第一篇:龙岩市历年中考试题分类——《统计与概率》
龙岩市历年中考试题分类——《统计与概率》
1.甲乙两人进行射击比赛,在相同条件下各射击10次,他们的平均成绩均为8环,10次射击成绩的方差分别是:S甲2,S乙1.2,那么,射击成绩较为稳定的是.(填“甲”或“乙”)2.数据80、82、79、82、81的众数是.3.有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的()
A.平均数
B.中位数
C.众数
D.方差
24.为了从甲、乙、丙、丁四位同学中选派两位选手参加数学竞赛,老师对他们的五
2次数学测验成绩进行统计,得出他们的平均分均为85分,且s甲
1002、s乙
110、s丙120
22、s丁
90
.根据统计结果,派去参加竞赛的两位同学是()B.甲、丙 C.甲、丁 D.乙、丙
A.甲、乙
5则他们本轮比赛的平均成绩是()
A.7.8环B.7.9环C.8.l环D.8.2环 6.一组数据6、8、7、8、10、9的中位数和众数分别是()A.7和8
B.8和7
C.8和8
D.8和9
27.某农场各用10块面积相同的试验田种植甲、乙两种大豆,收成后对两种大豆产量(单位:吨/亩)的数据统计如下:x
2甲
0.54,x乙0.5,s甲0.01,s乙0.002,则由上述数据推断乙品种大豆产量比较稳定的依据是()
A.x>x
甲
乙B.s甲>s乙
2C.x>s甲
甲
D.x>s甲
乙
8.下列事件中,必然事件是()A.掷一枚硬币,着地时反面向上; B.星期天一定是晴天;
C.在标准大气压下,水加热到100°会沸腾;
D.打开电视机,正在播放动画片.(第9题图)9.如图,转动转盘,转盘停止转动时指针指向阴影部分的概率是()
A.
B.
C.
4D.
10.在3 □ 2 □(-2)的两个空格□中,任意填上“+”或“-”,则运算结果
为3的概率是.11.袋子中有3个红球和6个白球,这些球除颇色外均完全相同,则从袋子中随机摸出一个球是白球的概率是_________,12.一个不透明的布袋里有30个球,每次摸一个,摸一次就一定摸到红球,则红球有()A.15个
B.20个
C.29个
D. 30个
13.鸡蛋孵化后,小鸡为雌与雄的概率相同.如果两个鸡蛋都成功孵化,则孵出的两只小鸡中都为雄鸡的概率为________.
14.(2007)红星煤矿人事部欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行专业知识测试,成绩如下表所示;并依录用的程序,组织200名职工对三人进行民主评议投票推荐,三人得票率如图所示.(没有弃权票,每位职工只能投1票,每得1票记作1分)
乙 甲
34% 35%
丙 31%
(第14题图)
(1)请填出三人的民主评议得分:甲得分,乙得分,丙得分;
(2)根据招聘简章,人事部将专业知识、民主评议二项得分按6:4的比例确定各人成绩,成绩优者将被录用.那么将被录用,他的成绩 为分.
15.(2008)下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价
格,某公司购买的门票种类、数量绘制的条形统计图如下图.依据上列图、表,回答下列问题:
(1)其中观看男篮比赛的门票有张;观看乒乓球比赛的门票占全部门票的%;
(2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条
件下,每人抽取一张(假设所有的门票形状、大小、质地等完全相同且充分洗匀),问员工小亮抽到足球门票的概率是;(3)若购买乒乓球门票的总款数占全部门票总款数的价格.(3)解:
16.(2009)为纪念古田会议80周年,我市某中学团委拟组织学生开展唱红歌比赛
活动,为此,该校随机抽取部分学生就“你是否喜欢红歌”进行问卷调查,并
18,试求每张乒乓球门票的请你根据统计图、表提供的信息解答下列问题:
(1)该校这次随机抽取了名学生参加问卷调查;(2)确定统计表中a、b的值:a =,b =;(3)在统计图中“喜欢”部分扇形所对应的圆心角是度;
(4)若该校共有2000名学生,估计全校态度为“非常喜欢”的学生有人.17.(2010)已知,图①、图②龙岩市2005-2009年地方财政收入情况的条形统计图和扇形统计图根据图中信息,解答下列问题:
各年地方财政收入占这5年总收入的百分比05年 09年27.5% 06年17.5%
图①
08年 22.5% 07年 20%
图②
(1)2006年,2008年龙岩市地方财政收入分别为亿元,亿元,这5年龙岩市地方财政收入的平均值是亿元;
(2)请将图①条形统计图补画完整;图②2007年、2009年龙岩市地方财政收入对应扇形的圆心角度数分别是、;
(3)请用计算器求出龙岩市2005—2009年这5年地方财政收入的方差是.18.(2011)为庆祝建党90周年,某校团委计划在“七·一”前夕举行“唱响红歌”班级歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲。为此提供代号为A、B、C、D四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如下两幅不完整的统计图。请根据图①,图②所提供的信息,解答下列问题:
(1)本次抽样调查的学生有_________名,其中选择曲目代号为A的学生占抽样总数的百分比是________%;(2)请将图②补充完整;(3)若该校共有1200名学生,根据抽样调查的结果估计全校共有多少名学生选择此必唱歌曲?(要有解答过程)
19.(2012)某校为了解八年级300名学生期中考的数学成绩,随机抽查了该年级
50名学生的期中考数学成绩进行分析,绘制了不完整的频数分布表和频数分布直方图.频数分布表频数分布直方图
成绩分组
30≤x<40 40≤x<50 50≤x<60 60≤x<70 70≤x<80 80≤x<90 90≤x<100 合计
频 数 1 1 315 15 5 50
频 率 0.02 0.020.2 0.3 0.3 0.1 1
(1)以上分组的组距=;(2)补全频数分布表和频数分布直方图;
(3)请你估计该校八年级期中考数学成绩优秀(不低于80分为优秀)的总人数.
