第一篇:“相反数”教学案例剖析
教学内容:人教版义务教育课程标准实验教科书《数学》七年级上册第10页11页相反数
教学目标:
1.知识与技能:借助数轴理解相反数的概念,会求一个数的相反数,会用相反数的定义进行化简。
2.过程与方法:培养学生分类讨论和数形结合的思想,提高观察、归纳与概括的能力。
3.情感态度价值观:培养学生严谨的治学态度并初步感受数学文化的教育价值,认识对立统一的规律。
教学重点、难点:
重点:了解相反数的意义。
难点:多重符号的化简。
教学过程实录:
一、创设情境,导入新课
师生互动:师要求二个学生在讲为课桌前背靠背站好(分左右),听教师口令:向前2步走。
师:规定向右为正(正号可以省略),向右走2步,向左走2步各记作什么?
生:向右走2步记作2步;向左走2步记作-2步。
师:规定两个同学未走时的点为原点,用上一节课学的数轴将上述问题情境中的2和-2表示出来。
生:画数轴,在数轴上标出表示2和-2的点。
师:多媒体展示下图并问:从数轴上观察,这两位同学各走的距离都是2步,但方向相反,可用2和-2表示,这两个数具有哪些意义?
生1: 2和-2这两个数具有相反意义。
师:回答很好。还这其他说法吗?
生2:2和-2的数字相同(都是2),但性质符号不同。
生3:2和-2这两个数表示距原点都是两个单位(距离相等)。
师:在代数中,把具有上述特点的两个数称为互为相反数,今天我们就来学习相反数的概念。
师板书课题:相反数
评析:本节课的导入,教师通过生动有趣的情景和引导学生借助数轴的直观性,抓住了学生的注意力,激发了学生的学习兴趣。学生在老师的引导下将实际问题数学化,体会出2和-2这两个数互为相反的意义,感受到数学与生活密切相关,在轻松愉悦的活动中获得了知识,从感性上初步感知互为相反数的意义。
二、启发思考,学习新课
1.互为相反数的概念的引出
师:板书画一数轴如图所示,请学生观察、讨论并回答:
⑴在数轴上分别与1,-3,5到原点距离相等的点是哪些?
⑵在数轴上与原点距离都为1,3,5的点有几个?
⑶利用数轴说出与原点距离相等的点的两个数的位置特征和符号特征。
生:利用已画出数轴,先描点,然后观察、讨论上述问题。
师:巡视学生学习情况并及时对个别学生进行辅导。
师:抽学生回答上述两个问题。
生1:在数轴上与1,-3,5到原点距离相等的点分别是-1,3,-5。
师板书并在数轴上标出到原点与1,-3,5距离相等的点。
生2:在数轴上与原点距离相等的点有2个。它们表示的数分别是:1和-1,-3和3,5和-5。
生3:这些点在数轴上的位置特征分别是:①在原点的两旁;②到原点的距离相等,③关于原点对称。
生4:1和-1,3和-3,5和-5这些数中每一对数的特点是数字相同,符号不同。
师:根据上面对1和-1,3和-3,5和-5这三对数的特征的理解,怎样给相反数下一个定义?
众生:象1和-1,3和-3,5和-5这样只有符号不同的两个数叫做互为相反数
师:板书(略)并强调只有符号不同的两个数中的只有指的是除了符号不同以外完全相同。不能理解为只要符号不同的两个数就是互为相反数。
评析:在演示活动后,已出现了2,-2这两个数,教师及时阐明它们就是互为相反的两个数,这时不急于总结互为相反数的概念,而是提供了一个让学生经历利用数轴找一组互为相反数的两个数,先观察这两个数在数轴上的位置关系,再观察这两个数本身的特点,更形象直观地引导学生理性得出相反数的概念。
2.互为相反数的概念的理解
师:(出示投影)请学生思考后解答下面的问题:
⑴根据相反数的意义,判断下列语句的正误,并说明理由。
①的相反数是()
②和互为相反数()
③ 0既非正数也非负数,所以它没有相反数()。
师生活动:学生思考后并回答上述问题,教师讲评(过程略)。
评析:根据学生判断的结果加深对相反数概念中互为两字的理解为一个正(负)数都对应一个负(正)数,这两个数互为相反数,同时明确0的相反数仍是0是相反数定义的一部分。
⑵解答下列问题:
①在前面画的数轴上任意标出4个数,并标出它们的相反数;
②分别说出9,-7,-0.2的相反数。
③指出-2.4,-1.7,1各是什么数的相反数?
④0的相反数是什么?的相反数是什么?
师生活动:生分小组讨论解答上述题目,并选代表准备回答老师的检查提问。师巡视学生分组学习情况和提问,讲评(此过程略)。
评析:①题注意培养学生运用数形结合的方法理解相反数的概念,让学生深知:数轴上,在原点两旁,离开原点相等距离的两个点所表示的两个数互为相反数;②、③、④题是对相反数的概念的直接运用,由特殊的数到一般的字母,紧扣只有符号不同的两个数叫做互为相反数这一概念。最后得出结论的相反数是。
师强调: 的相反数是 还可说成和互为相反数,可表示任意数(正数、负数、0),求一个数的相反数就是在这个数前加一个-号。
师问:把分别换成+5,-7,0时,这些数的相反数怎样表示?
