第一篇:相反数-教学教案
1.了解相反数的意义,会求有理数的相反数;
2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.
3.初步认识对立统一的规律。教学建议
一、重点、难点分析
本节的重点是了解相反数的意义,理解相反数的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为相反数。另外,“0的相反数是0”也是相反数定义的一部分。关于“数a的相反数是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。
二、知识结构
相反数的定义 相反数的性质及其判定 相反数的应用
三、教法建议
这节课教学的主要内容是互为相反数的概念。
由于教材先讲相反数,后讲绝对值,所以相反数的定义只是形式上的描述,主要通过相反数的几何意义理解相反数的概念。教学中建议,直接给出相反数的几何定义,通过实例了解求一个数的相反数的方法。按着数轴——相反数——绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。
四、相反数的相关知识
1.相反数的意义
(1)只有符号不同的两个数叫做互为相反数,如-1999与1999互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。如5与-5是互为相反数。
(3)0的相反数是0。也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
2.相反数的表示
在一个数的前面添上“-”号就成为原数的相反数。若 表示一个有理数,则 的相反数表示为-。在一个数的前面添上“+”号仍与原数相联系同。例如,+7=7,特别地,+0=0,-0=0。
3.相反数的特性
若 互为相反数,则,反之若,则 互为相反数。
4.多重符号化简
(1)相反数的意义是简化多重符号的依据。如 是-1的相反数,而-1的相反数为+1,所以。
(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则
果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。
例如。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。相反数
(一)一、素质教育目标
(一)知识教学点
1.了解:互为相反数的几何意义.
2.掌握:给出一个数能求出它的相反数.
(二)能力训练点
1.训练学生会利用数轴采用数形结合的方法解决问题.
2.培养学生自己归纳总结规律的能力.
(三)德育渗透点
1.通过解释相反数的几何意义,进一步渗透数形结合的思想.
2.通过求一个数的相反数,使学生进一步认识对应、统一规律.
(四)美育渗透点
1.通过求一个数的相反数知道任何一个数都有它的相反数,学生会进一步领略到数的完整美.
2.通过简化一个数的符号,使学生进一步体会数学的简洁美.
二、学法引导
1.教学方法:利用引导发现法,教师注意过渡导语的设置,充分发挥学生的主体地位.
2.学生学法:感性认识→理性认识→练习反馈→总结.
三、重点、难点、疑点及解决办法
1.重点:求已知数的相反数.
2.难点:根据相反数的意义化简符号.
四、课时安排
1课时
五、教具学具准备
投影仪、三角板、自制胶片.
六、师生互动活动设计
学生演示,教师点拨,师生共同得出相反数的概念,教师出示投影,学生以多种形式练习反馈.
七、教学步骤
(一)探索新知,导入新课
1.互为相反数的概念的引出
演示活动:要一个学生向前走5步,向后走5步.
提出问题“如果向前为正,向前走5步,向后走5步各记作什么?
学生活动:一个学生口答,即向前走5步记作+5;向后走5步记作-5步.
[板书]
+5,-5
师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为相反数.
[板书]2.3 相反数
【教法说明】由于有了正负数的学习,进行以上演示,学生们非常容易地得出+5,-5两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为相反数.
师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为相反数(一个学生板演,其他学生自练)
师:这样的两个数即互为相反数,你能试述具备什么特点的两数是互为相反数?(学生讨论后举手回答)
[板书]只有符号不同的两个数,其中一个叫另一个的相反数.
【教法说明】在演示活动后,已出现了+5,-5这两个数,教师及时阐明它们就是互为相反数的两数,这时不急于总结互为相反数的概念,而是又提供了一个学生体会概念的机—利用数轴任找一组互为相反数的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点.更形象直观地引导学生自己得出相反数的概念.
2.理解概念
(出示投影1)
判断:(1)-5是5的相反数()
(2)5是-5的相反数()
(3)与互为相反数()
(4)-5是相反数()
学生活动:学生讨论.
【教法说明】对概念的理解不是单纯地强调,根据学生判断的结果加深对相反数“互为”的理解,提高学生全面分析问题的能力.
师:0的相反数是0.
(出示投影2)
1.在前面画的数轴上任意标出4个数,并标出它们的相反数.
2.分别说出9,-7,0,-0.2的相反数.
3.指出-2.4,-1.7,1各是什么数的相反数?
4.的相反数是什么?