第二篇:历年考研数学题分类之概率统计
考研真题四
1.设随机变量X在区间[1,2]上服从均匀分布;随机变量
1,若X0;Y0,若X0;
1,若X0.则方差D(Y)_______.00数三、四考研题
2.设A,B是二随机事件;随机变量
1,若A出现;若B出现;X
Y1,1,若A不出现.
1,若B不出现.试证明随机变量X和Y不相关的充分必要条件是A与B相互独立.00数三、四考研题
3.设二维随机变量(X,Y)的密度函数为
f(x,y)
2[1(x,y)2(x,y)],其中1(x,y)和2(x,y)都是二维正态密度函数,且它们对应的二维随机变量的相关系数分别为
13和
3,它们的边缘密度函数所对应的随机变量的数学期
望都是零,方差都是1.(1)求随机变量X和Y的密度函数f1(x)和f2(y),及X和Y的相关系数(可以直接利用二维正态密度的性质).(2)问X和Y是否独立?为什么?
00数四考研题
4.设随机变量X和Y的数学期望分别为2和2,方差分别为1和4,而相关系数为0.5,则根据切比雪夫不等式
P{|XY|6}________.01数三考研题
5.一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克.若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977..9.((2)0.977,其中(x)是标准正态分布函数.)
01数三、四考研题
6.设随机变量X和Y的数学期望都是2,方差分别为1和4,而相关系数为0.5,则根据切比雪夫不等式P{|XY|6}__________.01数四考研题
7.设随机变量X和Y的联合分布是以点(0,1),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,试求随机变量UXY的方差.01数四考研题
8.设随机变量X和Y的联合概率分布为
概
率
Y
X
10100.070.180.1
510.08
0.320.20
则X
2和Y
2的协方差cov(X2,Y2)__________.02数三考研题
9.假设随机变量U在区间[2,2]上服从均匀分布,随机变量
1,若U1;1;XY1,若U
1,若U1.1,若U1.试求:(1)X和Y的联合概率分布;
(2)D(XY).02数三考研题
10.设随机变量X和Y的联合概率分布为
概
率
Y
X
10100.070.180.151
0.08
0.32
0.20
则X和Y的相关系数________.02数四考研题
11.设随机变量X1,X2,,Xn相互独立,SnX1X2Xn,则根据列维林德伯格(LevyLindberg)中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1,X2,,Xn().02数四考研题
(A)有相同的数学期望;(B)有相同的方差;(C)服从同一指数分布;(D)服从同一离散型分布..10.12.设随机变量X和Y都服从正态分布,且它们不相关,则().(A)X与Y一定独立;(B)(X,Y)服从二维正态分布;(C)X与Y未必独立;
(D)XY服从一维正态分布.03数四考研题
13.设随机变量X和Y的相关系数为0.9,若ZX0.4,则Y与Z的相关系数为____________.03数三考研题
14.设总体X服从参数为2的指数分布,X1,X2,,Xn为来自总体Xn的简单随机样本,则当n时,Yn
12
n
Xi依概率收敛于__________.i1
03数三考研题
15.设随机变量X和Y的相关系数为0.5,EXEY0,EX2
EY2
2,则
E(XY)
________.03数四考研题
16.对于任意两个事件A和B,0P(A)1,0P(B)1,
P(AB)P(A)P(B)P(A)P(B)P(A)P(B)
称做事件A和B的相关系数.(1)证明事件A和B独立的充分必要条件是其相关系数等于零;(2)利用随机变量相关系数的基本性质,证明||1.03数四考研题
17.设随机变量X服从参数为的指数分布,则
P{X
DX}________.04数三考研题18.设A,B为两个随机事件,且P(A)14,P(B|A)13,P(A|B)1,令
1,A发生,B发生,XY1,
0,A不发生,0,B不发生.求:
(1)二维随机变量(X,Y)的概率分布;(2)X与Y的相关系数XY;(3)ZX
Y的概率分布.04数三、四考研题
.11.19.设随机变量X服从参数为的指数分布,则
P{X
DX}____________.04数四考研题
20.设随机变量X立同分布,且其方差为
21,X2,,Xn(n1)独0,n
令随机变量Y
n
Xi,则().04数四考研题
i
1(A)D(X