生思考后答:求任意一个数的相反数可以在这个数前加一个-号,即:+5的相反数表示为-(+5),-7的相反数表示为-(-7),0的相反数是-0。
师再提出问题:在一个数的前面加上-号表示这个数的相反数,那么-(+1.1)表示什么意思?-(-7)呢,-(-9.8)呢?它们的结果应是多少?
学生活动:讨论、分析、思考后回答:
生1:-(+1.1)表示+1.1的相反数,结果是-1.1。
生2:-(-7)表示-7的相反数,结果是+7。
生3:-(-9.8)-9.8的相反数,结果是+9.8。
师引导:在一个数前面加上-号表示这个数的相反数,如果在这些数前面加上+号呢?
生思考后回答:在一个数前面加上+仍表示这个数,因为+号可省略。
师:通过前面的学习交流,我们基本了解了相反数的有关概念,请同学们思考后用自己的话说出相反数的意义?
生1:相反数是指只有符号不同的两个数。
生2:互为相反数的两个点到原点的距离相等。
生3:还有在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称。
师:同学说得很好,对于相反数的概念理解得十分深刻。怎样确定一个数的相反数呢?
生4:由正数的相反数是负数,负数的相反数是正数,0的相反数是0来确定。
生5:在一个数的前面添一个负号就能确定这个数的相反数。
评析:通过此环节,加深了对相反数概念的理解,学生在愉悦的课堂气氛中感悟学习数学的美好境界。
三、例题交流,总结方法
例1:求
5、-4.5、的相反数。
师:请几名学生根据相反数的意义到黑板上求出例题1这几个数的相反数。(生解题过程略)
师讲评后强调:求一个数的相反数,可以在这个数的前面添一个一号。如-5的相反数可表示为-(-5),我们知道-5的相反数是5,所以-(-5)=5。
例2:化简:①+(+3)②+(-3)③-(+2.7)
④-(-)⑸-[-(-9)]
师让学生先在练习本上试着做一做,指名学生说说化简的理由(生答师板书过程略)。
评析:由于利用相反数的概念化简符号是这节课的难点。这一环节,教师紧紧抓住学生的心理及时提问:既然的相反数是,那么5,-4.5,的相反数怎样表示呢?学生的思维由一般再引到特殊就能答出+(+3),+(-3),-(+2.7),-(-),-[-(-9)]的结果,让学生自己尝试得出结果,突破了难点。
四、尝试练习,巩固提高
1.填空
-(-2.8)= _____;+(-7)= ______;-(+3.4)的相反数是 ____;
-(-2.6)是______的相反数;相反数等于本身的数是________。
2.根据,由,可得;由可得。
生解答师讲评略。
五、总结经验,评价所学
师:通过这节课的学习,你们对相反数的意义理解了些什么?还有什么缺憾?评价一下自己这节课的学习情况吗?
生:一部同学谈自己对相反数的意义的理解和这一节课的收获。然后大家共同分享成功(略)。
师:作业(略)
综述:本节课的教学内容对学生来说并不乏认识基础,学生已经掌握正数、负数和数轴的有关知识,如何借助数轴理解互为相反数的意义,具体地说,就是要解决这样两个层次:什么样的数叫互为相反数?怎样确定一个数的相反数?为此本节课紧紧围绕借助数轴理解互为相反数的意义这一教学目标,以教学生如何分析问题为突破口,以提升学生归纳能力为重点,以让学生形成积极探求新知的欲望为情感目标,成功设计出层层递进的问题链,用问题激活学生思维,用问题推进教学进程,用问题引导学生探究。
本节课的引入构思巧妙,从具体的场景出发,利用数轴引导学生感受相反数的意义。在相反数概念的形成和构建上舍得花时间,通过教师的层层追问,充分暴露了学生的思维过程,让学生学会 理性思考,从而为归纳出互为相反数的意义铺平了道路,使学生深刻理解相反数的意义。
数学是人类文化的重要组成部分,中学数学课程对于认识数学的文化价值具有基础性作用。本节课是数学概念课,也是数学文化课,如何在概念课的教学中渗透数学文化和数学思想?本节课做了有益的尝试,具体表现在:在对学生举出归纳相反数的意义后的评价上,让学生意识到了数学源于生活,又高于生活;在认识相反数的意义的过程中,通过数形结合,将数学文化灵活应用于教学中,旨在让学生领会归纳相反数意义的多样性、概括性。
第二篇:初中数学优秀教学案例相反数
初中数学优秀教学案例:《相反数》课堂教学实录及反思 [复制链接]
──《相反数》课堂教学实录及反思 课堂实录:
一、发散思维,引出课题
师:请同学们自己找出一条理由,将-4,+3,+4,-3分成两组.
生1:我将-
4、-3分在一组,将+
4、+3分为另一组,就是将负数分为一组,正数分为另一组.
师:简单地说,就是将符号相同的放在一组.
生2:我将-4,+4分在一组,将-3,+3分为另一组,就是把数是否相同作为分组的依据. 师:你的意思是-4与+4相同,所以把它们放在一组?
生2:不是那个意思,我指的是-4与+4中都有4这个数,也就是符号后面的数相同,所以把它们放在一组.
师:什么数相同一定要说明,否则容易引起误会.(板书:符号后面的数)
生3:我把-4与+3分在一组,把+4与-3分在另一组.理由是两个数的符号不同,符号后面的数也不相同.
