少。 ③支架的预压应加强稳定性观测,确保安全,一旦发现变形量不收敛则立即采取卸载或紧急撤离等措施。 ④卸载后及时进行回弹后观测,根据观测记录整理出预压沉降结果,计算支架、地基综合非弹性变形值及支架弹性变形值,作为在支架上设置预拱的依据,通过测量调整箱梁底模高程。 ⑤混凝土在浇筑过程中,加强对支架的观测,在箱梁的不同点位悬挂标尺,用水准仪对支架沉降情况进行测量,根据测量结果决定下一步混凝土的浇筑方案和对支架安全性的评估,及时调整浇筑方案并对支架进行加固处理。 (4)数据整理分析。观测结束对测量数据进行处理,根据总沉降值和卸载后观测值计算弹性变形量。根据试验所测得的数据进行分析,对本工程所设计的预应力现浇箱梁模板支架进混凝土浇筑时产生的变形进行有效的控制。可依据变形量调整箱梁的底标高,实现混凝土浇筑完成后能达到设计所要求的梁底标高。如发现立柱下沉比较明显,需对地基处理进行加强。 (5)预拱度的设置。预拱度设置按设计注明考虑,预应力混凝土连续箱梁除为抵消支架弹性变形而设置的预拱外,支架不另设预拱。混凝土浇注施工前应通过计算出跨中预拱度,其它各点的预拱度以此点按直线或二次抛物线进行分配。 三、结束语 满堂支架的施工是一个非常重要的基础性施工工艺环节,在施工过程中一定要对地基的处理,支架体系的设计和搭设,支架的压载试验等工序给予充分的重视,严格按照有关规范和要求施工,确保施工质量和施工安全。 参考文献 [1] 林凤飞,现浇箱梁满堂支架的施工技术,《城市建设理论研究》2012年第5期第五篇:现浇箱梁满堂支架施工技术探讨