n21
Y)2
n
;
(B)D(X11Y)
n2n
;
(C)cov(X2
1,Y)
n
;
(D)cov(X1,Y)2.21.设X1,X2,,Xn为独立同分布的随机变量列, 且均服从参数为(1)的指数分布, 记(x)为标准正态分布函数,则().05数四考研题
n
X
i
n(A)limP
i1
x
(x);
n
n
n
Xi
n(B)limP
i1
x
n
n
(x);
n
Xi
n
(C)limP
i1
x
n
(x);
n
n
Xi
(D)limP
i1
x
n
(x).n
22.设X1,X2,,Xn(n2)为独立同分布的随机变量, 且均服从N(0,1),n
记X
1n
Xi,YiXiX,i1,2,,n.求
i1
(1)Yi的方差D(Yi),i1,2,,n;.12.(2)Y1与Yn的协方差cov(Y1,Yn);(3)P{Y1Yn0}.23.设总体X的概率密度为f(x)
05数四考研题
1
e2
x
(x),X1,X2,,Xn
06数三考研题
为总体的简单随机样本, 其样本方差S2, 则E(S2)=__________.24.设随机变量X服从正态分布N(1,12), Y服从正态分布N(2,()
(D)
06数三、四考研题
22),且P{|X1|1}P{|Y2|1},则
(A)
12;
(B)
12;
(C)
12;12.06数四考研题
25.设二维随机变量(X,Y)的概率分布为
X101Y
1a0.10
00b0.110.20.2c
其中a,b,c为常数,且x的数学期望E(X)0.2,P{x0,y0}0.5,记
ZXY.求:(1)a,b,c的值;
(2)Z的概率分布;
(3)P{XZ}.07数四考研题
26.设随机变量X与Y独立同分布,且X的概率分布为
XP
记Umax{X,Y},Vmin{X,Y}.求
(Ⅰ)
3213
(U,V)的概率分布;
(Ⅱ)U与V的协方差Cov(U,V).27.设随机变量X~N(0,1),Y~N(1, 4)且相关系数1,则().XY(A)P{Y2X1}1;(C)P{Y2X1}1;
(B)P{Y2X1}1;(D)P{Y2X1}1.08数三、四考研题
28.设随机变量X服从参数为1的泊松分布,则
P{XE(X)2}_______.08数三、四考研题
.13.
第三篇:概率与统计湖南中考经典真题
初中数学概率与统计 中考真题湖南
(2015长沙)中华文明,源远流长:中华汉字,寓意深广。为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分。为了更好地了解本次大赛的成绩分布情况,随机抽取了200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
请根据所给的信息,解答下列问题: a= ,b=;请补全频数分布直方图;
这次比赛成绩的中位数会落在 分数段;
若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等的大约有多少人?
(2015•株洲)某学校举行一次体育测试,从所有参加测试的中学生中随机的抽取10名学生的成绩,制作出如下统计表和条形图,请解答下列问题:(1)孔明同学这次测试的成绩是87分,则他的成绩等级是
等;(2)请将条形统计图补充完整;(3)已知该校所有参加这次测试的学生中,有60名学生成绩是A等,请根据以上抽样结果,估计该校参加这次测试的学生总人数是多少人.
专注教研 创新教学 初中数学概率与统计 中考真题湖南
(2015•湘潭)水利部确定每年的3月22日至28日为“中国水周”(1994年以前为7月1日至7日),从1991年起,我国还将每年5月的第二周作为城市节约用水宣传周.某社区为了进一步提高居民珍惜水、保护水和水忧患意识,提倡节约用水,从本社区5000户家庭中随机抽取100户,调查他们家庭每月的平均用水量,并将调查结果绘制成如下的两幅不完整的统计图表:
请根据上面的统计图表,解答下列问题:(1)在频数分布表中:m=,n=
;(2)根据题中数据补全频数直方图;
(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社区用户中约有多少户家庭能够全部享受基本价格?
(2015常德)某校组织了一批学生随机对部分市民就是否吸烟以及吸烟和非吸烟人群对他人在公共场所吸烟的态度(分三类:A表示主动制止;B表示反感但不制止,C表示无所谓)进行了问卷调查,根据调查结果分别绘制了如下两个统计图。请根据图中提供的信息解答下列问题:
(1)图1中,“吸烟”类人数所占扇形的圆心角的度数是多少?(2)这次被调查的市民有多少人?(3)补全条形统计图
(4)若该市共有市民760万人,求该市大约有多少人吸烟?