二、比较概括,提炼定义
师:一般地,一个数由两部分构成,即符号和刚才提到的“符号后面的数”,考虑这两个方面,大家也就采用了三种不同的分法.两个方面都不相同是一种分法,把“符号”是否相同作为分组的依据,得到的是已经学过的一组正数和一组负数;把“符号后面的数”是否相同作为分组的依据,得到了-4与+
4、+3与-3这样成对的数,那么它们又应该叫什么数呢? 生4:相反数.
师:你是怎样想到把它们叫相反数的呢? 生4:看书知道的.(众笑)
师:你先预习了今天的内容,知道了像+4与-4这样一对数是相反数(板书课题),不知是否想过,为什么叫相反数而不叫别的数呢? 生4:没有想过.
师:现在请大家思考一下.
生5:一个正数,一个负数,表示的意义相反,所以叫相反数.
师:说出了最重要原因.不过照这种说法,-4与+3也是相反数,是吗? 生(众):不是,它们符号后面的数不同.
师:分析的有道理.现在请大家用尽可能简单的一句话说明什么样的两个数叫相反数. 生6:符号不同、符号后面的数相同的两个数叫相反数.(板书)生7:一个数前面添上不同的符号后得到的两个数叫相反数.(板书)师:请你举例说明.
生7:如5前面添上“+”“-”得到的+5和-5是相反数.
师:说的都很好,用简洁的语言把数的两个部分的关系都讲清楚了,课本上说“只有符号不同的两个数叫做互为相反数”(板书),这与刚才两个同学的说法一致吗?
生(众):是一致的.“只有符号不同”说明其它的都相同,包含了“符号后面的数相同”的意思. 师:很好,挖掘出了言外之义.关于什么叫相反数,谁还有新的说法? 生8:只有符号后面的数相同的两个数叫做互为相反数.(板书)
师:反应很快,“只有符号后面的数相同”的言外之意是“符号不同”,与课本上的说法是一致的.由此可见,同样的意思,可以用不同的语言来表达,在数学学习中,对此我们应该多加注意.需要说明的是,课本用“只有符号不同”包含“符号后面的数相同”的意思,好处是使相反数的概念更精炼,同时也避免了使用“符号后面的数”这一说法容易引起的误会,关于这一点,以后我们还将看到.
关于相反数,谁有什么疑问,请提出来. 生9:为什么说“互为相反数”?
师:“互”就是“相互”的意思,如+4是-4的相反数,也可以说-4是+4的相反数,即+4与-4互为相反数.请大家一起把“+3与-3互为相反数”的意思说具体一点. 生(众):+3是-3的相反数,-3是+3的相反数. 师:谁还有问题吗?
生10:我的问题是零有没有相反数? 师:你怎么想起了这样一个问题呢?
生10:前面提到的相反数总是一正一负,我就想到是否遗漏了零.
师:老师真为你高兴,你想到了一个不能遗漏的重要问题.关于零有没有相反数,请大家不要急于看课本,先思考一会,然后相互交流各自的看法. 生:(思考,讨论).
师:先请一个认为零没有相反数的同学说明理由.
生11:因为相反数总是一正一负符号不同,而零既不是正数也不是负数,所以零没有相反数. 师:有道理.那么认为零有相反数的理由又是什么呢?
生12:0也可以写成+0和-0.比如说某人做生意不赚也不亏,也可以说赚了0元,或说亏了0元,即可记作+0元和-0元,所以+0=-0=0,+0的相反数-0,0的相反数就是0. 师:也有道理.从表面上看,0与0互为相反数好象不符合符号不同这个要求,但是象生12举的例子中提到+0和-0,并且+0=-0=0,也是可以的,所以,关于特殊的零,课本上特别指出(板书):0的相反数是0.
口答练习:说出下列各数的相反数:-7,-0.5,0,6,+1.5 例 请在数轴上标出表示+4的相反数的点.(老师有意隐藏了三角板、圆规,板演学生凭眼估计画出了表示-4的点)师:请大家判断,表示-4的点位置是否正确? 生(众):好象偏右了一点,应该还在左边一些. 师:正确的点应该在什么样的位置?
生13:-4到原点的距离与+4到原点的距离相等. 师:还补充几个字就好了.
生14:表示-4的点到原点的距离与表示+4的点到原点的距离相等.
师:非常准确.不是数到原点的距离,而是点到点的距离,表示数的点到原点的距离.谁到黑板上来检验表示-4的点的位置是否正确?
(一名学生利用三角板测量出了表示-4的点的正确位置,老师用圆规又检验了一次)练习:把-6,5,0,-2.5和它们的相反数都表示在数轴上.
师:练习中,我们发现:除零外,在数轴上表示相反数的点分别位于原点的左右两边.为什么除零外表示相反数的点一定会分别位于原点的左右两边呢?
生15:因为除零外,两个相反数总是一负一正,所以表示相反数的点分别位于原点的左右两边. 师:分析得对.谁能用相反数的概念中的某些词语来说明这个问题? 生16:就是“符号不同”.
师:很好,因为“符号不同”,所以表示相反数的点分别位于原点的左右两边.当我们用眼观察图形,看出了相反数的一个特点后,一定要进一步开动大脑思考为什么会有这样的特点,而往往从概念中就能找到原因.从数轴上看,相反数的另外一个特点是:表示每一对相反数的点到原点的距离相等(板书).为什么表示相反数的两点到原点的距离相等?
生17:相反数的概念中“只有符号不同”包含着其它的相同,就是“符号后面的数相同”,在数轴上就是距离相等.
