“相反数”教学目标(含五篇)

时间:2019-05-14 03:36:24下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《“相反数”教学目标》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《“相反数”教学目标》。

第一篇:“相反数”教学目标

《相反数》教学目标

1.借助数轴理解相反数的意义,会求有理数的相反数; 2.能够根据相反数的定义化简双重符号;

3.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.

第二篇:相反数教学反思

相反数教学反思

篇一:相反数>教学反思

这节课我是根据“新课标”的教学思想设计并实施的。我尽力激发学生学习的积极性,向学生提供活动的机会,帮助他们在自主探索和合作交流的过程中真正的理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验。在整个教学过程中,学生是学习的主人,我是组织者、引导者和合作者。

在整节课的教学中我觉得做的比较好的地方是:一个操作、三个讨论。

相反数这节课实在数轴一节课后学习的,而数轴又是初中数形结合的一个重要图形,所以我重点利用数轴对相反数进行理解。我让学生在一张白纸上画数轴,并将数轴沿原点对着折,感受互为相反数的两数的对称性。通过对这还比较容易的解决了的相反数是这一难点。(因为对折后远点与本身重合)

本节课我设计了三个地方让学生分组讨论。第一次讨论是通过观察两个互为相反数的两数,讨论它们的异同点及在数轴上的位置关系;第二次讨论是让学生讨论是否任何有理数都有相反数;第三次讨论是让学生讨论化简双重符号的数的规律。通过参与其中某些组的讨论,我感觉到学生通过讨论既加深了对数学知识的理解,又增强的合作交流的能力。特别是对是否有相反数的讨论,同学们都很投入,讨论得很激烈,有的认为有,有的认为无,他们都各持己见,最后在我的引导下得出的相反数是的结论。

本节课的教学我也觉得有不足的地方。我设置的三次讨论的时间都比较短,每次都只有2——3分钟,学生讨论得不够深入。可能设置少一两次讨论,而讨论的时间长一点会更好。最后就是这节课针对中考的练习少了一点。这些都是我以后在教学中要加强的。

篇二:相反数教学反思

本节课的教学目标是让学生借助数轴理解相反数的概念,会求出一个有理数的相反数;会根据a的相反数是——a,能把多重符号化成单一符号。教学重点是让学生理解相反数的意义,难点是理解和掌握多重符号化简的规律。

在设计教学时,是先让学生把2对相反数分别在不同的数轴上表示出来,让学生观察出数轴上与原点的距离相等的点出现2个,进一步可发现这两个点表示的数只有符号不同,由此引出相反数的概念:只有符号不同的两个数称为相反数。通过从符号、数字两方面来比较,分析其特征,刻画相反数的模型:数a 的相反数是——a。再通过求具体数值的相反数归纳出:正数的相反数是负数;负数的相反数是正数;0的相反数是0。并强调清楚——a不是负数。在难点的处理上利用相反数的概念进行化简。在任何一个数前面添一个“——”号,新的数就是原数的相反数。例如:——(——6)表示——6的相反数,即是 6 ——[——(——6)] 表示——(——6)的相反数,即是 ——6。

再让学生归纳出多重符号化简的规律,是由“——”号的个数来定,当“——”号个数为偶数是,化简结果为正;当“——”号个数为奇数是,化简结果为负。

上完这节课的课后反思:

成功之处是学生对求一个具体的数的相反数,掌握得不错,也理解相反数的代数意义和几何意义。

不足之处有以下几点:

1、有些学生把相反数和倒数混淆在一起,这一点在设计教学时?有想到。

2、学生对多重符号简化的规律不太理解,运用得不好。

针对以上问题,我在习题设计上做了修改。

1、编写几道分别求同一个数的相反数和倒数的题目,让学生区分这两个不同的概念。如:分别求出6的相反数和倒数。这样让学生体会相反数是指一对数,它们的绝对值相等,符号相反;倒数也是指一对数,它们的绝对值不等,符号相同。