吸烟与不吸烟人数比例统计图人数/人80不吸烟吸烟6080吸烟70605040不吸烟85%图***8A图2BC态度专注教研 创新教学 初中数学概率与统计 中考真题湖南
(2015益阳)2014年益阳市的地区生产总值(第一、二、三产业的增加值之和)已进入千亿元俱乐部,图7表示2014年益阳市第一、二、三产业增加值的部分情况,请根据图中提供的信息解答下列问题:
(1)2014年益阳市的地区生产总值为多少亿元? 图7(2)请将条形统计图中第二产业部分补充完整;(3)求扇形统计图中第二产业对应的扇形的圆心角度数.(2015•娄底)今年5月,某校为了了解九年级学生的体育备考情况,随机抽取了部分学生进行模拟测试,现将学生按模拟测试成绩m分成A、B、C、D四等(A等:90≤m≤100,B等:80≤m<90,C等:60≤m<80,D等:m<60),并绘制出了如图的两幅不完整的统计图:
(1)本次模拟测试共抽取了多少个学生?(2)将图乙中条形统计图补充完整;
(3)如果该校今年有九年级学生1000人,试估计其中D等学生的人数.
专注教研 创新教学 初中数学概率与统计 中考真题湖南
(2015•岳阳)某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其它项目(每位同学仅选一项),根据调查结果绘制了如下不完整的频数分布表和扇形统计图:
篮球 其它 羽毛球 乒乓球跳绳
请根据上图表信息解答下列问题:(1)频数分布表中的m= ,n=(2)在扇形统计图中,“乒乓球”所在扇形的圆心角的度数为
(3)从选择“篮球”选项的30名学生中,随机抽取3名学生作为代表进行投篮测试,则其中某位学生被选中的概率为
(2015•衡阳)为了进一步了解义务教育阶段学生的体质健康状况,教育部对我市某中学九年级的部分学生进行了体质揣测.体质揣测的结果分为四个等级:优秀、良好、合格、不合格;根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:
(1)在扇形统计图中,“合格“的百分比为____.
(2)本次体质抽测中,抽测结果为“不合格“等级的学生有___人.
(3)若该校九年级有400名学生,估计该校九年级体质为“不合格“等级的学生约有 人.
专注教研 创新教学 初中数学概率与统计 中考真题湖南
(2015•邵阳)亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某市初中学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中 学生,据调查结果得到如图所示的统计图表.
请根据图表信息解答下列问题:(1)a=
;(2)补全条形统计图;
(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?
(4)据了解该市大约有30万名初中学生,请估计该市初中学生每天进行体育锻炼时间在1小时以上的人数.
(2015•郴州)郴州市某中学校团委开展“关爱残疾儿童”爱心捐书活动,全校师生踊跃捐赠各类书籍共3000本.为了解各类书籍的分布情况,从中随机抽取了部分书籍分四类进行统计:A.艺术类;B.文学类;C.科普类;D.其他,并将统计结果绘制成如图所示的两幅不完整的统计图.
(1)这次统计共抽取了
本书籍,扇形统计图中的m=,∠α的度数是
;(2)请将条形统计图补充完整;
(3)估计全校师生共捐赠了多少本文学类书籍.
专注教研 创新教学 初中数学概率与统计 中考真题湖南
(2015•永州)中央电视台举办的“中国汉字听写大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国汉字听写大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A类(非常喜欢),B类(较喜欢),C类(一般),D类(不喜欢).已知A类和B类所占人数的比是5:9,请结合两幅统计图,回答下列问题:(1)写出本次抽样调查的样本容量;(2)请补全两幅统计图;
(3)若该校有2000名学生.请你估计观看“中国汉字听写大会”节目不喜欢的学生人数.
(2015•湘西州)某教研机构为了了解初中生课外阅读名著的现状,随机抽取了某校50名初中生进行调查,依据相关数据绘制成了以下不完整的统计图,请根据图中信息解答下列
问题:
(1)求表格中a,b的值;(2)请补全统计图;
(3)若某校共有初中生2000名,请估计该校“重视课外阅读名著”的初中生人数.
专注教研 创新教学 初中数学概率与统计 中考真题湖南
(2015•张家界)随着人民生活水平不断提高,我市 “初中生带手机”现象也越来越多,为了了解家长对此现象的态度,某校数学课外活动小组随机调查了若干名学生家长,并将调查结果进行统计,得出如下所示的条形统计图和扇形统计图.问:(1)这次调查的学生家长总人数为 ______.(2)请补全条形统计图,并求出持“很赞同”态度的学生家长占被调查总人数的百分比.(3)求扇形统计图中表示学生家长持“无所谓”态度的扇形圆心角的度数.学府点评:
湖南14个地级市其中13个地级市考查了概率统计的知识。考察率为92%。接近100%务必引起100%的重视!!
