师范大学英语专业论文(5篇)

时间:2019-05-14 06:34:07下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《师范大学英语专业论文》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《师范大学英语专业论文》。

第一篇:师范大学英语专业论文

福建师范大学

现代远程教育毕业论文

线

目:培养中学生学习英语兴趣的有效方法

业:英语教育

号:200908575652

学生姓名:高树枝

导师姓名:邱志芳

2012年

2月日

福建师范大学网络教育学院本科毕业论文(设计)作者承诺保证书

本人郑重承诺: 本篇毕业论文(设计)的内容真实、可靠。如果存在弄虚作假、抄袭的情况,本人愿承担全部责任。

学员签名:

月 日

摘要: 培养中学生对英语学习的兴趣是提高中学英语教学质量的关键。爱因斯坦曾说过:“兴趣是最好的老师”。如果他们对学习感兴趣的话,学生们不会觉得学习是一种负担, 他们就会积极地将他们的心放在学习上。因此激发同学们的兴趣是成功学好英语的关键, 从而提升学生的学习兴趣, 投身于英语学习。它还可以丰富学生知识, 打开学生的心灵, 并且弥补智能发展的弱点。但是如何培养学生的学习兴趣?但学生的学习兴趣不能自发地产生,各种社会因素也会影响着学生的学习情况。教师需要从家庭、社会和学校方面充分调动学生的学习计划和目的,从而使学生学习兴趣得到转变。

关键词: 兴趣;

关键;

培养;

英语学习

Abstract:Training students' interest in English learning is the key to improving the quality of English teaching.Einstein once said: “Interest is the best teacher”.The students will not feel that learning is a kind of burden, if they are interested in learning, they will actively put their hearts into his study.So to arouse the students' interest is the key to success in learning English well, so as to promote the students' interest in study, participate in English learning.It can also enrich the students' knowledge, open the students' mind and make up for the weakness of intelligent development.But, how can we cultivate the students' interest in English learning? The students’ learning interest can't spontaneously emerge.Varieties of social factors may also affect student learning.Teachers need to fully mobilize students' plan and purpose to make the students interest in learning changed from family, society and school.Key words: interest;key;train;learning English

随着科学技术的飞速发展, 知识在我们的日常生活中越来越重要。目前, 学生必须成为终身学习者以适应知识爆炸的时代。而且, 正如我们所知, 英语是我们第二门重要的语言, 所以教师应采取相应有效的教学方法, 以激发学生的学习兴趣, 使学生在课堂教学中更为活跃、更有吸引力。但事实上, 在一些中学, 一些无聊的语法学习通常降低了学生的学习兴趣。由于缺乏兴趣, 他们在大学入学考试中不能取得很好的成绩。尽管老师的辛勤工作,最终他们还会失去兴趣并放弃它。总之,“兴趣是最好的教师。”老师激发培养学生学习英语的兴趣是有必要的, 但是教师应该如何做呢? 本人有一些如下建议:

一、创设活泼有趣的教学环境, 培养学生的英语学习兴趣

“在课堂上、学生之间、各种活动中、语言材料和学生之间创设交际过程。”[1]如果一个老师在课堂上善于激发学生学习兴趣, 并具有丰富的教学经验, 他一定是一个出色的教师。现在在对最新版本的英语教科书的介绍中,每一个单元都由热身、听、说、预读、读后、语法、整合能力和写作等各部分组成。根据上述部分, 老师应该培养激发学生学习英语的兴趣, 通过创造生动有趣的教学环境, 激发他们的学习欲望。

(一)、每单位分成五小快, 并在每一节运用不同的教学策略

热身、听、说形式一节。根据上下文不同的特点, 教师可以搭配音乐教学、多媒体教学、感官教学刺激兴趣, 培养他们的英语学习习惯。这是一个很好的方式,并能避免单一的的教学模式。用这种方法可以迅速培养、激发学生学习的兴趣。

2、读前和读后属于第二部分。

在这个过程中, 教师的主要任务是发现问题、提出问题、分析问题、解决问题。在这部分, 可以培养、激发学生的创新能力。

除此之外, 它还能刺激学生认真思考, 善于观察问题与实践的能力, 让他们充分发挥其作用, 在英语学习的过程中培养学生探索的精神。

在这种激励情况下的课堂教学中, 可以激发创造力。教师应给或读一些相关问题的文本, 当然, 这些问题应该是任意的、思考性的和鼓舞性的, 旨在激发、培养学生的求知欲。我们可以以“项链”作为一个例子。在语境中, 这些问题可以包括:(1)、你这样做, 你会被邀请参加舞会吗?(2)、什么饰品, 你知道吗?

(3)、如果你没有任何的珠宝你会怎么做呢?(4)、你认为借饰品合适吗?

在post-reading部分, 学生可以讨论这些问题:(1)你怎么学习“项链”的?(2)你认为接着会发生什么?(3)你认为玛蒂尔德知道了真相后会是什么样的感觉? 上述问题不仅是上下文相关, 而且还能帮助学生拓宽思路。

3、单词学习和语法为第三部分。

面对一些乏味的单词和无聊的语法, 教师应该根据现实意义建立这两个词之间的关系。现在举一个例子: 当谈到“被动语态”教学、交际性语法教学时, 注重提高学生观察能力可以取代传统教学模式。例如, 在黑板上有两张图片, 老师让全班来仔细观察, 对图片间的不同发表观点和看法, 然后学生们尝试找到这个问题的答案:“What has been changed in these two questions?“根据这个观察, 可以提高学生的观察能力, 并且对被动语态将有一个很好的掌握。

4、第四部分由综合能力和写作构成。

在写作部分中, 因为它不是那么容易掌握的部分, 所以老师应该作为一个向导, 指导他们如何写。我们可以设置“ The sound of the world ”作为一种写作话题,并回答下列问题:

(1)、流行音乐和摇滚音乐属于哪种音乐?(2)、除现代音乐以外, 还有什么别的类型的音乐, 你知道吗?(3)、中国传统与现代的音乐有什么不同? 在教师的指导下, 他们的写作会越来越好。如果没有足够的时间在课堂上写, 老师可以允许他们用业余时间来做。此外, 错误可以通过teamwork查到。这样, 他们发现他们各自的错误并及时改正。同时, 教师要引导他们扩大阅读量,并把写作作为作业。如写日记或写一篇社会热点问题的评论等。用这种方法, 可以日益提高他们的写作能力。

5、第五部分是由课后作业及相关练习组成。

在这个过程中, 学生的学习能力能够逐渐被提升, 并能使他们能够更好地学好英语。毕竟, 枯燥的语法学习如果没有更多的实践就不能够更好的掌握。否则, 学生的主动性可能很快会减弱的。

(二)、找准角色,寻找合适的教材,激发英语学习的兴趣。

成就感是快乐学习的源泉。在教学过程中, 保证正常教学是非常必要的;而且, 老师可以首先选择让学生准备更容易的部分,这种方法能使学生有机会品尝到快乐的成就感。针对这一特殊的活动, 学生可以有机会与教师沟通交流,从而加深对知识的掌握程度并且也能激发学生的学习兴趣。

(三)、实行竞争机制, 培养激发学生英语学习的兴趣。

在此过程中, 老师要求学生玩个游戏:在有限的时间里背单词和课文,以使学生记住所学内容。“谁做的最好,谁就会赢奖”。在奖品的“诱惑”下,学生们将竭尽全力背课文和单词。因此, 学生的学习效率在生动、竞争的氛围中得以提高。

(四)、借助音乐教学, 激发学生学习兴趣。

如今英文歌曲深受大多数的学生喜欢, 这也可以是一个比较好的,可以提高英语听力能力的有效方 4

法。老师如能教学生一些流行歌曲,例如 “红河谷”、“我心永恒”、“柠檬树”等等。这样, 学生不仅能够记住在这首歌中的新单词, 还能促使他们上网学习英语。高中英语教科书“the sound of the world”中包含许多音乐片段, 在听的过程中, 学生会对生活产生美好的感觉, 同时他们还能学习到新鲜事物。

