第一篇:用一元一次不等式解决问题教案
用一元一次不等式解决问题教案
一、教学目标
知识技能:会用一元一次不等式描述现实生活中的数量之间的不等关系,并解决一些简单的实际问题 数学思考:通过运用一元一次不等式解决问题的过程,发展学生分析问题和解决问题的能力 问题解决:会用一元一次不等式描述现实生活中数量之间的关系,并解决问题
情感态度:通过建立一元一次不等式,初步体会一元一次不等式的运用价值,培养学生逻辑思维能力和探索精神
二、教学重点及难点
教学重点:列一元一次不等式解应用题的关键是对各数量间关系的理解和分析 教学难点:抓住关键字眼,挖掘隐含的数量关系
三、教具准备
投影仪、小黑板
四、教学过程
(一)、创设情景,引入新知:
一只纸箱质量为1kg,当放入一些苹果(每个苹果的质量为0.3kg)后,箱子和苹果的总质量不超过10kg.这只纸箱内最多能装多少个苹果? 简析:设这只纸箱内装了x个苹果
则纸箱和苹果的总质量用代数式表示为
根据“总质量不超过10kg”可列出不等式为
(二)、新知探索及内化: 探索活动:
问:列一元一次不等式解决实际问题的步骤与列一元一次方程解决实际问题,作一下比较,看看它们有哪些类似之处?有什么不同?(可安排学生进行讨论和交流.)由学生得出以下结论,教师作适当的总结.(1)解答步骤类似于列一元一次方程解决实际问题,关键是找出题中的数量关系.列一元一次方程解决实际问题,是根据题中的相等关系,列出一元一次方程;而列一元一次不等式解决实际问题,是根据题中的不等关系,列出一元一次不等式;
(2)列一元一次不等式解决实际问题时,要注意在不等式两边都乘以(或除以)同一个负数时,不等号方向必须改变.(3)在设中不要出现“最多”、“至少”等字眼,最后要答。
(三)、新知运用 例
1、(书例)某人骑一辆电动自行车,如果行驶速度增加5km/h,那么2h所行驶的路程不少于以原来速度2.5h所行驶的路程,他原来行驶的速度最大是多少?
例
2、抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?
分析:题目中的数量关系是:前半小时和后半小时走的路程之和至少应该是120公里,抓住了这个数量关系就可以建立不等式.例3:根据题意列不等式
(1)小明今年x岁,他的年龄不小于12岁.(2)一个n边形的内角和超过外角和..(3)一个三角形的三边长为2、3、x..(4)王大爷早晨以xkm/h的速度到10km远的公园晨练,早晨6点出发,要在7点前赶到..(四)归纳小结
(五)布置作业:
基础题 变式训练题 综合训练题
(六)板书设计
(七)教学反思
第二篇:一元一次不等式教案
教学目标
1、能够根据实际问题中的数量关系,列一元一次不等式(组)解决实际问题.
2、通过例题教学,学生能够学会从数学的角度认识问题,理解问题,提出问题,?? 学会从实际问题中抽象出数学模型.
3、能够认识数学与人类生活的密切联系,培养学生应用所学数学知识解决实际问题的意识.
教学重点?? 能够根据实际问题中的数量关系,列出一元一次不等式(组)解决 实际问题
教学难点?? 审题,根据实际问题列出不等式.
例题?? 甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费。顾客到哪家商场购物花费少??
解:设累计购物x元,根据题意得
(1)当0 < x≤50时,到甲、乙两商场购物花费一样;
(2)当50< x≤100时,到乙商场购物花费少;
(3)当x > 100时,到甲商场的花费为100+0.9(x-100),到乙商场的花费为50+0.95(x-50)则
50+0.95(x-50)> 100+0.9(x-100),解之得x >150
50+0.95(x-50)< 100+0.9(x-100),解之得x < 150
50+0.95(x-50)= 100+0.9(x-100),?? 解之得x = 150
答:当0 < x≤50时,到甲、乙两商场购物花费一样;
当50< x≤100时,到乙商场购物花费少;当x>150时,到甲商场购物花费少;当100 < x <150时,到乙商场购物花费少;当x=150时,到甲、乙两商场购物花费一样。
变式练习? 学校为解决部分学生的午餐问题,联系了两家快餐公司,两家公司的报价、质量和服务承诺都相同,且都表示对学生优惠:甲公司表示每份按报价的90%收费,乙公司表示购买100份以上的部分按报价的80%收费。问:选择哪家公司较好?