三大统计图分别是:柱状统计图、折线统计图、圆形统计图。
条图:又称直条图,表示独立指标在不同阶段的情况,有两维或多维,图例位于右上方 百分条图和圆图:描述百分比(构成比)的大小,用颜色或各种图形将不同比例表达出来。线图:用线条的升降表示事物的发展变化趋势,主要用于计量资料,描述两个变量间关系。
专注教研 创新教学
第四篇:统计与概率总结
“统计与概率”课题实施总结
一年多来,我校课题组全体成员解放思想,勇于创新,以推进素质教育为出发点,认真学习相关理论,围绕《统计与概率》课堂教学改革和课题的实验工作,认真分析课堂案例,调查研究,收集材料,努力探究《统计与概率》课堂教学的有效模式,对照课题实验方案,顺利地完成了各项教育教学任务和课题研究的阶段工作。下面就这近一年来的课题研究工作总结如下。
一、做好课题研究的准备工作。
1、在课题实施之前,我们积极主动的收集和学习相关知识和理论,我们深入课堂,了解、分析我校《统计与概率的教学现状,找出教学中存在的各种问题,确定本课题的研究内容。
(1)关于小学数学统计与概率部分教学现状、存在问题的调查研究;
(2)对于人教版小学数学教材关于统计与概率部分内容的分布、与原有教材对比变化、教学难点及其编写特点的分析研究;
(3)在统计知识教学中,强化学生数据的收集、记录和整理能力的培养,促进学生关于数据的分析、处理并由此作出解释、推断与决策的能力,对数据和统计信息有良好的判断能力的教学策略改进,加强目标设定与目标达成的实验研究;
(4)培养小学生用数据表示可能性的大小并对事件作出合理推断和预测的能力的教法研究;(5)在统计和概率部分教学中,创设教学情境,促进教学有效性的研究;
(6)进行统计与概率部分的课堂教学有效模式的研究。
2、落实好课题组人员,成员如下:
组 长:陈 丽
副 组 长:陈万江 吴学峰
核 心 成 员:马玉凤 王立波 李天凤 陈维 李玉静 孙晓慧 薛丽华
二、加强对课题组的管理,进一步发挥课题的作用。
1、严格按计划实施研究,积极开展课题研究活动。
课题立项之后,我们集中大家认真学习了《统计与概率》课题研究方案,制定了课题的研究计划,对组内教师合理分工,在管理上做到定计划、定时间、定地点、定内容,让实验老师们深刻理解了《人教版小学数学教材“统计与概率”课堂教学有效性研究》课题中研究项目的主要内容和意义,进一步增强科研能力,树立科研信心每次的校本教研既有骨干教师的教学论坛,也有年青教师的课堂展示,有理论学习,也有实际的课堂点评。
2、优化听课制度,促进课题实验
学校教导处规定,每周的周三各备课组进行集体备课,下一周的周一课题组成员走进课堂听课,一方面是为课题组成员搭建相互交流的平台,另一方面也是验证前一周集体备课设计方案的可行性,这样有利于及时、灵活地掌握课题实施情况和课堂教学情况,有效地促进教师上课改课、上优质课,从而真正地把课题理念落实到每一节课堂教学之中;同时,课题组还要求听课者带着一定的目的从多个角度进行听课,并对收集到的事实材料进行多角度诠释、解读和分析,有针对性地提出讨论的问题和改进的建议。听课制度的优化,有效地避免形式主义的听课、评课活动,对促进课题研究和实验起到了很大的作用。
三、课题研究的实施过程
课题申报后,课题组成员就着手调查我校《统计与概率》的教学现状以及存在的问题。
1、人教版小学数学各册教材使用中,关于统计与可能性部分教学问题及其改进策略的调查研究。
教学现状:课堂教学多数“照本宣科”,教学目标定位不准,教师和学生都不很重视这一领域的教和学。原因有如下几点:一是教师专业知识不能适应新课程的教学需要;二是《统计与概率》这一领域里的可学习和参考的案例较少,教师看得不多,所以课堂改革的水平提高不快;三是在小学阶段,关于《统计与概率》的考试内容相对较少,且难度不大,所以教师和学生重视不够。
存在问题:统计教学中,教师只按教材帮助学生收集、整理数据,而忽视了对数据的分析和运用;概率教学中比较突出的问题是重结果、轻过程,没有把学生随机意识的培养放在重要的位置。比如,有一个老师在执教二年级《可能性》一课时,没有充分地让学生感受确定现象和不确定现象,而是把训练的重点放在让学生用“一定”“可能”和“不可能”的说话训练上,把数学课当作了语文课来上。再如,有一个老师在执教《用分数表示可能性的大小》时,始终把重点放在学生的计算训练上,而忽视了学生对事件发生的可能性从感性描述到定量刻画的过程训练上。