2、把多重符号化简的习题的难度、数量控制好,难度不要大,题目适量。

篇三:相反数教学反思

教学引人以开放的形式创设情境,让学生进行讨论,并培养分类的能力,培养学生的观察与归纳能力。把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解,体验对称的图形的特点,为相反数在数轴上的特征做准备;问题2能帮助学生准确把握相反数的概念,深化相反数的概念;“零的相反数是零”是相反数定义的一部分;问题3实际上给出了求一个数的相反数的方法。

本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地。

通过练习发现本节课最容易出现的错误是:

1、相反数是成对出现的,它们不能单独存在,是相互存在的如:-2是相反数。

2、书写错误如:2的相反数 有的学生直接就写成2=-2

3、求字母或代数式的相反数时如x-y的相反数

4、化简过程弄错符号

5、关于相反数的变式应用如:a与b互为相反数则a/b的值是、a+b=*

第三篇:《相反数》教学反思

《相反数》教学反思

毛海玲

相反数这一课是有理数第三节的内容,这个知识点相对比较简单,学生完全可以通过自学课本便能学会的,所以在课堂中我主要采用引导自学、合作探究、交流展示的方法展开教学的。

本节课的教学目标是让学生借助数轴理解相反数的概念,会求出一个有理数的相反数;会根据a的相反数是-a,能把多重符号化成单一符号。教学重点是让学生理解相反数的意义,难点是理解和掌握多重符号化简的规律。

在设计教学时,是先让学生把5对相反数在数轴上表示出来,既复习上一节的内容又为本节做准备。接着让学生观察这三对数有什么特征?让学生观察出数轴上与原点的距离相等的点出现2个,进一步可发现这两个点表示的数只有符号不同,由此引出相反数的概念:只有符号不同的两个数称为相反数。通过从符号、数字两方面来比较,分析其特征,刻画相反数的模型:数a的相反数是-a。再通过求具体数值的相反数归纳出:正数的相反数是负数;负数的相反数是正数;0的相反数是0。并强调清楚-a不一定是负数。

在难点的处理上利用相反数的概念进行化简。在任何一个数前面添一个“-”号,新的数就是原数的相反数。

例如:-(-6)表示-6的相反数,即是6。

-[-(-6)]表示-(-6)的相反数,即是-6。

再让学生归纳出多重符号化简的规律,是由“-”号的个数来定,当“-”号个数为偶数是,化简结果为正;当“-”号个数为奇数是,化简结果为负,另外把多重符号化简的习题的难度、数量控制好,难度不要大,题目适量。

通过本节课的反思,我想从这几方面加强课堂教学:

1.贯彻以教师为主导、学生为主体,以知识为载体、以培养学生的思维能力为重点的教学思想。教师给学生提供自主合作探究的舞台,营造思维驰骋的空间,在经历知识的发现过程中,培养学生分类、探究、合作、归纳的能力。

2.在课堂教学设计中,给学生足够的时间,不放过任何一个发展学生智力的契机,让学生借助已有的知识和方法主动探索新知识,扩大认知结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上。

3.“乐思方有思泉涌”,在课堂教学中,时时注意营造积极的思维状态,关注学生的思维发展过程,创设民主、宽松、和谐的课堂气氛,让学生畅所欲言,这样学生的创造火花才会不断闪现,个性才得以发展。

4.善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,从而使学生能力的提高和思维的发展。

总之,在课堂教学过程中,要根据学生心理特点,利用各种有效途径,引导学生主动学习,让学生每一天、每一分钟都学有所获,真正提高课堂效率。

第四篇:相反数教学设计

1.2.3 相反数

教学目标

1.知识与技能

①借助数轴了解相反数的概念,知道互为相反数的位置关系.

②给一个数,能求出它的相反数. 2.过程与方法

①训练学生利用数轴应用数形结合的方法解决问题.

②培养学生自己归纳总结规律的能力. 3.情感、态度与价值观

①通过相反数的学习,渗透数形结合的思想.

②感受事物之间对立、统一联系的辩证思想.

教学重点难点

重点:理解相反数的意义.

难点:理解和掌握双重符号简化的规律.

教与学互动设计

(一)创设情境,导入新课

活动 请一个学生到讲台前面对大家,向前走5步,向后走5步.

交流 如果向前走为正,那向前走5步与向后走5步分别记作什么?