学生活动:1题同桌互相订正,2、3题抢答.
【教法说明】1题注意培养学生运用数形结合的方法理解相反数的概念,让学生深知:在数轴上,原点两旁,离开原点相等距离的两个点,所表示的两个数互为相反数.2、3、4题是对相反数的概念的直接运用,由特殊的数到一般的字母,紧扣“只有符号不同的两数即互为相反数”这一概念,又得出一个非常代数性的结论“的相反数是.”
[板书]a的相反数是-a.
师:的相反数是,可表示任意数—正数、负数、0,求任意一个数的相反数就可以在这个数前加一个“-”号.
提出问题:若把分别换成+5,-7,0时,这些数的相反数怎样表示?
.
.
.
提出问题:前面加“-”号表示的相反数,-(+1.1)表示什么?-(-7)呢,-(-9.8)呢?它们的结果应是多少?
学生活动:讨论、分析、回答.
【教法说明】利用相反数的概念化简符号是这节课的难点.这一环节,紧紧抓住学生的心理及时提问:“既然的相反数是,那么+5,7,0的相反数怎样表示呢?”学生的思维由一般再引到特殊能答出-(+巩固练习
(出示投影3)
1.是______________的相反数,.
2.是_____________的相反数,.
3.是_____________的相反数,.
4.是_____________的相反数,.
学生活动:思考后口答.
学生回答后教师引导:在一个数前面加上“-”号表示求这个数的相反数,如果在这些数前面加上“+”号呢?
[板书]
如:
学生回答:在一个数前面加上“+”仍表示这个数,“+”号可省略.并答出以上式子的结果.
【教法说明】根据以上题目学生对一数前面加“-”号表示这数的相反数和一数前面加“+”号表示这数本身都已非常熟悉,这时可根据做题情况要学生及时分析观察规律的存在,这样可以从学生思维的不同角度,指引学生解决问题,并同时也暗示学生在做题时不是单纯地演练,一定要注意规律的总结.
巩固练习:
1.例题2 简化-(+3)-(-4)的符号.
2.简化下列各数的符号
3.自己编题
学生活动:
1、2题抢答,3题分组训练.
1、2题一定要让学生说明每个式子表示的含义,有助于对相反数概念的理解.3题活跃课堂气氛,同时考查了学生对这一知识的理解掌握程度.
(三)归纳小结
师:我们这节课学习了相反数,归纳如下:
1.________________的两个数,我们说其中一个是另一个的相反数.
2.表示求的_____________,表示______________.
学生活动:空中内容由学生填出.
第二篇:相反数教案(精选8篇)
篇1:相反数教案
教学目标
1.了解相反数的好处,会求有理数的相反数;
2.进一步培养学生分类讨论的思想和观察、归纳与概括的潜力.
3.初步认识对立统一的规律。
教学推荐
一、重点、难点分析
本节的重点是了解相反数的好处,理解相反数的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为相反数。另外,“0的相反数是0”也是相反数定义的一部分。关于“数a的相反数是-a”,就应明确的是-a不必须是正数,a不必须是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,能够把“-”号一齐去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。
二、知识结构
相反数的定义相反数的性质及其判定相反数的应用
三、教法推荐
这节课教学的主要资料是互为相反数的概念。
由于教材先讲相反数,后讲绝对值,所以相反数的定义只是形式上的描述,主要透过相反数的几何好处理解相反数的概念。教学中推荐,直接给出相反数的几何定义,透过实例了解求一个数的相反数的方法。按着数轴�D�D相反数�D�D绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。
四、相反数的相关知识
1.相反数的好处
(1)只有符号不同的两个数叫做互为相反数,如-1999与1999互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。如5与-5是互为相反数。
(3)0的相反数是0。也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
2.相反数的表示
在一个数的前面添上“-”号就成为原数的相反数。若表示一个有理数,则的相反数表示为-。在一个数的前面添上“+”号仍与原数相联系同。例如,+7=7,个性地,+0=0,-0=0。
3.相反数的特性
若互为相反数,则,反之若,则互为相反数。
4.多重符号化简
(1)相反数的好处是简化多重符号的依据。如是-1的相反数,而-1的相反数为+1,所以。
(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则
果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。
例如,。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。
相反数(一)
一、素质教育目标
(一)知识教学点
1.了解:互为相反数的几何好处.
2.掌握:给出一个数能求出它的相反数.
(二)潜力训练点
1.训练学生会利用数轴采用数形结合的方法解决问题.