改进策略:(1)加强教师的专业知识的学习和培训。要求课题组的成员认真学习新课标并深刻领会其主要精神,同时督促教师学习《统计与概率》的相关理论,聘请教学骨干做专题讲座,提高教师的理论素养;(2)定期召开研讨会,选择有典型的课例进行会课或教学比赛,有的是采取同课异构的形式进行多层次的研究;(3)围绕某一难点进行针对性讨论,反复研究,取得了较为显著的成效。如,在教学《等可能性》时,多数教师都遇到了一个较为棘手的问题:当袋子里放有相同数量的黄球和白球,启发学生猜想:从中任意摸40次,摸到黄球和白球的可能性怎样?学生很容易猜想并认可结果:摸到黄球和白球的可能性相等。可是,学生实验后,立刻质疑并迅速推翻自己的猜想。此时教师无所适从,只好自圆其说:同学们,当实验的次数越多,摸到黄球的次数和摸到白球的次数就越接近。针对上述存在的问题,我们开展了一次又一次的研究,最终按照“现实情境—猜想—实验—验证猜想—分析原因”的步骤,紧紧抓住“任意”关键词,培养学生的随机意识,让学生真切地感到:袋子里放有相同数量的黄球和白球,任意去摸若干次,摸到黄球的可能性和白球的可能性相等,但结果是随机的,即摸到黄球的次数和白球的次数不一定相等。
2、创设教学情境对于小学统计与概率教学效果的作用与影响的研究。
良好的教学情境,能使学生积极主动地、充满自信的参与到学习之中,使学生的认知活动与情感活动有机地结合,从而促进学生非智力因素的发展和健康人格的形成。比如我们在研究一年级下册第98页的《统计》这一内容时,就历经了“没有教学情境—一创设有教学情境——创设有效的教学情境”的过程,研究中我们发现教学效果差异较大。
„„反复的实践和研究使我们深深地体会到:教学情境对教学效果的影响较大。只有创设有效的教学情境,创设贴近学生生活实际的教学情境,才能把学生真正地带入到具体的情境中去,使学生对数学产生一种亲近感,使学生感到数学是活生生的,感受到数学源于生活,生活中处处有数学。
3、“统计与概率”有效教学模式研究
课题研究之前,多数教师反映《统计与概率》的教学有着一定的困难,教学时也只是“照本宣科”,根本谈不上有效和优化。为此,我们通过典型引路,反复研究,不断实践,在数次的实践中摸索了“统计与概率”的教学模式:创设情境――猜想探究――验证概括――实践运用。
“创设情境”旨在把学生带入到具体的生活情境中,一方面是为了帮助学生借助已有的生活经验自主探究新知,另一方面也可以让学生初步感悟统计与概率在生活中的作用,从而调动学生学习数学的兴趣;“猜想探究” 就是先鼓励学生大胆猜想结果,然后引领学生探究新知,这样可以充分发挥学生的主体作用,把学习的主动权交个学生,让学生真正成为学习的主人,在具体的学习过程中锻炼学生的学习能力,同时也能让学生体验自主探究新知的快乐;“验证概括”就是运用多种手段帮助学生验证自己的猜想,从而使学生获得成就感,增强学生学习的自信心,同时把刚刚获得的新知高度、凝练地概括出一般的规律,培养学生分析问题的能力和严谨的思维品质“实践运用”就是将所学的知识运用于实际,体现了数学源于生活、服务生活的思想。
通过改革实验,我们高兴地发现课堂成效发生了较为显著的变化。课堂的教学结构完整了,教学板块清晰了教学目标定位准确而又全面,教师经过了迷茫无奈-有条有理-精心设计教学环节的过程。学生从被动学习-主动探究,学习方式的转变,使课堂气氛活跃了许多,也大大提高了课堂教学效率。
四、课题研究的成效
1、对课题研究的意义的理解和认识。
21世纪的数学课程改革,把《统计与概率》作为一个单独的领域,进入小学数学课程,这是一个重大的举措具有里程碑的意义。因为在信息社会,收集、整理、描述、展示和解释数据,根据情报作出决定和预测,已成为公民日益重要的技能。加强《统计与概率》课题的研究,可以强化学生数据的收集、记录和整理能力的培养,提高学生分析、处理数据并由此作出解释、推断与决策的能力。
2、重视学生学习过程的研究,把学习的主动权还给了学生
新课标明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。所以我们在数学课题的研究中,非常关注学生学习过程的研究,注重在具体的情境中对随机现象的体验,而不是单纯地只获取结论结合学生生活的实际,精心创设教学情境,使学生主动地投入到学习的状态,提出关键的问题;搜集、整理数据分析数据,作出推测,并用一种别人信服的方式交流信息。不仅让学生亲身经历统计与实验的过程,而且还让学生在实践中自我感悟信息的价值。根据获取的信息作出合理的推断,培养学生分析问题和解决问题的能力。