解:设购买午餐x份,每份报价为“1”,根据题意得
0.9x > 100+0.8(x-100),解之得x >200
0.9x < 100+0.8(x-100),解之得x < 200
0.9x = 100+0.8(x-100),解之得x = 200
答:当x>200时,选乙公司较好;当0 < x <200时,选甲公司较好;当x=200时,两公司实际收费相同。
作业
1、某商店5月1号举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠。已知小敏5月1日前不是该商店的会员。请帮小敏算一算,采用哪种方案更合算?
2、某单位计划10月份组织员工到杭州旅游,人数估计在10~25之间。甲乙两旅行社的服务质量相同,且组织到杭州旅游的价格都是每人200元。该单位联系时,甲旅行社表示可以给予每位旅客七五折优惠;乙旅行社表示可先免去一带队领导的旅游费用,其余游客八折优惠。问该单位怎样选择,可使其支付的旅游总费用较少?
第三篇:一元一次不等式教案
一元一次不等式教学设计
教学目标: 1 掌握一元一次不等式的解法,能熟练的解一元一次不等式 在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。教学重点: 掌握解一元一次不等式的步骤. 教学难点: 必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向.教学过程:
一、问题导入,提出目标
1导入:请同学们思考两个问题: 一是不等式的基本性质有哪些?
二是什么是一元一次方程?并举出两个例子。
解一元一次方程:1-2x =x + 3,目的是为了与解例1进行类比,找到它们的联系与区别。
2、出示学习目标,检验学生预习
(1)能说出一元一次不等式的定义。
(2)会解答一元一次不等式,并能把解集在数轴上表示出来。
二、指导自学,小组合作
请同学们根据导学提纲进行自学,先个人思考,后小组合作学习。(导学提纲内容如下)
1、观察下列不等式,说一说这些不等式有哪些共同特点?
(1)3x-2.5≥12(2)x≤6.75(3)x<4(4)5-3x>14
什么叫做一元一次不等式。
2、(1)自己举出2或3个一元一次不等式的例子,小组交流。(2)下列不等式中,哪些是一元一次不等式? 3x+2>x–1 5x+3<0 +3<5x–1(4)x(x–1)<2x
3、通过自学例1:
解一元一次不等式,并将解集在数轴上表示出来:3-x < 2x + 6
4、思考:一元一次不等式与一元一次方程的解法有哪些类似之处?有什么不同?
5、解下列不等式,并把它们的解集在数轴上表示出来。
4(x-1)+2> 3(x+2)-x(x-2)/ 2≥(7-x)/ 3
6、总结:解一元一次不等式的依据和解一元一次不等式的步骤。
三、互动交流,教师点拨
1、交流导学提纲中的1—6题。
学生易出错的问题和注意的事项:
(1)确定一个不等式是不是一元一次不等式,要抓住三个要点:左右两边都是整式,只有一个未知数,未知数的次数是1。
(2)对于例1,让学生说明不等式3-x < 2x + 6的每一步变形的依据是什么,特别注意的是:解不等式的移项和解方程的移项一样。即移项要变号(培养学生运用类比的数学思想)。
(3)不等式两边同时除以(-3)时,不等号的方向改变。
2、重点点拨例2和例3,学生到黑板上板演。
(1)例2易出错的地方是:去括号时漏乘,移动的项没有变号。
(2)例3易出错的地方是:去分母时漏乘无分母(或分母为1)的项。
3、归纳解一元一次不等式的步骤(与解一元一次方程的步骤类比):去分母,去括号,移项,合并同类项,系数化为1
四、当堂训练,达标检测
巩固练习题目
当堂检测题
1.下列各式是一元一次不等式的是()A.21>1 B.2x>1 C.2x2≠1 D.2< xx1x+3>-5是一元一次不等式()21>-8不是一元一次不等式()x2.判断正误:(1)(2)x+2y≤0是一元一次不等式()(3)3.方程26-8x=0的解是______,不等式26-8x>0的解集是______,不等式26-8x<•0的解集是________.
4.如果a与12的差小于a的9倍与8的和,则a的取值范围是_______. 5.解下列不等式:
(1)(x-3)≥2(x-4)(2)
(3)(1-2x)>10-5(4x-3)(4)1<x
48x≥0 5x10 2
第四篇:一元一次不等式组教案
一元一次不等式组教案
教学目标:
1、了解一元一次不等式组的概念,理解一元一次不等式组解集的意义,掌握求一元一次不等式组解集的常规方法;
2、经历知识的拓展过程,感受学习一元一次不等式的必要性;
3、逐步熟悉数形结合的思想方法,感受类比和化归思想。
4、通过利用数轴探求一元一次不等式组的解集,感受类比和化归的思想,积累数学学习的经验,体验数学学习的乐趣。
5、通过观察、类比、画图可以获得数学结论,渗透数形结合思想,鼓励学生积极参与数学问题的讨论,敢于发表自己的观点,学会分享别人的想法的结果,并重新审视自己的想法,能从交流中获益。教学重难点:
重点:一元一次不等式组的解集与解法。难点:一元一次不等式组解集的理解。教学过程:
呈现目标
目标一:创设情景,引出新知
(教科书第137页)现有两根木条a与b,a长10厘米,b长3厘米,如果再找一根木条c,用这三根木条钉成一个三角形木框,那么对木条c的长度有什么要求?