师:很好,很快就掌握了老师提到的分析问题的方法.关于相反数,我们是从“符号”和“符号后面的数”两个方面去研究的,这两方面的特点既包含在相反数的概念中,又体现在数轴上,将二者结合起来考虑将有助于以后的数学学习.
师:在前面的分析中,我们总是将特殊的的零排除在外.请大家回顾一下,到现在为止,关于零的特殊性,表现在哪些方面?
生众:零既不是正数,也不是负数;零的相反数还是零;零不能作除数. 师:前面提到的三个方面中,有哪两个方面是联系在一起的?
生18:前面两个方面是联系在一起的.因为零既不是正数,也不是负数,所以零的相反数还是零.
师:说的好,希望大家以后能向今天一样开动脑筋思考问题.请看练习. 练习及解答(略)
教学反思:本节课是一节概念及概念应用课.教科书以现两个思考形式呈现本节的内容. 为了顺利完成教学任务,我先以发散思维的形式,让学生感受数字的变化,一下子把学生的注意力全集中在课堂上.带有激励性的语言,使数学积极参与到对问题的思考之中,符合七年级学生的年龄特点,带着好奇心和求知欲,学生很快进入学习状态.
在对相反数概念的提炼及应用的过程中,学生通过探究、合作、交流,以及师生有目的的对话,使学生对相反数有了更深的理解,培养了学生良好的思维品质,并用数学知识进行了检验,学生参与积极,思维活跃,兴趣高.通过对0有没有相反思的讨论,我又设计了一个开放问题,让学生自己解释有没有的原因,它具有思维的跨度,目的是让学生经历从发现、推理、验证到判断这一重要数学探究过程,同时这一问题也是相反数概念的外延,达到巩固新知的目的.
本节课我感到不足的地方是,学生参与面不够大,部分学生在活动中没有积极思考,不够大胆主动地发表自己的观点,担心自己说错了会让老师和同学们笑自己. 通过本节课我得到这样一个启示:
(一)导入新课要结合实例.良好的开端是成功的一半,引入阶段正处在一堂课的起始阶段,处理的是否恰当,直接影响到学生学习的情绪,以及思维的活跃程度.结合学生身边的实例导入新课,不但可提高学生的学习兴趣,激发求知的内驱力,而且可使所要学习的数学问题具体化,形象化.
(二)加深理解新知要联系生活实际.在新知的教学时,如果能结合学生的日常生活,创设学生熟悉与感兴趣的具体生活活动情况,就能引导学生通过联想、类比,沟通从具体的感性实践到抽象概括的道路,加深对新知的理解.
(三)巩固新知要在生活实践应用中.数学来源于实践,又服务于实践,为此在数学教学中,我们要创设运用数学知识的条件给学生以实际活动的机会,使学生在实践活动中加深对新学知识的巩固.
今后我要善于从学生已有的生活经验出发,创设生活中生动、有趣的的情境,强化感性认识,引导学生在情境中观察、操作、交流,使学生体验数学与日常生活的密切联系,感受数学在生活中的作用;加深对数学的理解,并运用数学知识解决现实问题.同时,鼓励学生多角度思考问题,优化解题策略.
第三篇:相反数教学反思
相反数教学反思
篇一:相反数>教学反思
这节课我是根据“新课标”的教学思想设计并实施的。我尽力激发学生学习的积极性,向学生提供活动的机会,帮助他们在自主探索和合作交流的过程中真正的理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验。在整个教学过程中,学生是学习的主人,我是组织者、引导者和合作者。
在整节课的教学中我觉得做的比较好的地方是:一个操作、三个讨论。
相反数这节课实在数轴一节课后学习的,而数轴又是初中数形结合的一个重要图形,所以我重点利用数轴对相反数进行理解。我让学生在一张白纸上画数轴,并将数轴沿原点对着折,感受互为相反数的两数的对称性。通过对这还比较容易的解决了的相反数是这一难点。(因为对折后远点与本身重合)
本节课我设计了三个地方让学生分组讨论。第一次讨论是通过观察两个互为相反数的两数,讨论它们的异同点及在数轴上的位置关系;第二次讨论是让学生讨论是否任何有理数都有相反数;第三次讨论是让学生讨论化简双重符号的数的规律。通过参与其中某些组的讨论,我感觉到学生通过讨论既加深了对数学知识的理解,又增强的合作交流的能力。特别是对是否有相反数的讨论,同学们都很投入,讨论得很激烈,有的认为有,有的认为无,他们都各持己见,最后在我的引导下得出的相反数是的结论。
本节课的教学我也觉得有不足的地方。我设置的三次讨论的时间都比较短,每次都只有2——3分钟,学生讨论得不够深入。可能设置少一两次讨论,而讨论的时间长一点会更好。最后就是这节课针对中考的练习少了一点。这些都是我以后在教学中要加强的。
篇二:相反数教学反思
本节课的教学目标是让学生借助数轴理解相反数的概念,会求出一个有理数的相反数;会根据a的相反数是——a,能把多重符号化成单一符号。教学重点是让学生理解相反数的意义,难点是理解和掌握多重符号化简的规律。
在设计教学时,是先让学生把2对相反数分别在不同的数轴上表示出来,让学生观察出数轴上与原点的距离相等的点出现2个,进一步可发现这两个点表示的数只有符号不同,由此引出相反数的概念:只有符号不同的两个数称为相反数。通过从符号、数字两方面来比较,分析其特征,刻画相反数的模型:数a 的相反数是——a。再通过求具体数值的相反数归纳出:正数的相反数是负数;负数的相反数是正数;0的相反数是0。并强调清楚——a不是负数。在难点的处理上利用相反数的概念进行化简。在任何一个数前面添一个“——”号,新的数就是原数的相反数。例如:——(——6)表示——6的相反数,即是 6 ——[——(——6)] 表示——(——6)的相反数,即是 ——6。