2.培养学生自己归纳总结规律的潜力.
(三)德育渗透点
1.透过解释相反数的几何好处,进一步渗透数形结合的思想.
2.透过求一个数的相反数,使学生进一步认识对应、统一规律.
(四)美育渗透点
1.透过求一个数的相反数明白任何一个数都有它的相反数,学生会进一步领略到数的完整美.
2.透过简化一个数的符号,使学生进一步体会数学的简洁美.
二、学法引导
1.教学方法:利用引导发现法,教师注意过渡导语的设置,充分发挥学生的主体地位.
2.学生学法:感性认识→理性认识→练习反馈→总结.
三、重点、难点、疑点及解决办法
1.重点:求已知数的相反数.
2.难点:根据相反数的好处化简符号.
四、课时安排
1课时
五、教具学具准备
投影仪、三角板、自制胶片.
六、师生互动活动设计
学生演示,教师点拨,师生共同得出相反数的概念,教师出示投影,学生以多种形式练习反馈.
篇2:相反数教案
相反数
一、学习与导学目标:
知识与技能:借助数轴理解相反数的好处,懂得数轴上表示相反数的两个点关于原点对称,会求有理数的相反数;
过程与方法:经历概念的生成、应用,体会相反数的好处,简化数的符号,学习观察、归纳、概括的策略与方法;
情感态度:透过师生、生生合作学习,促进交流,激发兴趣。
二、学程与导程活动:
A、准备活动:
1、师生游戏“唱反调”:我们明白在小学学过的0以外的数前面加上负号“-”的数就是负数。此刻我说一个正数,你们给它添上“-”号说出来,我如果说一个负数,你们反过来说出对应的正数。+3、+1、-1/2、-18.4、0.75,学生很快说出-3、-1、1/2、18.4、-0.175。
2、上述“唱反调”的两个数3与-3,1与-1,-1/2与1/2……,在数轴上对应的点的位置如何?可推荐生择两组在数轴上表示以后作答(在原点两侧到原点的距离相等,真可谓从原点背道而驰“唱反调”)。
提问:数轴上与原点距离是4的点有几个?这些点表示的数是多少?
归纳:设a是一个正数,数轴上与原点距离是a的点有两个,分别在原点左右表示-a和a,我们说这两点关于原点对称。
B、学习概念:
1、像3和-3,1和-1,-1/2和1/2这样,只有负号不同的两个数给它一个什么样的关系名称适宜呢?生:互为相反数,师:很好,我们把上述只有负号不同的两个数叫做互为相反数(oppositenumber)。也就是说3的相反数是-3,-3的相反数是3。可见:相反数是成对出现的,不能单独存在。
一般地,a和-a互为相反数。“-a”可读成“a的相反数”。
2、在数轴上看,表示相反数的两个点和原点有什么关系?(关于原点对称)
3、从上述好处上看,你看如何规定0的相反数更为合理?
商讨得:0的相反数仍是0,即0的相反数等于它本身。
C、应用举例:
1、两人一组,一人任说一个有理数,请同伴说出它的相反数。
2、如果a=-a,那么表示数a的点在数轴上的什么位置?a=?(a=0)。
3、在正数前面添上“-”号,就得到这个数的相反数,同样地,在任意一个数前面添上“-”号,新的数就表示原数的相反数,如:-(+5)=-5,-(-5)=5,-0=0。
结合前面相反数好处的量的学习,还可赋予-(-5)怎样的好处,从而帮忙自己理解-(-5)=5吗?
4、化简下列各数P124练习,你愿意继续尝试化简下列各式吗?