(二)合作交流,解读探究

1.观察下列数:6和-6,22255和-2,7和-7,和-,并把它们在数轴上标出. 3377 想一想(1)上述各对数之间有什么特点?

(2)表示这两对数的点在数轴上有什么特点?

(3)你能够写出具有上述特点的数吗?

观察 像这样只有符号不同的两个数叫相反数.

两个互为相反数的数,在数轴上的对应点(0除外),是在原点两旁,?并且距离原点相等的两个点.即:互为相反数的两个数在数轴上的对应点关于原点对称.我们把a的相反数记为-a,并且规定0的相反数就是零.

【总结】 在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数.

2.在任意一个数前面添上“-”号,新的数就是原数的相反数.如-(+5)=?-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0?的相反数是0.

(三)应用迁移,巩固提高

例1 填空

(1)-5.8是 5.8 的相反数,3 的相反数是-(+3),a的相反数是 –a,a-b的相反数是-(a-b),0的相反数是 0 .

(2)正数的相反数是 负数,负数的相反数是 正数,0 的相反数是它本身. 例2 下列判断不正确的有(c)

①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点. a.1个 b.2个 c.3个 d.4个

例3 化简下列各符号:

(1)-[-(-2)](2)+{-[-(+5)]}(3)-{-{-?-(-6)}?}(共n个负号)

【答案】(1)-2(2)5(3)当n为偶数时,为6;当n为奇数时,为-6. 【提示】 化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负. 例4 数轴上a点表示+4,b、c两点所表示的数是互为相反数,且c到a?的距离为2,点b和点c各对应什么数?

【答案】 c点表示2或6,则相应的b点应表示-2或-6.

【提示】 画出数轴,结合数轴的特点来分析.

【点评】 经历观察数学活动,发展自己的指导能力.

备选例题

(2004·江西)如图所示,数轴上的点a所表示的是实数a,则点a到原点的距离是___________.

【点拨】 由数轴上的位置,不难知道a是一个负数,这是解决本题的前提.

【答案】-a

(四)总结反思,拓展升华

归纳 ①相反数的概念及表示方法.

②相反数的代数意义和几何意义.

③符号的化简. 1.(1)王亮说:“一个数总比它的相反数大”.你认为正确吗?为什么?

(2)若数轴上表示一对相反数的两点之间的距离为26.8,求这两个数.

【答案】(1)不正确,如0的相反数还是0,负数的相反数是正数.

(2)其中的一个数到原点的距离为13.4,所以这两个数是+13.4和-13.4. 2.你若a是不小于-1又不大于3的数,那么a的相反数是什么样的数呢?

【提示】 结合数轴进行观察比较.

解:由题意知-1≤a≤,而-1,a,3的相反数分别是1,-a,-3.

∴-a在1和-3之间

故-3≤a≤1 ∴a的相反数是不小于-3又不大于1的数.

【点评】 在解决问题中,能进行简单的、有条理的思考.

(五)课堂跟踪反馈

夯实基础 1.判断题

(1)-3是相反数(×)

(2)-7和7是相反数(∨)

(3)-a的相反数是a,它们互为相反数(∨)

(4)符号不同的两个数互为相反数(×)2.分别写出下列各数的相反数,并把它们在数轴上表示出来. 1,-2,0,4.5,-2.5,3 【答案】 相反数分别为:-1,2,0,-4.5,2.5,-3,数轴表示略. 3.若一个数的相反数不是正数,则这个数一定是(b)a.正数 b.正数或0 c.负数 d.负数或0 4.一个数比它的相反数小,这个数是(b)a.正数 b.负数 c.非负数 d.非正数 5.数轴上表示互为相反数的两个点之间的距离为427,则这两个数是±. 33 6.比-6的相反数大7的数是 13 .

提升能力

7.若a与a-2互为相反数,则a的相反数是 –1 . 8.(1)-(-8)的相反数是 –8,(2)+(-6)是 6 的相反数.(3)1-a 的相反数是a-1.

(4)若-x=9,则x=-9 . 9.已知有理数m、-

3、n在数轴上位置如图所示,将m、-

3、n?的相反数在数轴上表示,并将这6个数用“<”连接起来.