再让学生归纳出多重符号化简的规律,是由“——”号的个数来定,当“——”号个数为偶数是,化简结果为正;当“——”号个数为奇数是,化简结果为负。
上完这节课的课后反思:
成功之处是学生对求一个具体的数的相反数,掌握得不错,也理解相反数的代数意义和几何意义。
不足之处有以下几点:
1、有些学生把相反数和倒数混淆在一起,这一点在设计教学时?有想到。
2、学生对多重符号简化的规律不太理解,运用得不好。
针对以上问题,我在习题设计上做了修改。
1、编写几道分别求同一个数的相反数和倒数的题目,让学生区分这两个不同的概念。如:分别求出6的相反数和倒数。这样让学生体会相反数是指一对数,它们的绝对值相等,符号相反;倒数也是指一对数,它们的绝对值不等,符号相同。
2、把多重符号化简的习题的难度、数量控制好,难度不要大,题目适量。
篇三:相反数教学反思
教学引人以开放的形式创设情境,让学生进行讨论,并培养分类的能力,培养学生的观察与归纳能力。把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解,体验对称的图形的特点,为相反数在数轴上的特征做准备;问题2能帮助学生准确把握相反数的概念,深化相反数的概念;“零的相反数是零”是相反数定义的一部分;问题3实际上给出了求一个数的相反数的方法。
本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地。
通过练习发现本节课最容易出现的错误是:
1、相反数是成对出现的,它们不能单独存在,是相互存在的如:-2是相反数。
2、书写错误如:2的相反数 有的学生直接就写成2=-2
3、求字母或代数式的相反数时如x-y的相反数
4、化简过程弄错符号
5、关于相反数的变式应用如:a与b互为相反数则a/b的值是、a+b=*
第四篇:《相反数》教学反思
《相反数》教学反思
毛海玲
相反数这一课是有理数第三节的内容,这个知识点相对比较简单,学生完全可以通过自学课本便能学会的,所以在课堂中我主要采用引导自学、合作探究、交流展示的方法展开教学的。
本节课的教学目标是让学生借助数轴理解相反数的概念,会求出一个有理数的相反数;会根据a的相反数是-a,能把多重符号化成单一符号。教学重点是让学生理解相反数的意义,难点是理解和掌握多重符号化简的规律。
在设计教学时,是先让学生把5对相反数在数轴上表示出来,既复习上一节的内容又为本节做准备。接着让学生观察这三对数有什么特征?让学生观察出数轴上与原点的距离相等的点出现2个,进一步可发现这两个点表示的数只有符号不同,由此引出相反数的概念:只有符号不同的两个数称为相反数。通过从符号、数字两方面来比较,分析其特征,刻画相反数的模型:数a的相反数是-a。再通过求具体数值的相反数归纳出:正数的相反数是负数;负数的相反数是正数;0的相反数是0。并强调清楚-a不一定是负数。
在难点的处理上利用相反数的概念进行化简。在任何一个数前面添一个“-”号,新的数就是原数的相反数。
例如:-(-6)表示-6的相反数,即是6。
-[-(-6)]表示-(-6)的相反数,即是-6。
再让学生归纳出多重符号化简的规律,是由“-”号的个数来定,当“-”号个数为偶数是,化简结果为正;当“-”号个数为奇数是,化简结果为负,另外把多重符号化简的习题的难度、数量控制好,难度不要大,题目适量。
通过本节课的反思,我想从这几方面加强课堂教学:
1.贯彻以教师为主导、学生为主体,以知识为载体、以培养学生的思维能力为重点的教学思想。教师给学生提供自主合作探究的舞台,营造思维驰骋的空间,在经历知识的发现过程中,培养学生分类、探究、合作、归纳的能力。
2.在课堂教学设计中,给学生足够的时间,不放过任何一个发展学生智力的契机,让学生借助已有的知识和方法主动探索新知识,扩大认知结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上。
3.“乐思方有思泉涌”,在课堂教学中,时时注意营造积极的思维状态,关注学生的思维发展过程,创设民主、宽松、和谐的课堂气氛,让学生畅所欲言,这样学生的创造火花才会不断闪现,个性才得以发展。
4.善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,从而使学生能力的提高和思维的发展。
总之,在课堂教学过程中,要根据学生心理特点,利用各种有效途径,引导学生主动学习,让学生每一天、每一分钟都学有所获,真正提高课堂效率。
第五篇:相反数教学设计
1.2.3 相反数
教学目标
1.知识与技能
①借助数轴了解相反数的概念,知道互为相反数的位置关系.
②给一个数,能求出它的相反数. 2.过程与方法
①训练学生利用数轴应用数形结合的方法解决问题.
②培养学生自己归纳总结规律的能力. 3.情感、态度与价值观
①通过相反数的学习,渗透数形结合的思想.
②感受事物之间对立、统一联系的辩证思想.
教学重点难点
重点:理解相反数的意义.
难点:理解和掌握双重符号简化的规律.
教与学互动设计
(一)创设情境,导入新课
活动 请一个学生到讲台前面对大家,向前走5步,向后走5步.