+(-2/3),-(-2/3),-(+2/3),+(+2/3)
你能试着总结规律吗?(括号内外同号结果为正,括号内外异号结果为负)。
5、若a=-5,则-a=;若-x=7,则x=。
三、笔记与板书提纲:
课题应用举例中的2
活动引例应用举例中的4(学生练习),5
概念
四、练习与拓展选题:
1、教科书P18/3;
2、如图是正方形纸盒的侧面展示图,请你在正方形内分别填上6个不同的数,使折成正方体后相对的面上的两个数互为相反数(写出满足条件的一种情形即可)。
篇3:相反数教案
相反数
一、学习目标
1了解相反数的概念。
2给一个数,能求出它的相反数。
3根据a的相反数是-a,能把多重符号化成单一符号。
二、教学过程
师:请同学们画一条数轴,在数轴上找出表示+6和-6的点,看一看表示这两个数的点有什么特点,这两个数本身有什么特点。先独立思考,然后在小组里交流。
生:人人动用手画数轴,独立思考后,在小组内进行交流。
师:深入了解各小组的交流状况,讨论结束后,提问1、2人,帮忙全班同学理清思考问题的思路。
师:请同学们阅读课本,明白什么叫相反数,给出一个数能求出它的相反数。
生:阅读课本第59页,并完成练习一第(1)~(4)题。
师:提问检查学生的学习状况,强调“0的相反数是0”也是相反数定义的一部分。
师:请同学们先想一想,a能够表示一个什么数,a与-a有什么关系。然后阅读课本第60页,并完成剩余的练习题,由小组长负责检查练习状况。
师:认真了解各小组的学习状况,个性是对简化符号的题和学习困难的学生,要重点对待。
生:认真思考,阅读课本,完成练习。小组长、教师对学习困难生及时进行辅导。
师:请同学们先小结一下本节课的学习资料。然后,看一看习题2.3中,哪些题你能不动笔说出结果,请在四人小组里互相说一说。(除A组第2题外都能够直接说出结果)
生:小结。完成习题1.3中的有关练习。
练习
1在下列各式中分别填上适当的符号,使等号左右两端的数相等;
-(+19)=____________19;
____________10.2=+(+10.2);
____________(+12)=-12;
____________(-25)=+25。
2把下面的多重符号化成单一符号:
-[-(-0.3)]=____________;
-[-(+4)]=____________;
+[+(+5)]=____________;
-[+(-50)]=____________。
3根据a+(-a)=0,那么(-8)+x=0可得x=________________________;由y+(+3.75)=0,可得y=____________。
4下面的说法对不对?请举列说明。
(1)一个有理数的相反数的相反数就是这个有理数本身。
(2)一个有理数的相反数必须比原先的有理数小。
(3)-a是一个负数。
作业
在数轴上记出2,-4.5,0各数与它们的相反数,并指出表示这些数的点离开原点的距离是多少。
篇4:相反数教案
课题:相反数
教学目标:
(一)知识目标:借助数轴理解相反数的好处;会求一个数的相反数;会用相反数的定义对一个式子进行化简。
(二)潜力目标:透过观察相反数在数轴上所表示的点得特征,培养学生的归纳潜力以及数形结合思想。
教学重点:相反数的好处以及双重符号的化简。
教学难点:相反数的概念以及“-a”的理解。
教学过程:
(一)创设情境,引出新课
在一东西走向的公路上,小明和小红同时从某点以相同的速度2米每秒向相反的方向行走,小明向东,小红向西。若以向东为正反向,那么1s后,小明的位置(),
小红的位置();2s后,小明的位置(),小红的位置();3s后,小明的位置(),小红的位置().
提问:以上三组数之间有什么相同点和不同点?
数字相同,符号相反。
(二)给出概念
只有正负号不同的两个数互为相反数。
口答:3.5的相反数?-2的相反数?-15的`相反数?
让学生们在数轴上表示出以上3组数以及0
思考:在数轴上,每组数所在的点的位置有什么关系?
(到原点距离相同)
讨论:0的相反数是什么?
0到原点的距离为0,数轴上到原点距离为0的点只有0,故0的相反数是0本身。
(三)深化探究
正数的相反数是()负数的相反数是()。
在任意的数前面加一个“-”号,就得到该数的相反数。
提问:以下各数表示的好处:
(1)-(+5)
(2)-(-6)
(3)-0
(4)-(+1.2)
那么“-a”的好处?(数a的相反数)
“-a”是负数吗?
1.a为正数时,它的相反数-a是负数;2.a是负数时,它的相反数-a是正数;3.a为0时,-a为0.故-a不必须是负数。
(四)双重符号的化简
(1)-(+5)
(2)-(-6)
(3)-(+1.2)
(五)基础知识练习
1.决定正误。
(1)-2是相反数。
(2)-3和+3互为相反数。
(3)正数和负数互为相反数。
(4)若两个数互为相反数,则这两个数必须是一个正数,一个负数。
2.化简下列各数。
(1)-(+8)
(2)-(-3)
(3)+(-7)
(4)-(-a)
3.若-x=-7,则x=().