3、营造教研氛围,提高研究实效
我们以课题研究为契机,开展形式多样的教研活动,旨在增强教师的教科研意识,营造良好的教研氛围,丰富教师的科研素养,提高课堂教学效率。一年来,我们召开了《统计与概率》的专题研讨会,举行了课题研讨会课比赛,开展了教师百花奖比赛、课堂教学擂台赛等全校性教学教研活动,收到了较好的效果,得到了老师们的认可,兄弟学校的积极参与,社会的肯定。每次活动,我们坚持“实践、思考、再实践、再思考”的基本方法,确立一个研究主题,本着“学有所获,研有所果”的原则,发动每个教师全程参与,45周岁以下的教师必须参与课堂展示或设计,年老的教师参与课堂点评,实实在在的教研活动,不仅调动了校内教师的教研热情,也吸引了区内兄弟学校老师的加盟,他们积极参与了我们的课题研究。
五、今后的思考
虽然在课题的前期研究过程中,我们取得了初步的成效,但我们深知我们的课题研究工作还有许多不尽如人意的地方。为了进一步做好下一阶段课题的研究工作,我们想从以下几个方面力求突破:
1、细化分工,明确职责。根据课题的研究内容和前期的研究进展,我们决定对后期的研究工作作一些适当的调整,更加细化分工,各负其责,确保课题的研究工作顺利进行。通过课堂教学研究,提高学生收集、整理数据的能力,重点培养学生推断与决策的能力,体会数学的价值。以课堂教学为主阵地,重点研究概率教学,培养学生的随机意识,提高学生分析问题和预测未来的能力。
2、加强理论学习,提高研究水平。前期的研究工作我们主要把精力放在课堂教学研究上,了解《统计与概率》的教学现状、教学困惑,寻找课堂教学的有效模式,应该说在实际层面探讨的比较多。接下来的课题研究工作我们 将在关注课堂教学的同时,重视理论学习,把目光聚焦在理论层面的研究上,遵循理论结合实际的原则,用理论丰富研究成果。
3、全面总结经验,推广研究成果。2010年下半年我们打算召开一次“课题经验总结暨成果展示会”,旨在进一步加强和深入课题的研究工作,提升我们课题的研究水平,同时通过总结、展示,来推广我们的研究成果,改进和优化今后的课堂教学。
第五篇:概率与统计教学大纲
《概率论和数理统计》教学大纲
学时: 48
学分:
一、课程的目的和任务
概率论与数理统计是研究随机现象的客观规律的一门数学学科。随着现代科学技术的发展,它已经被广泛应用于科学技术、工农业生产和国民经济建设的各个领域中。目前,概率论与数理统计已经成为我国高等院校理工科及经济类各专业一门必修的基础理论课之一。通过本课程的学习使学生掌握处理随机现象的基本思想和方法培养学生应用概率统计方法分析和解决实际问题的能力。
二、课程的基本要求
通过本课程的学习,使学生掌握概率论与数理统计的基本理论、基本概念及基本方法。从而使学生应用概率统计的原理和方法解决随机现象中的实际问题的能力得到培养和提高。为科研和生产打下必要的基础。
三、与其它课程的联系和分工
在学习本课程之前必须学习《高等数学》课程。本课程是数学学科的一门重要的分支同时也是数学中的其它分支如《模糊数学》等的基础理论课。对于理工科以及经济类的专业它是自动控制、通信中的信号分析以及经济管理中的统计决策、经济预测、质量控制等相关课程的基础理论课。
四、教学形式与学时分配:
章节 内容 课堂教学时数 一 随机事件及其概率10 二 随机变量及其分布 8 三 多维随机变量 10 四 随机变量的数字特征8 五 大数定律及中心极限定理 2 六 样本及抽样分布定理 6 七 参数估计 6 八 假设检验 6
五、本课程的性质及适应对象: 全校理工科及经济类各专业必修。
教学大纲内容
第一章 随机事件及其概率
1. 理解随机事件及样本空间的概念,掌握随机事件间的关系及运算。2. 了解概率的统计定义及公理化定义。理解古典概率和几何概率的定义。会计算古典概率和几何概率。3. 掌握概率的基本性质,会应用这些性质进行概率计算。
4. 理解条件概率的概念,掌握乘法公式、全概率公式和贝叶斯公式。会用这些公式进行概率计算。
5. 理解事件的独立性概念,掌握用事件独立性进行概率计算理解独立重复试验的概念,掌握计算有关事件概率的方法。教学提示:本章介绍了概率论和数理统计的研究对象和任务,这一章的重点是关于计算概率的一系列定理和公式,如概率加法定理、概率乘法定理、全概率公式、贝叶斯公式等。
第二章 随机变量及其分布
1.理解随机变量及其概率分布的概念。理解分布函数的概念及性质;会计算与随机变量有关的概率。