交流 如果向前走为正,那向前走5步与向后走5步分别记作什么?
(二)合作交流,解读探究
1.观察下列数:6和-6,22255和-2,7和-7,和-,并把它们在数轴上标出. 3377 想一想(1)上述各对数之间有什么特点?
(2)表示这两对数的点在数轴上有什么特点?
(3)你能够写出具有上述特点的数吗?
观察 像这样只有符号不同的两个数叫相反数.
两个互为相反数的数,在数轴上的对应点(0除外),是在原点两旁,?并且距离原点相等的两个点.即:互为相反数的两个数在数轴上的对应点关于原点对称.我们把a的相反数记为-a,并且规定0的相反数就是零.
【总结】 在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数.
2.在任意一个数前面添上“-”号,新的数就是原数的相反数.如-(+5)=?-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0?的相反数是0.
(三)应用迁移,巩固提高
例1 填空
(1)-5.8是 5.8 的相反数,3 的相反数是-(+3),a的相反数是 –a,a-b的相反数是-(a-b),0的相反数是 0 .
(2)正数的相反数是 负数,负数的相反数是 正数,0 的相反数是它本身. 例2 下列判断不正确的有(c)
①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点. a.1个 b.2个 c.3个 d.4个
例3 化简下列各符号:
(1)-[-(-2)](2)+{-[-(+5)]}(3)-{-{-?-(-6)}?}(共n个负号)
【答案】(1)-2(2)5(3)当n为偶数时,为6;当n为奇数时,为-6. 【提示】 化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负. 例4 数轴上a点表示+4,b、c两点所表示的数是互为相反数,且c到a?的距离为2,点b和点c各对应什么数?
【答案】 c点表示2或6,则相应的b点应表示-2或-6.
【提示】 画出数轴,结合数轴的特点来分析.
【点评】 经历观察数学活动,发展自己的指导能力.
备选例题
(2004·江西)如图所示,数轴上的点a所表示的是实数a,则点a到原点的距离是___________.
【点拨】 由数轴上的位置,不难知道a是一个负数,这是解决本题的前提.
【答案】-a
(四)总结反思,拓展升华
归纳 ①相反数的概念及表示方法.
②相反数的代数意义和几何意义.
③符号的化简. 1.(1)王亮说:“一个数总比它的相反数大”.你认为正确吗?为什么?
(2)若数轴上表示一对相反数的两点之间的距离为26.8,求这两个数.
【答案】(1)不正确,如0的相反数还是0,负数的相反数是正数.
(2)其中的一个数到原点的距离为13.4,所以这两个数是+13.4和-13.4. 2.你若a是不小于-1又不大于3的数,那么a的相反数是什么样的数呢?
【提示】 结合数轴进行观察比较.
解:由题意知-1≤a≤,而-1,a,3的相反数分别是1,-a,-3.
∴-a在1和-3之间
故-3≤a≤1 ∴a的相反数是不小于-3又不大于1的数.
【点评】 在解决问题中,能进行简单的、有条理的思考.
(五)课堂跟踪反馈
夯实基础 1.判断题
(1)-3是相反数(×)
(2)-7和7是相反数(∨)
(3)-a的相反数是a,它们互为相反数(∨)
(4)符号不同的两个数互为相反数(×)2.分别写出下列各数的相反数,并把它们在数轴上表示出来. 1,-2,0,4.5,-2.5,3 【答案】 相反数分别为:-1,2,0,-4.5,2.5,-3,数轴表示略. 3.若一个数的相反数不是正数,则这个数一定是(b)a.正数 b.正数或0 c.负数 d.负数或0 4.一个数比它的相反数小,这个数是(b)a.正数 b.负数 c.非负数 d.非正数 5.数轴上表示互为相反数的两个点之间的距离为427,则这两个数是±. 33 6.比-6的相反数大7的数是 13 .
提升能力
7.若a与a-2互为相反数,则a的相反数是 –1 . 8.(1)-(-8)的相反数是 –8,(2)+(-6)是 6 的相反数.(3)1-a 的相反数是a-1.
(4)若-x=9,则x=-9 . 9.已知有理数m、-
3、n在数轴上位置如图所示,将m、-
3、n?的相反数在数轴上表示,并将这6个数用“<”连接起来.