4.(1)若a和1-a互为相反数,那么a=()
A.0B.-1C.1D.-2
(2)若一个数的相反数是非负数,那么这个数是()
A.0B.负数C.非正数D.正数
(五)本节小结
(六)课后思考及作业
思考:如果a大于-a,那么a在数轴上的位置?
如果a小于-a,那么a在数轴上的位置?
篇5:相反数教案
相反数教案
课题:相反数 一、教学目标 知识与技能:1.借助数轴理解相反数的意义.2.会求一个数的相反数.3.会用相反数的定义进行化简。 过程与方法:数形结合,理解相反数的意义 情感态度与价值观:培养学生严谨的治学态度. 二、重点难点 理解相反数的意义. 三、学情分析 七年级学生最初接受新知识,应让学生真正感受相反数的意义是重中之重,培养学生良好的思考学习习惯。 四、教学过程 教学 环节 问 题 设 计 师 生 活 动 备注 情境 创设 在一东西走向的公路上,小名和小红同时从点O以相同的速度2米每秒向相反的方向行走,你能用有理数表示一秒后,两人的位置吗?三秒后,三点五秒后,a秒后呢? 创设问题情境,引起学生学习的兴趣. 学生先感受相反数在数轴上的位置关系。 自 主 探 究 由此你发现每一组数,有什么特点?你能再举几组这样的例子吗? 象这样的两个数,叫做相反数.你能给出相反数的概念吗? 概念: ( ), 0的相反数0. 你知道3.5的相反数吗?-20的相反数呢?a的相反数呢?你发现怎样表示一个数的相反数吗? 结论:相反数的性质:1。正数的相反数是 2. 负数的相反数是 3. 0的相反数是 1.若a 0,则的相反数为( ) 2.若a 0,则的相反数为( ) 教师提出问题. 学生借助数轴,教师引导学生观察结果,感受几组数的特点。教师说出具备如此特点的数叫相反数。并且举几组相反数的例子。 教师提出问题.培养总结问题的能力。 教师提出问题. 学生独立思考后,小组讨论.培养学生[此文转于斐斐课件园 FFKJ.Net]整合知识、归纳的能力,合作学习的能力。 为相反数的定义做准备。 关注学生是否能主动参与探究活动,用语言准确地表达自己的观点. 尝 试 应 用 1.你能说出下列各数的相反数吗?你能表示下列各数的相反数吗? (1)-5 (2) 8 (3)0 (4) -1/6 (5)-2b (6) a-b (7) a 2 2. 判断: (1)-2是相反数 (2)-3和 3都是相反数 (3)-3是3的相反数 (4)-3与 3互为相反数 (5) 3是-3的相反数 (6)一个数的相反数不可能是它本身 3.化简: -( 8), -(-8), ( 8), (-8), -(-a), -(a-5) 教师提出问题. 学生独立思考、解答. 学生解答完毕后,小组交流后以小组为单位展示小组的成果: 加深对相反数的.理解 成果展示中肯定学生的表现,并给出正确的答案 补 偿 提 高 1.已知a、b在数轴上的位置如图所示。 (1) 在数轴上作出它们的相反数; (2) 用<按从小到大的顺序将这四个数连接起来。 2.x,y互为相反数,那么x y=( )。 教师出示题目: 学生练习时,教师巡视、辅导,了解学生的掌握情况. 重点关注学生对有理数和无理数的概念及存在形式的理解,及对它们之间的差异与联系的认识。 学生在讨论中能否发表自己的见解,倾听他人的意见,并从中获益。 小 结 与 作 业 小结: 通过这节课的学习,你有哪些收获? 你的疑问是什么?最大的感受是什么? 教师提出问题. 学生独立回答,教师在学生总结后,进行补充. 并根据学生的回答,结合结构图总结本节知识. 教师布置作业,动员分层要求。 学生按要求课外完成. 学生通过课后作业巩固本节知识. 使学生能回顾、总结、梳理所学知识. 教后 反 思 采用数形结合的思想理解相反数的概念,利用相反数的意义进行化简是重点,相反数的两个数的和是0。篇6:七年级相反数的教案
教学目标
1.了解的意义,会求有理数的;
2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.