(教科书第135页第10题)求不等式5x-1>3(x+1)与 x-1<7-x的解集的公共部分。目标二:解法探讨
数形结合 解下列不等式组: 2x-1>x+1 X+8<4x-1
2x+3≥x+11 -1<2-x
目标三:归纳总结
反馈矫正 解下列不等式组(1)
3x-15>0 7x-2<8x(2)
3x-1 ≤x-2-3x+4>x-2
(3)
5x-4≤2x+5 7+2x≤6+3x
(4)
1-2x>4-x 3x-4>3
归纳解一元一次不等式组的步骤:(1)求出各个不等式的解集;(2)把各不等式的解集在数轴上表示出来;(3)找出各不等式解集的公共部分。第141页9.3第1 题中,体会不等式组与解集的对应关系 X<4
x>4
x<4
x>4 X<2
x>2
x>2
x<2 X<2
x>4
2<x<4
无解
教师推荐解不等式组口决:同大取大,同小取小,大小小大中间夹,小小大大无解答。目标四:巩固提高
知识拓展 《完全解读》第230页
已知∣a-2∣+(b+3)=0,求-2<a(x-3)-b(x-2)+4<2的解集。求不等式10(x+1)+x≤21的不正整数解。
探究合作
小组学习:各学习小组围绕目标
一、目标二进行探究,合作归纳解一元一次不等式组的基本步聚;
教师引导:(1)什么是不等式组?
(2)不等式组的解题步骤是怎样的?你是依以前学习的哪些旧知识猜想并验证的?
展示点评
分组展示:学生讲解的基本思路是:本题解题步骤,本小组同学错误原因,易错点分析,知识拓展等。
教师点评:教师推荐解不等式组口决。
巩固提高
教师点评:本题共用了哪些知识点?怎样综合运用这些知识点的性质解决这类题目。
第五篇:一元一次不等式应用题教案
一元一次不等式的应用题
教学目标:会解一元一次不等式的应用题。
教学重点:一元一次不等式应用题与一元一次方程既有联系又有区别,注意 对比它们的异同点,以便加深对一元一次不等式知识的理解和记忆。
教学难点:解决实际问题时,除认真做好列不等式解应用题的“审、设、找、列、解
”五步 骤外,完成第六步“答”确定其解集(特别
是特解)时,应充分挖掘实际问题的隐含条件。思想品德教育:让学生进一步学习和体会“转化”思想在解题中的应用。教学过程:
一、复习:
某次“人与自然”知识竞赛中共有20道题,对于每一道题,答对了得10分,答错或不答扣5分,必须答对几道题,才能得80分?
二、引入:
1、用不等式表示下列数量关系。(1)a是比6小的数;(2)x的4倍与7的差大于3;(3)a的2倍的相反数不大于0;(4)x与8的差的不小于0;
2、先设未知数,再用不等式表示下列关系(1)某天的气温不低于8°C;
(2)初一(2)班的男生不少于25人;
(3)汽车在行驶过程中,速度一般不超过80千米/小时;(4)他至少应该答对30道题
三、出示例题
某次“人与自然”知识竞赛中共有20道题,对于每一道题,答对了得10分,答错或不答扣5分,至少要答对几道题,其得分不少于80分?
四、练习
(1)一个工程队原定10天内至少要挖掘600m3的土方,在前两天共完成了120m3后,又要求提前2天完成挖掘土任务,问以后几天内,平均每天至少要挖掘多少土方?
(2)小明家平均每月付电话费28元以上,其中月租费22.88 元,已知市内通话不超过3分钟,每次话费0.18元,如果小明家的市内通话时间都不超过3分钟,问小明平均每月通话至少多少次?(讨论)
(3)有人问一位老师:他所教的班有多少学生,老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还剩不足六位同学在操场踢足球,”试问这个班共有多少学生?(讨论)
课后小结:
在教学过程中,教学重点、难点明确,注重从学生的认知规律出发,由浅入深,循序渐进,在选题时注意学生的生活实际,举身边实例。在课堂上,经常用鼓励的语言,调动学生们的积极性。