【答案】-3<-n

【答案】 当a<0时,-a>0,当a>0时,-a〈0,当a=0时,-a=0. 12.新中考题

3的相反数是(a)4 3344 a. b.- c. d.- 4433)-篇二:相反数教学设计

相反数 教学设计

教学目标: 知识与技能:

体会相反数的概念和几何意义; 会求已知数的相反数;

能根据相反数的意义进行多重符号的化简; 过程与方法: 经历观察、猜想、做出推断的过程,发展形象思维;

初步运用数形结合的思想方法解决问题,增强应用意识,发展创新敬精神。情感、态度与价值观:

在学习中体验成功的喜悦,增强学好数学的信心。教学重点

相反数的概念,求一个数的相反数。教学难点 根据相反数的意义化简符号。教学用具

投影仪、自制胶片。教学设计思路

教学过程是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的。由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程。由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程。

教学过程: 课时安排 1课时

(一)探索新知,导入新课 1.互为相反数的概念的引出。

演示活动:要一个学生向前走5步,向后走5步。

提出问题“如果向前为正向后为负,向前走5步,向后走5步各记作什么? 学生活动:一个学生口答,即向前走5步记作+5;向后走5步记作-5步。[板书] +5,-5 师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为相反数。

[板书]相反数

【教法说明】由于有了正负数的学习,进行以上演示,学生们非常容易地得出+5,-5两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为相反数。

师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为相反数(一个学生板演,其他学生自练)。

师:这样的两个数即互为相反数,你能试述具备什么特点的两数是互为相反数?(学生讨论后举手回答)

[板书]只有符号不同的两个数,其中一个叫另一个的相反数。

【教法说明】在演示活动后,已出现了+5,-5这两个数,教师及时阐明它们就是互为相反数的两数,这时不急于总结互为相反数的概念,而是又提供了一个学生体会概念的机—利用数轴任找一组互为相反数的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点。更形象直观地引导学生自己得出相反数的概念。2.理解概念(出示投影1)

判断:(1)-5是5的相反数()(2)5是-5的相反数()

(3)与互为相反数()

(4)-5是相反数()学生活动:学生讨论。

【教法说明】对概念的理解不是单纯地强调,根据学生判断的结果加深对相反数“互为”的理解,提高学生全面分析问题的能力。

师:0的相反数是0。(出示投影2)1.在前面画的数轴上任意标出4个数,并标出它们的相反数。2.分别说出9,-7,0,-0.2的相反数。3.指出-2.4,-1.7,1各是什么数的相反数? 4.的相反数是什么?

学生活动:1题同桌互相订正,2、3题抢答。

【教法说明】1题注意培养学生运用数形结合的方法理解相反数的概念,让学生深知:在数轴上,原点两旁,离开原点相等距离的两个点,所表示的两个数互为相反数。2、3、4题是对相反数的概念的直接运用,由特殊的数到一般的字母,紧扣“只有符号不同的两数即互为相反数”这一概念,又得出一个非常代数性的结论“的相反数是。” [板书]a的相反数是-a。

师:的相反数是,可表示任意数—正数、负数、0,求任意一个数的相反数就可以在这个数前加一个“-”号。

提出问题:若把分别换成+5,-7,0时,这些数的相反数怎样表示?。

提出问题:前面加“-”号表示的相反数,-(+1.1)表示什么?-(-7)呢,-(-9.8)呢?它们的结果应是多少?

学生活动:讨论、分析、回答。

【教法说明】利用相反数的概念化简符号是这节课的难点。这一环节,紧紧抓住学生的心理及时提问:“既然的相反数是,那么+5,7,0的相反数怎样表示呢?”学生的思维由一般再引到特殊能答出-(+5),-(-7),-0的结果,让学生自己尝试得出结果,突破难点。

巩固练习(出示投影3)1.

是______________的相反数。2.是_____________的相反数。3.4. 是_____________的相反数,是_____________的相反数。

学生活动:思考后口答。

学生回答后教师引导:在一个数前面加上“-”号表示求这个数的相反数,如果在这些数前面加上“+”号呢?