二、提供相关阅读资料,激发学生阅读兴趣

(一)、阅读能有效扩大词汇量。

作为一个英语老师, 他应该帮助学生扩大他们的阅读量,并选择一些具有教育性和有趣的材料来供他们阅读。

当引导学生阅读书籍时, 应遵循下列原则:(1)、难度中等的原则。

(2)、the-more-the-better的原则。(3)、内容合适、适应的原则。(4)、多样性的原则。(5)、语言真实性的原则。(6)、学与得相结合的原则。(7)、成就感的原则。

阅读材料的选择要确保适当的难度,这是必要的。他们不应该太难, 也不能太容易。从某种意义上说, 阅读材料越多、越好。只有通过阅读大量的语言材料才可以做到量变到质变的实现, 学生的阅读能力才能被提高。更重要的是, 阅读的材料应该是多种多样, 不仅可以满足大多数的学生, 可以还可以使学生获得成就感。只有用这种方法才能使学生更容易集中精力去阅读。

总之, 阅读材料的选择, 必须从实际出发, 还要针对学生的全面发展和长远利益。

(二)、阅读英文报纸, 掌握阅读技巧, 提高阅读能力,激发学生学习兴趣

长期的阅读英语报纸和期刊也可以提高学生的阅读技巧和阅读理解能力。一个新闻故事是由标题、主体和结尾组成的。标题是刊登在报纸上面的以大体字出现的, 但是它必须要能够吸引读者, 所以我们说一个标题通常满足两个要求:抓住事情本质和吸引读者。而内容提要通常是新闻故事的前一、二段, 要捕捉本质的事件, 诱使读者进入这个故事。

(三)、通过阅读电子书籍,激发学生学习英语兴趣

国内和国外一些主要的报纸和杂志的网站, 都是些免费的资源,是可以随时浏览的: China Daily:

http://www.xiexiebang.comN等)也是练习英语口语的最佳选择。

(三)、通过浏览因特网学习,全方位练习英语口语

我们都知道, 有许多网站提供聊天室供学习英语的学生练习口语。通过skype软件可以用英语交谈。还有新浪UC,下载安装并登陆客户端,进入外语天地-初级英语口语房间,在那里可以听,也可以上麦就某个话题和麦友用英语交流沟通。

然后, 你可以申请做管理, 并可以设定热门话题供麦友们讨论。那些想提高英语口语和喜欢用英语交流的朋友可以参加你组建的组或群并展开讨论,这对练习英语口语非常有效。通过网上英语聊天, 学生的英语口语进步了,也激发了他们学习英语的兴趣。

七、贯穿英美文化教学, 激发、培养学生学习英语

当谈到英美文化习俗时, 许多学生对此不甚了解。那么老师怎样做来解决该问题吗? 最好的办法是用知识来丰富自己的文化知识, 这能有效地促进外语教学。在文化教学中, 老师可以介绍一些关于这个话题的文化背景, 并介绍一些西方习俗来激发学生的好奇心, 以及他们对学习英语的兴趣。然后学习者的主动性就会慢慢的培养出来。此外, 组织学生看一些有关英、美国文化的电影。“文化教学以培养学生的文[10]化意识为主要目的。”根据来自现实生活中有意义的文化背景知识, 学生对英语学习将会产生浓厚的兴趣,这将极大促进学生学习英美文化和英语口语教学。

众所周知, 语言本身蕴涵着丰富的文化内涵。学习英语没有文化就不能得以提高, 所以从另一个角度来说, 文化意识对学习一门外语的学生来说是至关重要的, 学习时了解文化背景知识还具有重要的意义, 它还可以提高英语教学的质量和培养激发学生的学习兴趣。如果老师把上述的步骤运用在课堂上, 学生的知识范围就会扩大, 他们对英语学习的兴趣就会慢慢被培养出来。

八、结论

也许还有许多其他好的方法策略, 但上面提到的都是有效的、可接受的,且几乎足以教师们解决教学中所出现的所有问题。

在教学过程中, 兴趣在英语教学中担当着不可缺少的角色。“把学习过程看成一个由学生亲自参与的、生动活泼的、主动的和富有个性的过程。”[11]作为一名教师, 他不仅要采取有效的教学方法, 激发阅读兴趣,选择有吸引力的话题来讨论、组织各种各样的教学活动、建立和谐师生关系、英语口语及文化教学, 来激发培养学生学习兴趣。更重要的是, 应把课堂教学搞得更具吸引力、更活跃, 培养、激发学生学习的主动性,从而提高英语教学质量。老师不仅应该在教学过程中耐心和负责,而且还要做到勤学、多学、钻研教材教法,博采众家之长。

我们都应该承认这样一个事实: 如果没有任何兴趣存在的话,没有任何一个班级的教学可以做到生动,活泼。毫无疑问, 学生感兴趣的一堂课才是真正成功的一堂课。一旦学生感兴趣, 那么没有什么是不可能的, 更不用说英语学习了。

参考文献:

[1] 马相明.现代外语教学方法研究[M].北京:经济管理出版社,2001,86-87.[2] 谢云锦,王萱.中学英语典型课示例[M].长春:东北师范大学出版社,2000,186-187.[3] 陈旭远.新课程新理念[M].长春:东北师范大学出版社,2002,140-141.[4] 刘秋云.高中英语校本教研的构建与实施[M].广东:英禾多媒体工作室,2007,158-159.[5] 侯渝生.新课程理念下的创新教学设计[M].长春:东北师范大学出版社,2003,11-12.[6] 孙凡哲.上好课[M].长春:东北师范大学出版社,2002,144-145.[7] 李广.评好课:应知应会[M].长春:东北师范大学出版社,2010,10-11.[8] 鲁子问,王笃芹.新编英语教学论[M].上海:华东师范大学出版,2007,14-15.[9] 靳玉乐.探究教学的学习与辅导[M].北京:中国人事出版社,2002,38-39.[10] 鲁子问,王笃芹.新编英语教学论[M].上海:华东师范大学出版,2007,86-87.[11] 刘小明,冯墨女,刘虹,吴世蕴.评好课与师德行为[M].长春:东北师范大学出版社,2010,40-41.

第二篇:英语专业论文

英语专业文学方向本科毕业论文写作问题探究

[摘 要]英语毕业论文由于从事英美文学教学的教师理论水平参差不齐、教师对学生文艺理论接受能力的怀疑、商品经济时代文学和文艺理论曲高和寡等因素,造成文学学习和文学方向毕业论文写作中缺乏科学的分析方法。本研究将探索将文艺理论引入本科毕业生的论文写作课程中的必要性和可行性,从而建构以文艺理论为中心的英语专业文学方向毕业论文写作的新模式。

[关键词]文学理论;读者反映理论;认知教学法

依据《高等教育法》(1998)的本科教育学业标准,学生应比较系统地掌握本专业所必需的基础理论知识、基本技能和相关知识,并“具有从事本专业实际工作和研究工作的初步能力”。这一标准强调了研究性教学(research-oriented teaching)的重要性,无疑为英美文学教学中理论研究与实践的有机融合提出了要求,而这种融合往往体现在学生文学论文写作的能力之中。然而,高校中实用主义风气、急功近利思想和“重技能,轻人文”弊端的集中体现冲击着文学课教学,助长了学生轻视与人文修养有关的课程,助长了他们对文学作品敬而远之的倾向(马爱华, 2006)。作为全面考核毕业生综合素质的有效途径,毕业论文写作是本科学生毕业前必须经受的考验关口,是师生教学相长的过程。本文将从文学课教学的现状出发,通过毕业论文写作的过程,在揭示现象、总结经验的基础上,提出重视文艺理论的教学,提高学生的文学素养,培养研究性学习能力的意义。