3.初步认识对立统一的规律。
教学建议
一、重点、难点分析
本节的重点是了解的意义,理解的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为。另外,“0的是0”也是定义的一部分。关于“数a的是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。
二、知识结构
的定义 的性质及其判定 的应用
三、教法建议
这节课教学的主要内容是互为的概念。
由于教材先讲,后讲绝对值,所以的定义只是形式上的描述,主要通过的几何意义理解的概念。教学中建议,直接给出的几何定义,通过实例了解求一个数的的方法。按着数轴————绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。
四、的相关知识
1.的意义
(1)只有符号不同的两个数叫做互为,如-1999与1999互为。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为。如5与-5是互为。
(3)0的是0。也只有0的是它的本身。
(4)是表示两个数的相互关系,不能单独存在。
2.的表示
在一个数的前面添上“-”号就成为原数的。若 表示一个有理数,则 的表示为- 。在一个数的前面添上“+”号仍与原数相联系同。例如,+7=7,特别地,+0=0,-0=0。
3.的特性
若 互为,则 ,反之若 ,则 互为。
4.多重符号化简
(1)的意义是简化多重符号的依据。如是-1的,而-1的为+1,所以。
(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则
果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。
例如, 。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。
篇7:七年级相反数的教案
教学目标
1.使学生理解的意义;
2.使学生掌握求一个已知数的;
3.培养学生的观察、归纳与概括的能力.
教学重点和难点
重点:理解的意义,理解的代数定义与几何定义的一致性.
难点:多重符号的化简.
课堂教学过程 设计
一、从学生原有的认知结构提出问题
二、师生共同研究的定义
特点?
引导学生回答:符号不同,一正一负;数字相同.
像这样,只有符号不同的两个数,我们说它们互为,如+5与
应点有什么特点?
引导学生回答:分别在原点的两侧;到原点的距离相等.
这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为.这个概念很重要,它帮助我们直观地看出的意义,所以有的书上又称它为的几何意义.
3.0的是0.
这是因为0既不是正数,也不是负数,它到原点的距离就是0.这是等于它本身的的数.
三、运用举例 变式练习
例1 (1)分别写出9与-7的;
例1由学生完成.
在学习有理数时我们就指出字母可以表示一切有理数,那么数a的如何表示?
引导学生观察例1,自己得出结论:
数a的是-a,即在一个数前面加上一个负号即是它的.
1.当a=7时,-a=-7,7的是-7;
2.当-5时,-a=-(-5),读作“-5的”,-5的是5,因此,-(-5)=5.
3.当a=0时,-a=-0,0的是0,因此,-0=0.
么意思?引导学生回答:-(-8)表示-8的;-(+4)表示+4的;
例2 简化-(+3),-(-4),+(-6),+(+5)的符号.
能自己总结出简化符号的规律吗?
括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号内、外的符号是异号,则简化符号后的数是负数.
课堂练习
1.填空:
(1)+1.3的是______; (2)-3的是______;
(5)-(+4)是______的; (6)-(-7)是______的.
2.简化下列各数的符号:
-(+8),+(-9),-(-6),-(+7),+(+5).
3.下列两对数中,哪些是相等的数?哪对互为?
-(-8)与+(-8);-(+8)与+(-8).
四、小结
指导学生阅读教材,并总结本节课学习的主要内容:一是理解的定义——代数定义与几何定义;二是求a的;三是简化多重符号的问题.
五、作业
1.分别写出下列各数的:
2.在数轴上标出2,-4.5,0各数与它们的.
3.填空:
(1)-1.6是______的,______的是-0.2.
4.化简下列各数:
5.填空:
(1)如果a=-13,那么-a=______;(2)如果a=-5.4,那么-a=______;
(3)如果-x=-6,那么x=______; (4)如果-x=9,那么x=______.
课堂教学设计说明
教学过程 是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的.由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程.由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程.
探究活动
有理数a、b在数轴上的位置如图:
将a,-a,b,-b,1,-1用“<”号排列出来.
分析:由图看出,a>1,-1
解:在数轴上画出表示-a、-b的点:
由图看出:-a<-1
点评:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快捷,准确的方法.
七年级相反数的教案
篇8:七年级相反数的教案
一、素质教育目标
(一)知识教学点
1.了解:互为的几何意义.
2.掌握:给出一个数能求出它的.
(二)能力训练点
1.训练学生会利用数轴采用数形结合的方法解决问题.
2.培养学生自己归纳总结规律的能力.
(三)德育渗透点
1.通过解释的几何意义,进一步渗透数形结合的思想.
2.通过求一个数的,使学生进一步认识对应、统一规律.
(四)美育渗透点
1.通过求一个数的知道任何一个数都有它的,学生会进一步领略到数的完整美.