【答案】-3<-n 【答案】 当a<0时,-a>0,当a>0时,-a〈0,当a=0时,-a=0. 12.新中考题 3的相反数是(a)4 3344 a. b.- c. d.- 4433)-篇二:相反数教学设计 相反数 教学设计 教学目标: 知识与技能: 体会相反数的概念和几何意义; 会求已知数的相反数; 能根据相反数的意义进行多重符号的化简; 过程与方法: 经历观察、猜想、做出推断的过程,发展形象思维; 初步运用数形结合的思想方法解决问题,增强应用意识,发展创新敬精神。情感、态度与价值观: 在学习中体验成功的喜悦,增强学好数学的信心。教学重点 相反数的概念,求一个数的相反数。教学难点 根据相反数的意义化简符号。教学用具 投影仪、自制胶片。教学设计思路 教学过程是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的。由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程。由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程。 教学过程: 课时安排 1课时 (一)探索新知,导入新课 1.互为相反数的概念的引出。 演示活动:要一个学生向前走5步,向后走5步。 提出问题“如果向前为正向后为负,向前走5步,向后走5步各记作什么? 学生活动:一个学生口答,即向前走5步记作+5;向后走5步记作-5步。[板书] +5,-5 师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为相反数。 [板书]相反数 【教法说明】由于有了正负数的学习,进行以上演示,学生们非常容易地得出+5,-5两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为相反数。 师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为相反数(一个学生板演,其他学生自练)。 师:这样的两个数即互为相反数,你能试述具备什么特点的两数是互为相反数?(学生讨论后举手回答) [板书]只有符号不同的两个数,其中一个叫另一个的相反数。 【教法说明】在演示活动后,已出现了+5,-5这两个数,教师及时阐明它们就是互为相反数的两数,这时不急于总结互为相反数的概念,而是又提供了一个学生体会概念的机—利用数轴任找一组互为相反数的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点。更形象直观地引导学生自己得出相反数的概念。2.理解概念(出示投影1) 判断:(1)-5是5的相反数()(2)5是-5的相反数() (3)与互为相反数() (4)-5是相反数()学生活动:学生讨论。 【教法说明】对概念的理解不是单纯地强调,根据学生判断的结果加深对相反数“互为”的理解,提高学生全面分析问题的能力。 师:0的相反数是0。(出示投影2)1.在前面画的数轴上任意标出4个数,并标出它们的相反数。2.分别说出9,-7,0,-0.2的相反数。3.指出-2.4,-1.7,1各是什么数的相反数? 4.的相反数是什么? 学生活动:1题同桌互相订正,2、3题抢答。 【教法说明】1题注意培养学生运用数形结合的方法理解相反数的概念,让学生深知:在数轴上,原点两旁,离开原点相等距离的两个点,所表示的两个数互为相反数。2、3、4题是对相反数的概念的直接运用,由特殊的数到一般的字母,紧扣“只有符号不同的两数即互为相反数”这一概念,又得出一个非常代数性的结论“的相反数是。” [板书]a的相反数是-a。 师:的相反数是,可表示任意数—正数、负数、0,求任意一个数的相反数就可以在这个数前加一个“-”号。 提出问题:若把分别换成+5,-7,0时,这些数的相反数怎样表示?。 。 提出问题:前面加“-”号表示的相反数,-(+1.1)表示什么?-(-7)呢,-(-9.8)呢?它们的结果应是多少? 学生活动:讨论、分析、回答。 【教法说明】利用相反数的概念化简符号是这节课的难点。这一环节,紧紧抓住学生的心理及时提问:“既然的相反数是,那么+5,7,0的相反数怎样表示呢?”学生的思维由一般再引到特殊能答出-(+5),-(-7),-0的结果,让学生自己尝试得出结果,突破难点。 巩固练习(出示投影3)1. 是______________的相反数。2.是_____________的相反数。3.4. 是_____________的相反数,是_____________的相反数。 学生活动:思考后口答。 学生回答后教师引导:在一个数前面加上“-”号表示求这个数的相反数,如果在这些数前面加上“+”号呢? [板书] 如: 学生回答:在一个数前面加上“+”仍表示这个数,“+”号可省略。并答出以上式子的结果。 【教法说明】根据以上题目学生对一数前面加“-”号表示这数的相反数和一数前面加“+”号表示这数本身都已非常熟悉,这时可根据做题情况要学生及时分析观察规律的存在,这样可以从学生思维的不同角度,指引学生解决问题,并同时也暗示学生在做题时不是单纯地演练,一定要注意规律的总结。 巩固练习: 1.例题2 简化-(+3)-(-4)的符号。2.简化下列各数的符号 (二)归纳小结 师:我们这节课学习了相反数,归纳如下: 1.________________的两个数,我们说其中一个是另一个的相反数。2. 表示求的_____________,表示______________。 学生活动:空中内容由学生填出。 【教法说明】通过问题形式归纳出本节的重点。 (三)回顾反馈 1.-1.6是__________的相反数,____________的相反数是0.3。2.下列几对数中互为相反数的一对为()。a. 和 b. 与 c. 与的相 3.5的相反数是________________;的相反数是___________;反数是________________。4.若,则 ;若 是___________数;若,则。 5.若是负数,则数。 是负数,则是___________ 学生活动:分组互相回答,互相讨论,3、4、5题每组出一个同学口答。【教法说明】1,2题是对本节课的重点知识进行复习。3、4、5题是从不同角度考查学生对相反数概念的理解情况,对学有余力的同学是一个提高。 (四)随堂练习1.填表 2.选择题(1)下列说法中,正确的是()a.一个数的相反数一定是负数 b.