一、研究现状

部分专家认为英语专业(张冲, 2003)是“英语语言技能的专业训练和对英语语言文化的专门研究”,其特征为“技能加专业,复合而开放”,其培养目标为“纯熟的语言能力,深度的专题研究”。这一专业定位除了强调语言技能之外,着重强调了“文化”和“研究”。文化理解和专题研究的基础在于学生文学课程的给养过程,其中,文学理论分析则既指导了文学课程的学习,又加深了学生对文学作品的理解。文学作品的学习与文艺理论的关系好比材料和工具的关系,“工欲善其事,必先利其器”,如果学生没有相关的文艺理论的学习,就好比一个没有工具的工匠,只能望天兴叹。

二、问题成因

文艺理论是学习英美文学的分析和鉴赏工具,研究生阶段的文艺理论教学已经有了一定的历史,但在英语专业本科教学中文艺理论的教学目前尚未展开。这直接导致学生的文学毕业论文的写作难度增大,出现了许多亟待解决的问题。主要成因如下:

1.从事英美文学教学的教师理论水平参差不齐。部分教师讲授英美文学,而其自身很少涉及文艺理论的使用,或者说自己的文学批评理论知识匮乏,因此不可能在授课时有意识地将文艺理论融入到教学中去。

2.轻视或放低对学生的人文素质和评析能力的生成要求。有些教师担心学生的接受能力,甚至害怕因为学生不能正确理解文艺理论的精髓而将其误用或者滥用。《高等学校英语专业英语教学大纲》(2000)明确规定了文学课程的教学目的“在于培养学生阅读、欣赏、理解英语文学原著的能力,掌握文学批评的基本知识和方法。通过阅读和分析英美文学作品,促进学生语言基本功和人文素质的提高,增强学生对西方文学及文化的了解”,显而易见,加大文学批评理论的讲授和研讨是符合《大纲》要求的。

3.所学知识与研究性写作存在三个“不和谐”关系:文学课的教与学脱节;文学课与语言实践脱节;文学教学理论的研究与外语教学实践脱节(马爱华, 2006)。学生习得的知识孤立于其写作实践之外。人才培养目标不明确,学生急功近利,一成不变的文学课程教学脱离实际人才

培养模式。学生将文艺理论视为纸上谈兵。因而,导致“文学理论教材和教学实践逐渐偏离当今消费时代的审美精神”以及“文学理论的教学被大学生们冷落”(李迪江, 2002)。

三、文艺理论在文学论文写作中的意义

1.文学理论的专业知识学习,铺垫了文学论文的研究能力。“文学理论教学应该优先地培养大学生的理论素养,更多地培养大学生的应用能力,如从文学作品的分析讨论中,来培养大学生的理解能力、分析能力和表达能力等(李迪江, 2002)”。本科学生已经有了一定的文学常识,至少对于著名作品的情节有了一定程度的了解,文学名著选读课使用文学名著的原版书籍作为教材,使得学生有机会对文学文本进行仔细研读,为文艺理论的学习奠定了基础。

2.毕业论文写作,完成学生从读者到理论分析的升华。Guerin认为,“读者参与在文本的创作中”。作品的意义是文本和读者相互作用的结果,它强调读者在阅读过程中的不同参与方式。这一理论代表人物之一伊瑟尔指出,所有文学篇章都有“空白”或“缺口”,这些空白和缺口必须由读者在解读过程中填补或具体化(刘辰诞, 1999)。文学作品须由接受者内化和心灵化,即需要接受者的理解、体验、加工、补充和创造,融入接受者的思想和情感、倾向和评价,只有这样,作品中的时间、人物形象等才会活生生地呈现在自己的头脑中(郭宏安, 1997)。从这个角度暴露了英语专业教育中一贯的“知识单一和技能单一”问题,带来的思考是应该如何培养学生多种语言技能,满足其独立学习的需要。

3.文学史学习为文艺理论的学习奠定基础。心理学、原型批判、女权主义、马克思主义的文学评论等可将传统文学史中作家、作品按照时间排序的方式打破。从各种文艺理论的角度对作家、作品重新排序,不同的文学作品可以用相同的文艺理论进行分析,既起到梳理文学史和文学作品的目的,又使学生对文学作品甚至文学史的认识提升到一个新的高度。如:莎士比亚的《哈姆雷特》,尤金?奥尼尔《榆树下的欲望》,劳伦斯的《儿子与情人》等作品中都蕴含着恋母情结的心理学分析。以此为基础,给学生补充讲述古希腊剧作家索福克里斯的著名悲剧作品《俄狄浦斯王》,能帮助学生探究作品人物的内心世界,为论文写作奠定基础的同时,也有助于选择一个更为可行的题目。

4.结合文本与文艺理论,丰富学生的论文选题。学生文学专业毕业论文选题往往单一,如选择:《伟大的盖茨比》中美国梦破灭的主题或美国梦的悲剧一类的主题;《呼啸山庄》、《傲慢与偏见》中的爱情主题等。选择经典作家的代表作品为研究对象并不是不可以,但对于一般本科生而言,要就这些作品的某一方面进行较为深入、有创意的探讨,还是有相当难度的。因为,对于某一经典文本的某些问题,国内外评论界可能早有定论,而一般的学生“尚不能用当代文论的新视角去解读,很难提出自己的新解”(杜志卿, 2005)。

5.研读诗歌,理论先行。在历届本科英语专业毕业生的论文中,有关诗歌的论文很少有人涉及。究其成因,主要是在较短篇幅的诗歌中大量运用意象和象征等写作手法,再加上诗人用特有的音韵感和