2.通过简化一个数的符号,使学生进一步体会数学的简洁美.
二、学法引导
1.教学方法:利用引导发现法,教师注意过渡导语 的设置,充分发挥学生的主体地位.
2.学生学法:感性认识→理性认识→练习反馈→总结.
三、重点、难点、疑点及解决办法
1.重点:求已知数的.
2.难点:根据的意义化简符号.
四、课时安排
1课时
五、教具学具准备
投影仪、三角板、自制胶片.
六、师生互动活动设计
学生演示,教师点拨,师生共同得出的概念,教师出示投影,学生以多种形式练习反馈.
七、教学步骤
(一)探索新知,导入 新课
1.互为的概念的引出
演示活动:要一个学生向前走5步,向后走5步.
提出问题“如果向前为正,向前走5步,向后走5步各记作什么?
学生活动:一个学生口答,即向前走5步记作+5;向后走5步记作-5步.
[板书]
+5,-5
师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为.
[板书]2.3
【教法说明】由于有了正负数的学习,进行以上演示,学生们非常容易地得出+5,-5两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为.
师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为(一个学生板演,其他学生自练)
师:这样的两个数即互为,你能试述具备什么特点的两数是互为?(学生讨论后举手回答)
[板书]只有符号不同的两个数,其中一个叫另一个的.
【教法说明】在演示活动后,已出现了+5,-5这两个数,教师及时阐明它们就是互为的两数,这时不急于总结互为的概念,而是又提供了一个学生体会概念的机—利用数轴任找一组互为的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点.更形象直观地引导学生自己得出的概念.
2.理解概念
(出示投影1)
判断:(1)-5是5的( )
(2)5是-5的( )
(3)与互为()
(4)-5是( )
学生活动:学生讨论.
【教法说明】对概念的理解不是单纯地强调,根据学生判断的结果加深对“互为”的理解,提高学生全面分析问题的能力.
师:0的是0.
(出示投影2)
1.在前面画的数轴上任意标出4个数,并标出它们的.
2.分别说出9,-7,0,-0.2的.
3.指出-2.4,,-1.7,1各是什么数的?
4.的是什么?
学生活动:1题同桌互相订正,2、3题抢答.
【教法说明】1题注意培养学生运用数形结合的方法理解的概念,让学生深知:在数轴上,原点两旁,离开原点相等距离的两个点,所表示的两个数互为.2、3、4题是对的概念的直接运用,由特殊的数到一般的字母,紧扣“只有符号不同的两数即互为”这一概念,又得出一个非常代数性的结论“的是.”
[板书]a的是-a.
师:的是,可表示任意数—正数、负数、0,求任意一个数的就可以在这个数前加一个“-”号.
提出问题:若把分别换成+5,-7,0时,这些数的怎样表示?
.
.
.
提出问题:前面加“-”号表示的,-(+1.1)表示什么?-(-7)呢,-(-9.8)呢?它们的结果应是多少?
学生活动:讨论、分析、回答.
【教法说明】利用的概念化简符号是这节课的难点.这一环节,紧紧抓住学生的心理及时提问:“既然的是,那么+5,7,0的怎样表示呢?”学生的思维由一般再引到特殊能答出-(+巩固练习
(出示投影3)
1.是______________的,.
2.是_____________的,.
3.是_____________的,.
4.是_____________的,.
学生活动:思考后口答.
学生回答后教师引导:在一个数前面加上“-”号表示求这个数的,如果在这些数前面加上“+”号呢?
[板书]
如:
学生回答:在一个数前面加上“+”仍表示这个数,“+”号可省略.并答出以上式子的结果.
【教法说明】根据以上题目学生对一数前面加“-”号表示这数的和一数前面加“+”号表示这数本身都已非常熟悉,这时可根据做题情况要学生及时分析观察规律的存在,这样可以从学生思维的不同角度,指引学生解决问题,并同时也暗示学生在做题时不是单纯地演练,一定要注意规律的总结.
巩固练习:
1.例题2 简化-(+3)-(-4)的符号.
2.简化下列各数的符号
3.自己编题
学生活动:1、2题抢答,3题分组训练.1、2题一定要让学生说明每个式子表示的含义,有助于对概念的理解.3题活跃课堂气氛,同时考查了学生对这一知识的理解掌握程度.
(三)归纳小结
师:我们这节课学习了,归纳如下:
1.________________的两个数,我们说其中一个是另一个的.