[板书] 如:

学生回答:在一个数前面加上“+”仍表示这个数,“+”号可省略。并答出以上式子的结果。

【教法说明】根据以上题目学生对一数前面加“-”号表示这数的相反数和一数前面加“+”号表示这数本身都已非常熟悉,这时可根据做题情况要学生及时分析观察规律的存在,这样可以从学生思维的不同角度,指引学生解决问题,并同时也暗示学生在做题时不是单纯地演练,一定要注意规律的总结。

巩固练习:

1.例题2 简化-(+3)-(-4)的符号。2.简化下列各数的符号

(二)归纳小结

师:我们这节课学习了相反数,归纳如下: 1.________________的两个数,我们说其中一个是另一个的相反数。2.

表示求的_____________,表示______________。

学生活动:空中内容由学生填出。

【教法说明】通过问题形式归纳出本节的重点。

(三)回顾反馈

1.-1.6是__________的相反数,____________的相反数是0.3。2.下列几对数中互为相反数的一对为()。a.

和 b.

与 c.

与的相 3.5的相反数是________________;的相反数是___________;反数是________________。4.若,则

;若

是___________数;若,则。

5.若是负数,则数。

是负数,则是___________ 学生活动:分组互相回答,互相讨论,3、4、5题每组出一个同学口答。【教法说明】1,2题是对本节课的重点知识进行复习。3、4、5题是从不同角度考查学生对相反数概念的理解情况,对学有余力的同学是一个提高。

(四)随堂练习1.填表 2.选择题(1)下列说法中,正确的是()a.一个数的相反数一定是负数 b.两个符号不同的数一定是相反数 c.相反数等于本身的数只有零 d.的相反数是-2篇三:相反数 公开课教学设计 相反数 公开课教学设计

教学目标

一、知识与技能:

1、了解相反数的概念,理解数轴上的点与数的对应关系;

2、掌握求已知数的相反数的方法,会根据相反数的意义化简符号

二、过程与方法:

通过归纳相反数在数轴上所表示的点的特征,培养归纳能力。

三、情感态度与价值观:

体验数形结合的思想及数学的简洁美。

学情分析

两班共有学生105人,大部分同学学习积极性较高,能较好地完成学习任务,但个别学生学习习惯不是很好,整体水平不够理想,两班中绝大部分同学都能跟上现有的进度,上课发言积极,部分同学表现的比较出色,但也有个别同学的理解能力和接受能力不尽人意,学习成绩极不理想。从课堂上看,他们的注意力不能长时间集中,很容易分心,作业和试卷上的错误比较多,对于老师的问题一问三不知。

多数部分学生能主动学习,深得老师赞赏。比较喜欢上数学课,学习热情也很高,并喜欢与老师友好相处,同学之间、师生之间常在一起交流学习体会。但仍有个别学生学习懒散、学习习惯差,如:粗心大意、书写不认真,不愿思考问题,上课开小差,依赖老师讲解,依赖同学的帮助,作业喜欢与同学对题。

重点难点

重点:会求一个数的相反数。

难点:根据相反数的意义化简符号。

学法引导

1.教学方法:利用引导发现法,充分发挥学生的主体地位. 2.学生学法:探究→理解→掌握→练习→反馈→总结. 6教学过程 6.1 第三课时 相反数

问题情境下的概括

问题一:要一个学生向前走4步,向后走4步.“如果向前为正,向前走4步,向后走4步各记作什么?

师生活动:一个学生口答,学生回答后提问:

(1)这两个数怎么表示?

(2)你认为他们的什么相同,什么不同?

(3)你能再举出类似的例子吗?

设计意图:

由于有了正负数的学习,进行以上演示,学生们非常容易地得出+4,-4两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为相反数.

问题二:画一数轴,在数轴上任意标出两点,使这两点表示的数互为相反数

师生活动:一个学生板演,其他学生自练 学生画图后提问:

(1)你能试述具备什么特点的两数是互为相反数?

(2)互为相反数的两个数在数轴上的位置如何?(3)0的相反数是什么?

设计意图:

教师提供了一个学生体会概念的机会—利用数轴任找一组互为相反数的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点.更形象直观地引导学生自己得出相反数的概念.