第三篇:英语专业论文题目参考

英语专业论文题目

语言与语言学类

001 从历史文化的发展看某个英语词或短语的语义演变

002 英诗中常用的修辞

003 英语谚语的修辞手法

004 委婉语种

005 英语中的缩略语

006 英语词汇中的外来语单词

007 英语新词新意探究

008 美国英语的特色

009 如何正确把握英语定语从句(或其他各种从句或语法形式)在句子中的确切含义

010 Fuzzy Words and Their Uses in Human Communication

011 Ambiguity and Puns in English

012 Some basic consideration of style

013 English by Newspaper

014 English Personal Pronouns: a Preliminary Textual Analysis

015 Thematic Network and Text Types

016 An Inquiry into Speech Act Theory

017 On Lexical Cohesion in Expository Writing

018 The Inferences of Conversational Implications

019 Context and Meaning

020 The Construction and Interpretation of Cohesion in Texts 语言教学类

001 扩大词汇量和提高英语阅读能力的关系

002 提高英语阅读速度的主要障碍

003 英语阅读能力和阅读速度的关系

004 通过扩大知识面提高英语阅读能力

005 如何在阅读实践中提高英语阅读能力

006 阅读英文报刊的好处

007 如何处理精读和泛读的关系

008 如何对付英语阅读材料中的生词

009 如何通过阅读扩大词汇量

010 提高阅读能力和提高英语听力的关系

011 英语听说读写四种技能的关系

012 通过英语阅读提高英语写作能力

013 英语快速阅读能力的构成成分

014 中学生英语自主学习能力的培养

015 英语教学中的语言焦虑及解决策略

016 简笔画-英语教学中简单高效的教学手段

017 提高英语听力理解能力的策略和技巧

018 电子辞典与英语教学

019 普通话对英语语音的迁移作用

020 母语迁移在基础教育各阶段中的作用

021 提高大班课堂教学的效果

022 《英语课程标准》研究

023 口语教学中教师的角色

024 从心理学角度探讨少儿英语教学

025 英语课堂提问的策略研究

026 英语后进生产生的原因以及补差方法研究

027 英语词汇教学方法探讨

028 小学生英语口语能力评估方法研究

029 朗读在英语教学中的作用

030 任务型教学法研究

031 方言对学生英语语音的影响

032 英语阅读课堂教学模式探讨

033 英语课堂的合作学习策略研究

034 中学生英语学习策略的培养

035 探究式教学法在中学英语教学中的应用

036 现代信息技术在英语教学中的应用

037 教师教学行为对高中生英语学习的影响

038 实施成功教育减少两极分化

039 小学英语活动课教学模式研究

040 中学英语听力训练最佳方案

041 原版电影与英语学习

042 中学生英语兴趣的培养

043 《疯狂英语》(或各种教学方式)的利与弊

044 张思中教学法实践调查报告

045 如何杜绝中式英语

046 英语教师的文化素养

047 网络时代如何学好英语

048 背景知识与阅读理解

049 上下文在阅读理解中的作用

050 家庭教师在中学生英语学习中的利弊

051 中学英语教学现状分析

052 中学英语课堂上的Daily Report

053 中外教师解释课文方法比较

054 中外教师课堂提问方法比较

055 中外教师课堂鼓励性用语比较

056 中外教师对学生总体要求之比较

057 计算机辅助英语教学中的诸问题

058 不同种类的计算机辅助英语教学方式

059 计算机辅助英语教学中的教学法原则

060 The Instructive Meaning of Inter-language Pragmatics for foreign Language Teaching

061 Pedagogical Translation and Translation Teaching

062 The Importance of Cultural Authenticity in Teaching Materials

063 Micro-teaching and Student Teacher Training

064 How to Evaluate the Teacher www.xiexiebang.com Performance-A Case Study 065 English Test Design 066 The Interference of Native Language in English Writing or Translation 067 Translation Methods and English Teaching

第四篇:英语专业论文开场白

Good afternoon, Distinguished professors and teachers.I am Gu Danni From the class of English translation.First, I would like to express my sincere gratitude to my supervisor, Ms.Wang, for her intellectual guidance, invaluable instructions and comments on my thesis.It is with her valuable assistance that I have finally accomplished this paper.The title of my paper is Strategies in Humor Translation of American Sitcom Friends.As a vital part in translation, the translation of humor in subtitle is gradually capturing an increasing attention and developing into an independent research field.The purpose of the paper is to explore the interpretation of verbal humor in American sitcoms Friends under the guidance of the Functional Equivalence Theory, with the hope of helping people express humor and understand humor effectively.The final goal of translating a sitcom is to ensure that the target audience can get the humor and appreciate it in the exactly the same manner as the original audiences do,here is an outline of my presentation and I divide my paper into five parts.Part one and two presents an introduction of this study and Nida’s Functional Equivalence Theory, Part three makes a clear illustration of the different categories of humor in Friends,and discussed the features of language.Then I apply these strategies to the subtitling of Friends featuring humorous language.Part five draws some conclusions that translators should try to find appropriate strategies to convey the humorous effect and make the cross-cultural communication smoothly.I hope the paper can provide some insightful opinions for the improvement of humor translation in American sitcoms.However, due to limited time and resources, the paper may have some deficiency, and there is still a long way to go..I’m looking forward to your sincere comments and suggestions.That’s all.Thank you.

第五篇:英语专业论文翻译

A smart copper(II)-responsive binucleargadolinium(III)complex-based magnetic resonanceimaging contrast agent†

Yan-meng Xiao,ab Gui-yan Zhao,ab Xin-xiu Fang,ab Yong-xia Zhao,ab Guan-hua Wang,c Wei Yang*a and Jing-wei Xu*a A novel Gd-DO3A-type bismacrocyclic complex, [Gd2(DO3A)2BMPNA], with a Cu2+-selective binding unitwas synthesized as a potential “smart” copper(II)-responsive magnetic resonance imaging(MRI)contrast agent.The relaxivity of the complex was modulated by the presence or absence of Cu2+;in the absence of Cu2+, the complex exhibited a relatively low relaxivity value(6.40 mM1 s1), while the addition of Cu2+ triggered an approximately 76% enhancement in relaxivity(11.28 mM1 s1).Moreover, this Cu2+-responsive contrast agent was highly selective in its response to Cu2+ over other biologically-relevant metal ions.The influence of some common biological anions on the Cu2+-responsive contrast agent and the luminescence lifetime of the complex were also studied.The results of the luminescence lifetime measurements indicated that the enhancement in relaxivity was mainly ascribed to the increased number of inner-sphere water molecules binding to the paramagnetic Gd3+ core upon the addition of Cu2+.In addition, the visual change associated with the significantly enhanced relaxivity due to the addition of Cu2+ was observed from T1-weighted phantom images.Introduction Copper(II)ion is a vital metal nutrient for the metabolism of life and plays a critical role in various biological processes.1,2 Its homeostasis is critical for the metabolism and development of living organisms.3,4 On the other hand, the disruption of its homeostasis may lead to a variety of physical diseases and neurological problems such as Alzheimer's disease,5 Menkes and Wilson's disease,6 amyotrophic lateral sclerosis,7,8 and prion disease.9,10 Therefore, the assessment and understanding of the distribution of biological copper in living systems by noninvasive imaging is crucial to provide more insight into copper homeostasis and better understand the relationship between copper regulation and its physiological function.A wide variety of organic uorescent dyes have been exploited for the optical detection of ions in the last few decades.11–13However, optical imaging using organic uorescent dyes hasseveral limitations such as photobleaching, light scattering,limited penetration, low spatial resolution and the disturbance of auto uorescence.14 By comparison, magnetic resonance imaging(MRI)is an increasingly accessible technique used as a noninvasive clinical diagnostic modality for medical diagnosis and biomedical research.15 It can provide high spatial resolution three-dimensional anatomical images with information about physiological signals and biochemical events.16 As a powerful diagnostic imaging tool in medicine, MRI can distinguish normal tissue from diseased tissue and lesions in a noninvasive manner,17–19 which avoids diagnostic thoracotomy or laparotomy surgery for medical diagnoses and greatly improves the diagnostic efficiency.Multiple MRI imaging parameters can provide a wealth of diagnostic information.In addition, the desired cross-section for acquiring multi-angle and multi-planar images of various parts of the entire body can be freely chosen by adjusting the MRI magnetic eld;this ability makes medical diagnostics and studies of the body's metabolism and function more and more effective and convenient.Contrast agents are often used in MRI examinations to improve the resolution and sensitivity;the image quality can be signicantly improved by applying contrast agents which enhance the MRI signal intensity by increasing the relaxation rates of the surrounding water protons.20 Due to the high magnetic moment(seven unpaired electrons)and slow electronic relaxation of the

paramagnetic gadolinium(III)ion, gadolinium(III)-based MRI contrast agents are commonly employed to increase the relaxation rate of the surrounding water protons.16,21 However, most of these contrast agents are nonspecific and provide only anatomical information.On the basis of Solomon–Bloembergen–Morgan theory,22–24 several parameters can be manipulated to alter the relaxivity of gadolinium(III)-based MRI contrast agents.These parameters include the number of coordinated water molecules(q), the rotational correlation time(sR)and the residence lifetime of coordinated water molecules bound to the paramagnetic Gd3+ center(sM).Adjusting any of these three factors provides the opportunity to design “smart” MRI contrast agents for specific biochemical events.25–27 In recent years, there have been many studies on the development of responsive gadolinium(III)-based MRI contrast agents;most of them have focused on the development of targeted, high relaxivity and bioactivated contrast agents.These responsive gadolinium(III)-based MRI contrast agents can be modulated by particular in vivo stimuli including pH,28–35 metal ion concentration36–43 and enzyme activity.44–50 Notably, a number of copper-responsive MRI contrast agents have been reported to detect uctuations of copper ions in vivo.51–58 These activated contrast agents exploit the modulation of the number of coordinated water molecules to generate distinct enhancements in longitudinal relaxivity in response to copper ions(Cu+ or Cu2+).In this study, we designed and synthesized a binuclear gadolinium-based MRI contrast agent, [Gd2(DO3A)2BMPNA], that is specically responsive to Cu2+ over other biologicallyrelevant metal ions.The new copper-responsive MRI contrast agent comprises two Gd-DO3A cores connected by a 2,6-bis(3-methyl-1H-pyrazol-1-yl)isonicotinic acid scaffold59,60(BMPNA), which functions as a receptor for copper-induced relaxivity switching.The synthetic strategy for [Gd2(DO3A)2BMPNA] is depicted in Scheme 1.Subsequently, the T1 relaxivity of [Gd2(DO3A)2BMPNA] was studied at 25 C and 60 MHz in the absence or presence of Cu2+.Experiments to determine the selectivity of [Gd2(DO3A)2BMPNA] towards Cu2+ over other biologically-relevant ions were carried out as well.Luminescence lifetime was measured to determine the number of coordinated water molecules(q)of [Gd2(DO3A)2BMPNA] in the absence or presence of Cu2+.In addition, T1-weighted phantom images were collected to visualize the relaxivity enhancement caused by Cu2+, suggesting potential in vivo applications.Experimental section