两个符号不同的数一定是相反数 c.相反数等于本身的数只有零 d.的相反数是-2篇三:相反数 公开课教学设计 相反数 公开课教学设计 教学目标 一、知识与技能: 1、了解相反数的概念,理解数轴上的点与数的对应关系; 2、掌握求已知数的相反数的方法,会根据相反数的意义化简符号 二、过程与方法: 通过归纳相反数在数轴上所表示的点的特征,培养归纳能力。 三、情感态度与价值观: 体验数形结合的思想及数学的简洁美。 学情分析 两班共有学生105人,大部分同学学习积极性较高,能较好地完成学习任务,但个别学生学习习惯不是很好,整体水平不够理想,两班中绝大部分同学都能跟上现有的进度,上课发言积极,部分同学表现的比较出色,但也有个别同学的理解能力和接受能力不尽人意,学习成绩极不理想。从课堂上看,他们的注意力不能长时间集中,很容易分心,作业和试卷上的错误比较多,对于老师的问题一问三不知。 多数部分学生能主动学习,深得老师赞赏。比较喜欢上数学课,学习热情也很高,并喜欢与老师友好相处,同学之间、师生之间常在一起交流学习体会。但仍有个别学生学习懒散、学习习惯差,如:粗心大意、书写不认真,不愿思考问题,上课开小差,依赖老师讲解,依赖同学的帮助,作业喜欢与同学对题。 重点难点 重点:会求一个数的相反数。 难点:根据相反数的意义化简符号。 学法引导 1.教学方法:利用引导发现法,充分发挥学生的主体地位. 2.学生学法:探究→理解→掌握→练习→反馈→总结. 6教学过程 6.1 第三课时 相反数 问题情境下的概括 问题一:要一个学生向前走4步,向后走4步.“如果向前为正,向前走4步,向后走4步各记作什么? 师生活动:一个学生口答,学生回答后提问: (1)这两个数怎么表示? (2)你认为他们的什么相同,什么不同? (3)你能再举出类似的例子吗? 设计意图: 由于有了正负数的学习,进行以上演示,学生们非常容易地得出+4,-4两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为相反数. 问题二:画一数轴,在数轴上任意标出两点,使这两点表示的数互为相反数 师生活动:一个学生板演,其他学生自练 学生画图后提问: (1)你能试述具备什么特点的两数是互为相反数? (2)互为相反数的两个数在数轴上的位置如何?(3)0的相反数是什么? 设计意图: 教师提供了一个学生体会概念的机会—利用数轴任找一组互为相反数的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点.更形象直观地引导学生自己得出相反数的概念. 问题情境下的辨析: 问题一:对下列题进行判断: (1)-5是5的相反数() (2)5是-5的相反数() (3)与 互为相反数() (4)-5是相反数() 师生活动:学生讨论.师暴晒错误 设计意图: 对概念的理解不是单纯地强调,根据学生判断的结果加深对相反数“互为”的理解,提高学生全面分析问题的能力. 问题二: 1、分别说出9,7,0.2的相反数. 2、指出-2.4,-1.7,-1的相反数? 3、a 的相反数是什么? 师生活动:同桌互相订正.师纠错 设计意图: 1、2、3题是对相反数的概念的直接运用,由特殊的数到一般的字母,紧扣“只有符号不同的两数即互为相反数”这一概念,又得出一个非常代数性的结论“a的相反数是-a .” 师归纳: a 的相反数是-a,a可表示任意数—正数、负数、0,求任意一个数的相反数就可以在这个数前加一个“-”号. 问题三: 前面加“-”号表示 的相反数,-(+1.1)表示什么?-(-7)呢,-(-9.8)呢?它们的结果应是多少? 学生活动:讨论、分析、回答. 设计意图: 利用相反数的概念化简符号是这节课的难点.这一环节,紧紧抓住学生的心理及时提问:“既然 a的相反数是-a,那么+5,7,0的相反数怎样表示呢?”学生的思维由一般再引到特殊。1.. 2.. 3.. 4.. 学生活动:思考后口答. 学生回答后教师引导:在一个数前面加上“-”号表示求这个数的相反数,如果在这些数前面加上“+”号呢?如: +(-3)+(+7) 学生回答:在一个数前面加上“+”仍表示这个数,“+”号可省略.并答出以上式子的结果. 设计意图: 根据以上题目学生对一数前面加“-”号表示这数的相反数和一数前面加“+”号表示这数本身都已非常熟悉,这时可根据做题情况要学生及时分析观察规律的存在,这样可以从学生思维的不同角度,指引学生解决问题,并同时也暗示学生在做题时不是单纯地演练,一定要注意规律的总结. 练习中的巩固: 1.教材10页练习。2.化简下列各数。 -(-68)-(+0.75)-(-3/5)-(+3.8)3.自己编题 学生活动: 1、2题抢答,3题分组训练. 设计意图: 1、2题一定要让学生说明每个式子表示的含义,有助于对相反数概念的理解.3题活跃课堂气氛,同时考查了学生对这一知识的理解掌握程度. 归纳小结中的提升 师:我们这节课学习了相反数,归纳如下: 1. ________________的两个数,我们说其中一个是另一个的相反数. 2.-a表示求 a的_____________,+a表示a ______________. 学生活动:空中内容由学生填出. 设计意图: 通过问题形式归纳出本节的重点. 回顾反馈中的检测 1.-1.6是__________的相反数,____________的相反数是0.3. 2.下列几对数中互为相反数的一对为(). a. 和 b. 与 c. 与 3.若,则 ;若,则 . 4.若 是负数,则 是___________数;若 是负数,则 是___________数. 5.5的相反数是________________; 的相反数是___________; 的相反数是________________. 学生活动:分组互相回答,互相讨论,3、4、5题每组出一个同学口答. 设计意图: 1,2题是对本节课的重点知识进行复习.3、4、5题是从不同角度考查学生对相反数概念的理解情,对学有余力的同学是一个提高.篇四:相反数教学设计 1.2.3相反数教学设计 一、教学目标 1、知识目标:使学生理解相反数的意义.2、能力目标:使学生掌握求一个已知数的相反数.3、情感目标:在传授知识、培养培养学生的观察、归纳与概括的能力的同时,注意培养学生勇于探索的精神,通过本节课的教学,渗透对立统一的辩证思想.二、教学的重点和难点 重点:理解相反数的意义,理解相反数的代数定义与几何定义的一致性。难点:多重符号的化简。