问题情境下的辨析:

问题一:对下列题进行判断:

(1)-5是5的相反数()

(2)5是-5的相反数()

(3)与 互为相反数()

(4)-5是相反数()

师生活动:学生讨论.师暴晒错误

设计意图:

对概念的理解不是单纯地强调,根据学生判断的结果加深对相反数“互为”的理解,提高学生全面分析问题的能力.

问题二:

1、分别说出9,7,0.2的相反数.

2、指出-2.4,-1.7,-1的相反数?

3、a 的相反数是什么?

师生活动:同桌互相订正.师纠错

设计意图: 1、2、3题是对相反数的概念的直接运用,由特殊的数到一般的字母,紧扣“只有符号不同的两数即互为相反数”这一概念,又得出一个非常代数性的结论“a的相反数是-a .” 师归纳:

a 的相反数是-a,a可表示任意数—正数、负数、0,求任意一个数的相反数就可以在这个数前加一个“-”号.

问题三: 前面加“-”号表示 的相反数,-(+1.1)表示什么?-(-7)呢,-(-9.8)呢?它们的结果应是多少?

学生活动:讨论、分析、回答.

设计意图:

利用相反数的概念化简符号是这节课的难点.这一环节,紧紧抓住学生的心理及时提问:“既然 a的相反数是-a,那么+5,7,0的相反数怎样表示呢?”学生的思维由一般再引到特殊。1.. 2.. 3.. 4..

学生活动:思考后口答.

学生回答后教师引导:在一个数前面加上“-”号表示求这个数的相反数,如果在这些数前面加上“+”号呢?如: +(-3)+(+7)

学生回答:在一个数前面加上“+”仍表示这个数,“+”号可省略.并答出以上式子的结果. 设计意图:

根据以上题目学生对一数前面加“-”号表示这数的相反数和一数前面加“+”号表示这数本身都已非常熟悉,这时可根据做题情况要学生及时分析观察规律的存在,这样可以从学生思维的不同角度,指引学生解决问题,并同时也暗示学生在做题时不是单纯地演练,一定要注意规律的总结.

练习中的巩固: 1.教材10页练习。2.化简下列各数。

-(-68)-(+0.75)-(-3/5)-(+3.8)3.自己编题

学生活动:

1、2题抢答,3题分组训练.

设计意图: 1、2题一定要让学生说明每个式子表示的含义,有助于对相反数概念的理解.3题活跃课堂气氛,同时考查了学生对这一知识的理解掌握程度.

归纳小结中的提升

师:我们这节课学习了相反数,归纳如下: 1. ________________的两个数,我们说其中一个是另一个的相反数. 2.-a表示求 a的_____________,+a表示a ______________.

学生活动:空中内容由学生填出.

设计意图:

通过问题形式归纳出本节的重点.

回顾反馈中的检测

1.-1.6是__________的相反数,____________的相反数是0.3. 2.下列几对数中互为相反数的一对为(). a. 和 b. 与 c. 与 3.若,则 ;若,则 .

4.若 是负数,则 是___________数;若 是负数,则 是___________数. 5.5的相反数是________________; 的相反数是___________; 的相反数是________________.

学生活动:分组互相回答,互相讨论,3、4、5题每组出一个同学口答.

设计意图: 1,2题是对本节课的重点知识进行复习.3、4、5题是从不同角度考查学生对相反数概念的理解情,对学有余力的同学是一个提高.篇四:相反数教学设计

1.2.3相反数教学设计

一、教学目标

1、知识目标:使学生理解相反数的意义.2、能力目标:使学生掌握求一个已知数的相反数.3、情感目标:在传授知识、培养培养学生的观察、归纳与概括的能力的同时,注意培养学生勇于探索的精神,通过本节课的教学,渗透对立统一的辩证思想.二、教学的重点和难点

重点:理解相反数的意义,理解相反数的代数定义与几何定义的一致性。难点:多重符号的化简。

第五篇:相反数教学设计

课题: 2.2.3 相反数教学设计

一、教学目标

1、掌握相反数的概念,进一步理解数轴上的点与数的对应关系;

2、通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;