Materials and instruments

All materials for synthesis were purchased from commercial suppliers and used without further purication.1H and 13C NMR spectra were taken on an AMX600 Bruker FT-NMR spectrometer with tetramethylsilane(TMS)as an internal standard.Luminescence measurements were performed on a Hitachi Fluorescence spectrophotometer-F-4600.The time-resolved luminescence emission spectra were recorded on a Perkin-Elmer LS-55 uorimeter with the following conditions: excitation wavelength, 295 nm;emission wavelength, 545 nm;dela time, 0.02 ms;gate time, 2.00 ms;cycle time, 20 ms;excitation slit, 5 nm;emission slit, 10 nm.The luminescence lifetime was measured on a Lecroy Wave Runner 6100 Digital Oscilloscope(1 GHz)using a tunable laser(pulse width ¼ 4 ns, gate ¼ 50 ns)as the excitation(Continuum Sunlite OPO).Mass spectra(MS)were obtained on an auto ex III TOF/TOF MALDI-MS and anIonSpec ESI-FTICR mass spectrometer.Elemental analyses were performed on a Vario EL Element Analyzer.Synthesis Synthesis of compound 3.Methyl 2,6-bis(3-(bromomethyl)-1H-pyrazol-1-yl)isonicotinate(Compound1)59,60 and 4,7,10-tris(2-(tert-butoxy)-2-oxoethyl)-4,7,10-triaza-azoniacyclododecan-1-ium bromide(Compound 2)61 were prepared following thereported methods.Compound 2(0.25 g, 0.296 mmol)was suspended in 2 ml anhydrous acetonitrile with 6 equivalents of NaHCO3(0.1492 g)and the mixture was stirred at room temperature for 0.5 h.Compound 1(0.0675 g, 0.148 mmol)was added, and the mixture was slowly heated to reflux(80 C)and stirred overnight.After the reaction was terminated, the mixture was cooled to room temperature, and the solution was ltered.The precipitate was washed several times with anhydrous acetonitrile, and the collected ltrate solution was evaporated under reduced pressure.The residue was puried using silicagel column chromatography eluted with CH2Cl2–n-hexane–CH3OH(10 : 3 : 1, v/v/v)to afford Compound 3(0.1038 g, 53%)as a pale yellow solid.1H NMR(600 MHz, DMSO): 8.22(s, 2H), 8.15(s, 2H), 6.62(s, 2H), 4.53(s, 4H), 3.82(s, 3H), 3.42(m, 4H), 2.98(m, 8H), 2.85(s, 8H), 2.71(m, 24H), 1.33(s, 54H)(Fig.S1†).13C NMR(151 MHz, CDCl3): d 173.21, 172.44, 163.99, 152.38, 150.11, 143.13, 128.07, 109.83, 108.36, 82.59, 57.84, 56.52, 56.06, 55.56, 52.98, 50.55, 48.91, 47.30, 27.96(Fig.S2†).HRMS(ESI): m/z calc.for C67H111N13O14 [M + 2H]2+ 661.92650, [M + H + Na]2+ 672.91747, [M + 2Na]2+ 683.90844, found [M + 2H]2+ 661.92584, [M+ H + Na]2+ 672.91690, [M + 2Na]2+ 683.90682(Fig.S3†).Synthesis of compound 4.Compound 3(0.1 g, 0.0756 mmol)was stirred with triuoroacetic acid in methylene chloride solution(2 ml)at room temperature for 24 h.The solvent was then evaporated under reduced pressure, and the residue was washed three times in CH3OH and CH2Cl2 to eliminate excess acid.The obtained residue was dissolved with a minimum volume of CH3OH and precipitated with cold Et2O.The precipitate was ltered to afford a brown yellow solid(0.1022 g).1H NMR(600 MHz, DMSO): 9.06(s, 2H), 8.17(s, 2H), 6.84(s, 2H), 4.33(s, 4H), 3.98(s, 3H), 3.56(b, 20H), 3.09(m, 24H)(Fig.S4†).13C NMR(151 MHz, D2O): d 174.11, 169.13, 164.64, 150.75, 148.85, 142.10, 129.88, 109.75, 107.99, 55.69, 54.01, 53.10, 52.43, 51.15, 49.59, 48.22, 47.69(Fig.S5†).MALDI-TOFMS spectrum(CH3OH): m/z calc.for C43H63N13O14 [M H] 984.46, found 984.7(Fig.S6†).Anal calc.for C43H63N13O14-$3CF3COOH$2H2O: C, 43.14;H, 5.17;N, 13.35;found C, 42.34;H, 4.999;N, 13.29%.Preparation of [Gd2(DO3A)2BMPNA] and [Tb2(DO3A)2-BMPNA].Compound 4(0.05 mmol)was dissolved in 2 ml of highly-puried water.GdCl3 or TbCl3(0.1 mmol)was added dropwise.The pH was maintained at 6.5–7.0 with NaOH during the whole process.The solution was then stirred at 75 C for 24 h.MALDI-MS(H2O): m/z calc.for C42H55N13O14Gd2 [M + H]+ 1281.46, found 1281.4(Fig.S7†).MALDI-MS(H2O): m/z calc.for C42H55N13O14Tb2 [M + H]+ 1284.3, found 1284.4(Fig.S8†).T1 measurements.The longitudinal relaxation times(T1)of aqueous solutions of [Gd2(DO3A)2BMPNA] were measured on an HT-MRSI60-25 spectrometer(Shanghai Shinning Globe Science and Education Equipment Co., Ltd)at 1.5 T.All of the tested samples were prepared in HEPES-buffered aqueous solutions at pH 7.4.All of the metal ions(Na+, K+, Ca2+, Mg2+, Cu2+, Zn2+, Fe3+, Fe2+)were used as chloride salts.Concentrations of Gd3+ were determined by ICP-OES.Relaxivities were determined from the slope of the plot of 1/T1 vs.[Gd].The data were tted to the following eqn(1),20