2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、泊松(Poisson)分布及其应用。
3.理解连续型随机变量及其概率密度概念,掌握概率密度与分布函数之间的关系;掌握均匀分布、正态分布、指数分布及其应用。4.会求离散型随机变量的函数的概率分布;会求连续型随机变量的函数的概率密度和分布函数。教学提示:本章首先引入了随机变量的概念,随机变量的本质就是随机试验的结果的数量化。在介绍两种类型的随机变量的概念后重点应放在如何利用随机变量解决实际问题以及几种常用的随机变量及其分布上。
第三章 多维随机变量及其分布
1.理解二维随机变量的概念、性质、及其两种基本形式:离散型二维随机变量的联合概率分布、边缘及条件分布;连续型二维随机变量的联合概率密度、边缘密度及条件密度。会利用二维随机变量的概率分布求有关事件的概率。
2.理解随机变量独立性概念,掌握离散型及连续型随机变量独立的条件。3.了解二维均匀分布和二维正态分布;掌握二维随机变量的函数的概率分布的求法;熟练掌握两个随机变量之和的概率分布的求法。教学提示:本章的难点在于求二维随机变量的边缘分布。尤其是对于连续型随机变量当联合分布函数(或联合概率密度函数)是分块定义的时候,如何由联合分布求相应的边缘分布则是重点。其次利用随机变量的独立性根据边缘分布求联合分布也是较为重要的内容之一。
第四章 随机变量的数字特征
1. 理解数学期望和方差的概念。掌握它们的性质和计算方法。
2. 掌握0-1分布、二项分布、泊松分布、均匀分布、正态分布、指数分布的数学期望和方差。
3. 会根据随机变量的X的概率分布求其函数的数学期望;会根据随机变量的联合概率分布求其函数的数学期望。
4. 了解相关系数和协方差的概念,掌握它的性质与计算。了解独立性和不相关之间的关系。教学提示:应着重讲清随机变量的数学期望及方差的定义、性质及其计算法,而随机变量函数的数学期望的计算方法尤为重要。因方差的计算方法及数学期望的性质等都是根据这一点得出得。对于几种常见分布的数字特征应要求熟记。
第五章 大数定律及中心极限定理 1.了解切比雪夫大数定律、伯努利大数定律及辛钦大数定律的条件及结论,理解其直观意义。
2.掌握棣莫弗-拉普拉斯中心极限定理、列维-林德贝格中心极限定理的结论和应用条件,并会用相关定理近似计算有关随机事件的概率。教学提示:大数定律是概率论中有关阐明大量随机现象平均结果的稳定性的一系列定理,它是频率稳定性的定量描述,同时也是引入概率的统计定义的理论基础。而中心极限定理则说明了独立随机变量和的极限分布是正态分布这样一个重要的结论。而应用中心极限定理近似计算独立同分布随机变量和取值的概率则是本章的重点。
第六章 样本及抽样分布
1.了解总体、简单随机样本、统计量、样本均值与样本矩及样本方差的概念。
2.掌握正态总体的抽样分布,了解产生变量、t变量和F变量的典型模式;理解标准正态分布、分布、t分布、F分布的分位数,会查相应的数值表。教学提示:在引出样本的概念之前可阐明抽样的意义。对于样本应着重指出表征总体的随机变量X与表征样本的n维随机向量之间的关系。关于正态总体的样本均值、样本方差的抽样分布则是本章的重点。
第七章 参数估计
1.理解参数的点估计、估计量与估计值的概念。2.掌握矩估计法和最大似然估计法。
3.掌握估计量的无偏性,了解估计量的有效性和一致性(相合性)概念。4.了解区间估计的概念,会求单个正态总体的均值的置信区间,会求两个正态总体的均值差和方差比的置信区间。教学提示:在介绍点估计的概念以后。对于矩估计法和极大似然估计法的重点应放在阐明构造未知参数的矩估计量和极大似然估计量的原理上。关于正态总体的均值和方差的置信区间主要根据抽样分布定理结合标准正态分布、分布,分布以及分布的分位数来构造的。
第八章 假设检验
1.理解假设检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。
2.掌握单个及两个正态总体的均值和方差的假设检验。3.了解拟合检验。教学提示:本章的重点是阐明假设检验的基本思想,可结合实例讲解有关正态总体的均值和方差的假设检验主要是确定原假设和备择假设、构造检验统计量和决定拒绝域这三个关键性的步骤这样才能做到思路清楚。
选用教材:
《概率论与数理统计》,大连理工大学数学科学学院,冯敬海,王晓光,鲁大伟编,高等教育出版社。