3、体验数形结合的思想。

二、教学难点、知识重点

难点:归纳相反数在数轴上表示的点的特征、相反数的概念 重点:教学过程(师生活动)、设计理念

三、设置情境 引入课题

预备知识:数轴的三要素, 有理数在数轴上的表示方法.1.首先我们一起来回忆一下数轴的三要素是什么? 原点、正方向、单位长度.2.下面老师将给出两组数,请同学们在数轴上把它们表示出来.-4和4,-1和1 允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。(引导学生观察与原点的距离)思考结论:教科书第26页的思考 再换2个类似的数试一试。

归纳结论:教科书第26页的归纳。以开放的形式创设情境,以学生进行讨论,并培养分类的能力培养学生的观察与归纳能力,渗透数形思想,深化主题提炼定义给出相反数的定义

问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么? 学生思考讨论交流,教师归纳总结。规律:一般地,数a的相反数可以表示为-a 思考:数轴上表示相反数的两个点和原点有什么关系?

四、熟悉新知、发现问题

老师给出7张卡片让同学们做“找朋友”游戏,游戏规则是互为相反数的两个数是朋友,是朋友的两个数站在一起.在游戏过程中同学发现数0是没有朋友的。随后给出规定:零的相反数是零.深化相反数的概念;“零的相反数是零”是相反数定义的一部分。练一练:例1 写出下列各数的相反数.+5,-7,11.2,0.强化互为相反数的数在数轴上表示的点的几何意义给出规律,通常在一个数前面添上“-”号,表示原来那个数的相反数.在一个数前面添上“+”号,表示这个数本身.例2 化简下列各数.(1)-(+10);(2)+(-0.15);(3)+(+3);(4)-(-20). 知识回顾

练习:求下列数的相反数.(1)-(+20);(2)+(-2.5);

(3)-(-13);(4)+(+7)教科书第27页第二个练习利用相反数的概念得出求一个数的相反数的方法

课堂小结 相反数的定义

2,互为相反数的数在数轴上表示的点的特征

3,怎样求一个数的相反数?怎样表示一个数的相反数?

本课作业

教材P28习题2.3 必做题:

1、2题; 选做题:3题 ;思考题:4题;

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.

2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法.

3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地

下载“相反数”教学目标(含五篇)word格式文档
下载“相反数”教学目标(含五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《相反数》教学设计

    《相反数》教学设计 一、教材分析 1.教学目标、重点、难点. 教学目标: (1)掌握相反数的概念,理解相反数的特征. (2)通过归纳在数轴上表示相反数的两个点的特征,培养学生的归纳能力.......

    相反数-教学教案(合集)

    1.了解相反数的意义,会求有理数的相反数; 2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力. 3.初步认识对立统一的规律。 教学建议 一、重点、难点分析 本节的重点是了解......

    相反数教学反思

    相反数教学反思 篇一:倒数教学反思《倒数》教学反思杜步中心小学 何燕辉 《倒数》是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用......

    相反数教学设计(合集5篇)

    §1.2.3相反数教学设计 一、教学目标 1、知识目标:使学生理解相反数的意义. 2、能力目标:使学生掌握求一个已知数的相反数. 3、情感目标:在传授知识、培养培养学生的观察、归纳......

    1.2.3相反数教学反思

    1.2.3相反数教学反思本节课的教学目标: 知识与技能:掌握相反数的概念,进一步理解数轴上的点与数的对应关系; 过程与方法:通过归纳相反数在数轴上所表示的点的特征,培养归纳能力; 情......

    相反数的教学反思

    《相反数》教学反思 ——郑春景 本节课我是根据“新课标”的教学思想设计并实施的。在整个教学过程中,学生是学习的主人,我是组织者、引导者和合作者。在整节课的教学中我觉......

    “相反数”教学案例剖析

    教学内容:人教版义务教育课程标准实验教科书《数学》七年级上册第10页11页相反数 教学目标: 1.知识与技能:借助数轴理解相反数的概念,会求一个数的相反数,会用相反数的定义......

    《相反数》数学教学反思

    上周讲了《相反数》,这是本单元的重点,知识点也比较多,学生理解掌握起来有一定的难度。本课教学目标是让学生借助数轴理解相反数的概念,会求一个有理数的相反数并会多重符号的......