(1/T1)obs ¼(1/T1)d + r1[M](1)

where(1/T1)obs and(1/T1)d are the observed values in the presence and absence of the paramagnetic species, respectively, and [M] is the concentration of paramagnetic [Gd].Luminescence measurements.Luminescence emission spectra were collected on a Hitachi uorescence spectrophotometer-F-4600.The luminescence lifetime was measured on a Lecroy Wave Runner 6100 Digital Oscilloscope(1 GHz)using a tunable laser(pulse width ¼ 4 ns, gate ¼ 50 ns)as the excitation(Continuum Sunlite OPO).Samples were excited at 290 nm, and the emission maximum(545 nm)was used to determine luminescence lifetimes.The Tb(III)-based emission spectra were measured using 0.1 mM solutions of Tb complex analog in 100 mM HEPES buffer at pH 7.4 in H2O and D2O in the absence and presence of Cu2+.The number of coordinated water molecules(q)was calculated according to eqn(2):62,63 q= ¼ 5(sH2O1 sD2O1 0.06)(2)T1-weighted MRI phantom images.Phantom images were collected on a 1.5 T HT-MRSI60-25 spectrometer(Shanghai Shinning Globe Science and Education Equipment Co., Ltd).Instrument parameter settings were as follows: 1.5 T magnet;matrix =256 256;slice thickness =1 mm;TE= 13 ms;TR= 100 ms;and number of acquisitions =1.Results and discussion Longitudinal relaxivity of [Gd2(DO3A)2BMPNA] in response to copper(II)ion To investigate the inuence of Cu2+ on the relaxivity of [Gd2(DO3A)2BMPNA], the longitudinal relaxivity r1 for the [Gd2(DO3A)2BMPNA] contrast agent was determined using T1 measurements in the absence or presence of Cu2+ at 60 MHz and 25 C using a 0.2mMGd3+ solution of [Gd2(DO3A)2BMPNA] in 100 mM HEPES buffer(pH 7.4)under simulated physiological conditions.The concentrations of Gd3+ were determined by ICP-OES.The relaxivity r1 was calculated from eqn(1).In the absence of Cu2+, the relaxivity of [Gd2(DO3A)2BMPNA] was 6.40 mM1 s1, which was higher than that of [Gd(DOTA)(H2O)](4.2 mM1 s1, 20 MHz, 25 C)and Gd(DO3A)(H2O)2(4.8 mM1 s1, 20 MHz, 40 C).64 Upon addition of up to 1 equiv.of Cu2+, the relaxivity of [Gd2(DO3A)2BMPNA] increased to 11.28 mM1 s1(76% relaxivity enhancement).As shown in Fig.1, the relaxivity gradually increased with the copper ion concentration, reaching a maximum value of approximately 1.2 equivalents of Cu2+.Due to the use of triuoroacetic acid in the synthesis of Compound 4, triuoroacetic acid residues produced CF3COO in the [Gd2(DO3A)2BMPNA] solution, allowing CF3COO to partially coordinate with Cu2+ to form “Chinese lantern” type structure complexes.65 When the amount of added copper ions was further increased to above 1.2 equiv., the relaxivity was maintained at the same level.The observed difference in Cu2+-triggered relaxivity enhancement demonstrated the ability of this contrast agent to sense Cu2+ in vivo by means of MRI.Our designed contrast agent not only exhibited a higher relaxivity, but also displayed a Cu2+-responsive relaxivity enhancement.Selectivity studies The relaxivity response of [Gd2(DO3A)2BMPNA] exhibited excellent selectivity for Cu2+ over a variety of other competing, biologically-relevant metal ions at physiological levels.As depicted in Fig.2(white bars), the addition of alkali metal cations(10 mM Na+, 2 mM K+)and alkaline earth metal cations(2 mM Mg2+, 2 mM Ca2+)did not generate an increase in relaxivity compared to the copper ion turn-on response;even the introduction of d-block metal cations(0.2 mM Fe2+, 0.2 mM Fe3+, 0.2 mM or 2 mM Zn2+)did not trigger relaxivity enhancements.We noted that Zn2+ is also known to replace Gd3+ in transmetalation experiments;however, studies with analogous Gd3+-DO3A complexes demonstrated that this ligand is more kinetically inert to metal-ion exchange.66 To ensure the kinetic stability of the complex, we used MS to monitor [Gd2(DO3A)2BMPNA] in the presence of 1 equiv.of Zn2+.No metal-ion exchange was observed at room temperature after 7 days(Fig.S13†).Relaxivity interference experiments for [Gd2(DO3A)2BMPNA] in the presence of both Cu2+(0.2 mM)and other biologically-relevant metal ions were also conducted;the results are shown as black bars in Fig.2, indicating that these biologically-relevant metal ions(Na+, K+, Mg2+, Ca2+, Fe2+, Fe3+, Zn2+)had no interference on the Cu2+-triggered relaxivity enhancement.In addition, we also tested the Cu2+ response for [Gd2(DO3A)2BMPNA] in the presence of physiologically-relevant concentrations of common biological anions to determine whether the Cu2+-triggered relaxivity enhancement was affected by biological anions at physiological levels.As previously mentioned, Cu2+ binding induced an enhancement in relaxivity from 6.40 mM1 s1 to 11.28 mM1 s1(a 76% increase).As shown in Fig.3, in the presence of citrate(0.13 mM), lactate(0.9 mM), H2PO4(0.9 mM), or HCO3(10 mM), the Cu2+-triggered relaxivity enhancement was approximately 61%(from 6.01 mM1 s1 to 9.66mM1 s1), 66%(from 6.13mM1 s1 to 10.16 mM1 s1), 20%(from 5.88 mM1 s1 to 7.02 mM1 s1), or 55%(from 6.15 mM1 s1 to 9.55 mM1 s1), respectively.Additionally, 100 mM NaCl had almost no effect(an approximately 75% increase), and a simulated extracellular anion solution(EAS, contain 30 mM NaHCO3, 100 mM NaCl, 0.9 mM KH2PO4, 2.3 mM sodium lactate, and 0.13 mM sodium citrate, pH =7),67 resulted in a Cu2+-triggered relaxivity enhancement of approximately 26%(from 6.02 mM1 s1 to 7.56 mM1 s1).Generally, the results revealed that lactate, citrate, and HCO3 had slight impacts on the Cu2+-triggered relaxivity enhancement, while H2PO4 and EAS influenced the enhancement to a greater degree.As shown in Scheme 2, [Gd2(DO3A)2BMPNA] possessed two water molecules after the addition of 1 equiv.Of Cu2+.According to the work of Dickins and coworkers, in lanthanide complexes with two water molecules, the waters can be partially displaced by phosphate, carbonate, acetate, carboxylate, lactate and citrate at different levels.68–70 The influence of these anions on the Cu2+-triggered relaxivity enhancement may be attributed to the partial replacement of coordinated water molecules by these anions.The relatively high concentration of phosphate could likely replace coordinated water molecules to reduce the increased number of water molecules surrounding the paramagnetic Gd3+ centre induced by Cu2+.As shown in Table 1, we measured the number of water molecules in the rst coordination sphere of Tb3+ in the presence of phosphate;the number of coordinated water molecules(q)decreased from 1.5 to 0.8.Coordination features Luminescence lifetime experiments were performed to explore the mechanism of the Cu2+-triggered relaxivity enhancement.Luminescence lifetime measurements of lanthanide complexes have been widely used to quantify the number of inner-sphere water molecules.71 In particular, Tb3+ and Eu3+ have commonly been applied for lifetime measurements because their emission spectra are in the visible region when their 4f electrons are relaxed from higher energy levels to the lowest energy multiplets.72,73 Therefore, the Tb3+ analogue of [Gd2(DO3A)2BMPNA], [Tb2(DO3A)2BMPNA], was prepared according to a similar method, and the luminescence lifetimes of the Tb3+ analogue in HEPES-buffered H2O and D2O in the absence and presence of Cu2+ were measured.As shown in Fig.S9,† the luminescence decay curve of [Tb2(DO3A)2BMPNA] was tted to obtain the luminescence lifetimes74(Table 1), and the number of coordinated water molecules(q)was calculated by eqn(2).The analysis results(Table 1)for [Tb2(DO3A)2BMPNA] in HEPES-bufferedH2OandD2O in the absence and presence of Cu2+ indicated that q increased from 0.6 to 1.5 upon the addition of 1 equiv.of Cu2+;this result indicated that the Cu2+-triggered relaxivity enhancement for [Gd2(DO3A)2BMPNA] was most likely due to the increased number of coordinated water molecules around the Gd3+ ion upon Cu2+ binding to the pyrazole centre(Scheme 2).Aer the addition of Cu2+, Cu2+ removed the pyrazole centre N atom from the paramagnetic Gd3+ ion to generate an open coordination site available for a water molecule.Luminescence emission titrations of [Tb2(DO3A)2BMPNA] towards Cu2+ were also performed to investigate the binding properties of the contrast agent towards Cu2+.Upon addition of 1 equiv.Cu2+, the luminescence of [Tb2(DO3A)2BMPNA] at 545 nm decreased gradually and reached a minimum due to the quenching nature of the paramagnetic Cu2+(Fig.S10†).The titration data indicated a 1 : 1 binding stoichiometry(Scheme 2)Copper-responsive T1-weighted phantom MRI in vitro To demonstrate the potential feasibility of this Cu2+-responsive [Gd2(DO3A)2BMPNA] for copper-imaging applications, T1-weighted phantom images of [Gd2(DO3A)2BMPNA] were acquired in the absence and presence of copper ions.The phantom images depicted in Fig.4 displayed distinct increases in image intensity in the presence of 1 equiv.Cu2+ compared with those without Cu2+(Fig.4D).Moreover, some of the other competing metal ions were also tested to further verify the selectivity of [Gd2(DO3A)2BMPNA] towards Cu2+.Discernible differences were not observed upon the addition of Mg2+(Fig.4C), Zn2+(Fig.4E), or Ca2+(Fig.4F).In addition, we also tested the clinical contrast agent Magnevist(Fig.4G);the image intensity was a bit darker than that of our contrast agent.Conclusions

In conclusion, we designed and synthesized a novel bismacrocyclic DO3A-type Cu2+-responsive MRI contrast agent, [Gd2(DO3A)2BMPNA].The new Cu2+-responsive MRI contrast agent comprised two Gd-DO3A cores connected by a 2,6-bis(3-methyl-1H-pyrazol-1-yl)isonicotinic acid scaffold(BMPNA)that functioned as a Cu2+ receptor switch to induce a distinct relaxivity enhancement in response to Cu2+;the relaxivity was increased up to 76%.Importantly, the complex exhibited high selectivity for Cu2+ over a range of other biologically-relevant metal ions at physiological levels.Luminescence lifetime experiment results showed that the number of inner-sphere water molecules(q)increased from 0.6 to 1.5 upon the addition of 1 equiv.Cu2+.When Cu2+ was coordinated in the central part of the complex, the donor N atom of the pyrazole centre was removed from the paramagnetic Gd3+ ion and replaced by a water molecule(Scheme 2).Consequently, the Cu2+-triggered relaxivity enhancement could be ascribed to the increase in the number of inner-sphere water molecules.The designed contrast agent had a longitudinal relaxivity of 6.40 mM1 s1, which was higher than that of [Gd(DOTA)(H2O)](4.2 mM1 s1, 20 MHz, 25 C)and Gd(DO3A)(H2O)2(4.8 mM1 s1, 20 MHz, 40 C).In addition, the visual change associated with the signicantly enhanced relaxivity from the addition of Cu2+ was observed in T1-weighted phantom images.Acknowledgements We are grateful to the State Key Laboratory of Electroanalytical Chemistry for nancial support.Notes and references 1 S.Puig and D.J.Thiele, Curr.Opin.Chem.Biol., 2002, 6, 171.2 S.C.Leary, D.R.Winge and P.A.Cobine, Biochim.Biophys.Acta, Gen.Subj., 2009, 146, 1793.3 D.D.Agranoff and S.Krishna, Mol.Microbiol., 1998, 28, 403.4 H.Kozlowski, A.Janicka-Klos, J.Brasun, E.Gaggelli, D.Valensin and G.Valensin, Coord.Chem.Rev., 2009, 253, 2665.5 K.J.Barnham, C.L.Masters and A.I.Bush, Nat.Rev.Drug Discovery, 2004, 3, 205.6 D.J.Waggoner, T.B.Bartnikas and J.D.Gitlin, Neurobiol.Dis., 1999, 6, 221.7 J.S.Valentine and P.J.Hart, Proc.Natl.Acad.Sci.U.S.A., 2003, 100, 3617.8 L.I.Bruijn, T.M.Miller and D.W.Cleveland, Annu.Rev.Neurosci., 2004, 27, 723.9 G.L.Millhauser, Acc.Chem.Res., 2004, 37, 79.10 D.R.Brown and H.Kozlowski, Dalton Trans., 2004, 1907.11 A.W.Czarnik, Acc.Chem.Res., 1994, 27, 302.12 L.Prodi, F.Bolletta, M.Montalti and N.Zaccheroni, Coord.Chem.Rev., 2000, 205, 59.13 H.N.Kim, M.H.Lee, H.J.Kim, J.S.Kim and J.Yoon, Chem.Soc.Rev., 2008, 37, 1465.14 M.Mahmoudi, V.Serpooshan and S.Laurent, Nanoscale, 2011, 3, 3007.15 P.A.Rinck, Magnetic Resonance Imaging, Blackwell Science, Berlin, 4th edn, 2001, p.149.16 A.E.Merbach and ´E.T´oth, The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, John Wiley & Sons, Ltd., New York, 2001.17 S.Aime, E.Terreno, D.D.Castelli and A.Viale, Chem.Rev., 2010, 110, 3019.18 S.Aime, M.Fasano and E.Terreno, Chem.Soc.Rev., 1998, 27, 19.19 M.Woods, D.E.Woessner and A.D.Sherry, Chem.Soc.Rev., 2006, 35, 500.20 R.B.Lauffer, Chem.Rev., 1987, 87, 901.21 J.Kowalewski, D.Kruk and J.Parigi, Adv.Inorg.Chem., 2005, 57, 42.22 I.Solomon, Phys.Rev., 1955, 99, 559.23 N.Bloembergen, J.Chem.Phys., 1957, 27, 572.24 N.Bloembergen and L.O.Morgan, J.Chem.Phys., 1961, 34, 842.25 E.L.Que and C.J.Chang, Chem.Soc.Rev., 2010, 39, 51.26 C.S.Bonnet and ´E.T´oth, Future Med.Chem., 2010, 2, 367.27 L.Prodi, F.Bolletta, M.Montalti and N.Zaccheroni, Coord.Chem.Rev., 2000, 205, 59.28 S.Aime, S.G.Crich, M.Botta, G.Giovenzana, G.Palmisano and M.Sisti, Chem.Commun., 1999, 1577.29 J.Hall, R.Haner, S.Aime, M.Botta, S.Faulkner, D.Parker and A.S.de Sousa, New J.Chem., 1998, 22, 627.30 M.P.Lowe and D.Parker, Chem.Commun., 2000, 707.31 S.Aime, A.Barge, M.Botta, D.Parker and A.S.De Sousa, J.Am.Chem.Soc., 1997, 119, 4767.32 S.Aime, F.Fedeli, A.Sanino and E.Terreno, J.Am.Chem.Soc., 2006, 128, 11326.33 M.P.Lowe, D.Parker, O.Reany, S.Aime, M.Botta, G.Castellano, E.Gianolio and R.Pagliarin, J.Am.Chem.Soc., 2001, 123, 7601.34 R.Hovland, C.Glogard, A.J.Aasen and J.Klaveness, J.Chem.Soc., Perkin Trans.2, 2001, 929.35 ´E.T´oth, R.D.Bolskar, A.Borel, G.Gonz´alez, L.Helm, A.E.Merbach, B.Sitharaman and L.J.Wilson, J.Am.Chem.Soc., 2004, 127, 799.36 W.H.Li, S.E.Fraser and T.J.Meade, J.Am.Chem.Soc., 1999, 121, 1413.37 K.Dhingra, M.E.Maier, M.Beyerlein, G.Angelovski and N.K.Logothetis, Chem.Commun., 2008, 3444.38 H.Hifumi, A.Tanimoto, D.Citterio, H.Komatsu and K.Suzuki, Analyst, 2007, 132, 1153.39 L.M.De Le´on-Rodr´ıguez, A.J.M.Lubag, J.A.L´opez, G.Andreu-de-Riquer, J.C.Alvarado-Monz´on and A.D.Sherry, MedChemComm, 2012, 3, 480.40 R.Trokowski, J.Ren, F.K.Kalman and A.D.Sherry, Angew.Chem., Int.Ed., 2005, 44, 6920.41 W.S.Li, J.Luo, F.Jiang and Z.N.Chen, Dalton Trans., 2012, 41, 9405.42 K.Hanaoka, K.Kikuchi, Y.Urano and T.Nagano, J.Chem.Soc., Perkin Trans.2, 2001, 1840.43 R.Ruloff, G.v.Koten and A.E.Merbach, Chem.Commun., 2004, 842.44 M.Giardiello, M.P.Lowe and M.Botta, Chem.Commun., 2007, 4044.45 M.Andrews, A.J.Amoroso, L.P.Harding and S.J.A.Pope, Dalton Trans., 2010, 3407.46 W.Xu and Y.Lu, Chem.Commun., 2011, 47, 4998.47 R.A.Moats, S.E.Fraser and T.J.Meade, Angew.Chem., Int.Ed., 1997, 36, 726.48 A.Y.Louie, M.M.Huber, E.T.Ahrens, U.Rothbacher, R.Moats, R.E.Jacobs, S.E.Fraser and T.J.Meade, Nat.Biotechnol., 2000, 18, 321.49 B.Yoo and M.D.Pagel, J.Am.Chem.Soc., 2006, 128, 14032.50 Q.Wei, G.K.Seward, P.A.Hill, B.Patton, I.E.Dimitrov, N.N.Kuzma and I.J.Dmochowski, J.Am.Chem.Soc., 2006, 128, 13274.51 E.L.Que and C.J.Chang, J.Am.Chem.Soc., 2006, 128, 15942.52 E.L.Que, E.Gianolio, S.L.Baker, A.P.Wong, S.Aime and C.J.Chang, J.Am.Chem.Soc., 2009, 131, 8527.53 E.L.Que, E.Gianolio, S.L.Baker, S.Aime and C.J.Chang, Dalton Trans., 2010, 39, 469.54 W.S.Li, J.Luo and Z.N.Chen, Dalton Trans., 2011, 484.55 E.L.Que, E.J.New and C.J.Chang, Chem.Sci., 2012, 3, 1829.56 M.Andrews, A.J.Amoroso, L.P.Harding and S.J.A.Pope, Dalton Trans., 2010, 3407.57 D.Kasala, T.S.Lin, C.Y.Chen, G.C.Liu, C.L.Kao, T.L.Cheng and Y.M.Wang, Dalton Trans., 2011, 5018.58 D.Patel, A.Kell, B.Simard, B.Xiang, H.Y.Lin and G.Tian, Biomaterials, 2011, 32, 1167.59 E.Brunet, O.Juanes, R.Sedano and J.C.Rodr´ıguez-Ubis, Photochem.Photobiol.Sci., 2002, 1, 613.60 Z.Q.Ye, G.L.Wang, J.X.Chen, X.Y.Fu, W.Z.Zhang and J.L.Yuan, Biosens.Bioelectron., 2010, 26, 1043.61 S.Mizukami, K.Tonai, M.Kaneko and K.Kikuchi, J.Am.Chem.Soc., 2008, 130, 14376.62 W.D.Horrocks and D.R.Sudnick, Acc.Chem.Res., 1981, 14, 384.63 S.Quici, M.Cavazzini, G.Marzanni, G.Accorsi, N.Armaroli, B.Vcntura and F.Barigelletti, Inorg.Chem., 2005, 44, 529.64 P.Caravan, J.J.Ellison, T.J.McMurry and R.B.Laufer, Chem.Rev., 1999, 99, 2293.65 O.G.Polyakov, B.G.Nolan, B.P.Fauber, S.M.Miller, O.P.Anderson and S.H.Strauss, Inorg.Chem., 2000, 39, 1735.66 M.F.Tweedle, J.J.Hagan, K.Kumar, S.Mantha and C.A.Chang, Magn.Reson.Imaging, 1991, 9, 409.67 D.Parker, Coord.Chem.Rev., 2000, 205, 109.68 R.S.Dickins, T.Gunnlaugsson, D.Parker and R.D.Peacock, Chem.Commun., 1998, 1643.69 J.I.Bruce, R.S.Dickins, L.J.Govenlock, T.Gunnlaugsson, S.Lopinski, M.P.Lowe, D.Parker, R.D.Peacock, J.J.B.Perry, S.Aime and M.Botta, J.Am.Chem.Soc., 2000, 122, 9674.70 R.S.Dickins, S.Aime, A.S.Batsanov, A.Beeby, M.Botta, J.I.Bruce, J.A.K.Howard, C.S.Love, D.Parker, R.D.Peacock and H.Puschmann, J.Am.Chem.Soc., 2002, 124, 12697–12705.71 W.D.Horrocks and D.R.Sudnick, Acc.Chem.Res., 1981, 14, 384.72 C.C.Bryden and C.N.Reilley, Anal.Chem., 1982, 54, 610.73 K.Binnemans, Chem.Rev., 2009, 109, 4283.74 S.Quici, M.Cavazzini, G.Marzanni, G.Accorsi, N.Armaroli, B.Vcntura and F.Barigelletti, Inorg.Chem., 2005, 44, 529.This journal is © The Royal Society of Chemistry 2014 RSC Adv., 2014, 4, 34421–34427 | 34427

下载师范大学英语专业论文(5篇)word格式文档
下载师范大学英语专业论文(5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    爱丽丝梦游仙境英语专业论文

    Alice adventures in wonder land 主要内容 《爱丽丝奇境历险记》讲述了小姑娘爱丽丝追赶一只揣着怀表、会说话的白兔,掉进了一个兔子洞,由此坠入了神奇的地下世界。在这个世......

    英语专业最新论文选题大全

    最新英语专业论文选题,共十个方面 第一方面 第二方面 第三方面 第四方面第五方面 第六方面第七方面 第八方面第九方面 第十方面一,英语文化选题 第一部分(1~~80) 1 从《远离尘嚣......

    英语专业推荐论文题目

    2011 浅析《荆棘鸟》中宗教桎梏下的爱情 Analysis of the Love Shackled by Religion in The Thorn Birds 英语语言在商业广告中的应用分析与研究 The Analysis of Advertis......

    英语专业论文题目大全范文合集

    英语专业论文题目大全 好的论文题目既是研究的方向,也是一个新的学习领域。你会像一叶小舟,尽情游弋在知识的海洋中。 确定选题 写论文,首先要有选题。我们要从当前英语教学实......

    英语专业论文选题参考

    英美文学 1.英国文学(选题范围,含各个时期的作家) 2.美国文学(选题范围,含各个时期的作家) 3女性研究(选题范围) 4.电影中妇女解放思想探索 5.浅析女性杂志中的性别现象 6.歌词中女......

    英语专业论文题目参考

    一、翻译类毕业论文选题 1.Study on Translation of Trade Marks and Culture 商标翻译与文化研究 2.The Social and Cultural Factors in Translation Practice 影响翻译......

    英语专业论文选题

    从中英礼貌原则的角度谈论跨文化交际的失误 如何处理广告英译中的跨文化英译失误 试论中西文化习惯在商务谈判中的作用 浅析中美家庭教育的差异 翻译研究参考选题 翻译中语......

    英语专业论文题目[大全]

    英语毕业论文写作 论文题目 语言学类: 1. 年龄和学习时间对第二语言习得的影响(The Influence of Starting Age and Length of Learning on SLA) 2. 性别与语言中的意识形态(Id......