2.表示求的_____________,表示______________.
学生活动:空中内容由学生填出.
【教法说明】通过问题形式归纳出本节的重点.
(四)回顾反馈
1.-1.6是__________的,
____________的是0.3.
2.下列几对数中互为的一对为( ).
A.和B.与C.与
3.5的是________________;的是___________;的是________________.
4.若,则;若,则.
5.若是负数,则是___________数;若是负数,则是___________数.
学生活动:分组互相回答,互相讨论,3、4、5题每组出一个同学口答.
【教法说明】1,2题是对本节课的重点知识进行复习.3、4、5题是从不同角度考查学生对概念的理解情况,对学有余力的同学是一个提高.
八、随堂练习
1.填表
第三篇:相反数和绝对值教案
相反数和绝对值教案
以下是查字典数学网为您推荐的相反数和绝对值教案,希望本篇文章对您学习有所帮助。相反数和绝对值
1、知道相反数的概念,并会在已知的有理数中,借助数轴识别互为相反的数。
2、会求已知数及字母的相反数。
3、正确理解互为相反数的几何意义和代数意义。
4、理解绝对值的意义。
5、熟记绝对值的性质,会求一个数的绝对值。
6、已知一个数的绝对值利用绝对值的定义能求这个数。7、用绝对值知识解决实际问题。重 点
难点 利用相反数、绝对值的性质求一个有理数的相反数、绝 对值。
理解绝对值的几何意义。
教学流程及内容 师生活动 复备 标注
一、自学与思考:请认真仔细通读课本1011页相反数的内容。通过自学争取解决以下问题:
1、符合什么条件的两个数是相反数? 0 的相反数是 什么?
2、在相反数的定义中只有的准确含义是什么?
3、数轴上到原点的距离相等的点有几个?它们是什么关系?
第 1 页
4、怎样表示a的相反数?
5、比一比:看谁通过自己自学能提出自己更新的见解?
6、做课本11页练习。
二、认真仔细通读课本第1112页的内容,通过自学争取独立解决以下问题:
1、读第一段,回答两辆汽车行驶路程的远近相同吗?-10与10的联系和区别是什么 ?
2、完成并熟记:a的绝对值是指,记作
由此可知,正数的 绝对值是,负数的绝对值是,0的绝对值是。即 当a 0时,∣a∣=;
当a0时,∣a∣=;当 a= 0时,∣a∣=。
3、一个数的绝对值是什么样的数?举例说明。
4、请你通过思考提出一个有助于理解本课知 识的问题,让同学解答。
5、课本12页练习
三、训练与提高: 相反数提高性练习:
⑴观察数轴,发现A、B在原 点的_____边和______边,但它们与原点的距离都等于__ ____。则A、B为_________。⑶、画一个数轴,请在你的数轴上标出2、2、1.5、1.5、0.5、0.5、0;你 发现了 什么? ⑷、如果a的相反数是2018,则a等于_________。
第 2 页 ⑹、如果m的相反数是m,则m =_________。⑺、化简下列各数:(0)=(+6)=(+5)=(0.7)=(99)=(+6.7)=(8)=(+4.1)= 〔(+7)〕= 问题:化简中你有什么好方法吗?括号内的与括号外 的意义一样吗? 思考:你会化简[(a)]与{[(+a)]}吗? ⑻、若2x+1是9的相反数,求x的值? 学生先快速 按要求阅读课本,自学本章的基本考点,然后 后在 组内交流疑难问题。
教师深入学生中,了解学生自学情况,接受学生的质疑,并指导个别学生复习收集学生存在的共同问题,及时点拨。教师巡视,关注学生的学习情况。
课本练习每题找2学生板演,其余独立完成后对 照 板演查缺补漏。教师针对学生问题点拨。
能力提升题教师用课件出示问题,学生独立现场完成,随时发 现问题,师生共同及时矫正 绝对值提高性练习:
(1)、下列各式不正确的是()A、|-5 | =5 B、-|5| =-|-5| C、|-5 | = |5| D、-|-5| =5(2)、填空:+3的符号是,绝对值是;
第 3 页-3的符号是,绝对值是;符号是正,绝对值是7的数是;符号是负,绝对值 是7的数是;绝对值是13的数是。
(3)、根据以下条件求值∣a∣+∣b∣ ①a=-3,b=0 ②a=1.7,b=-2.3 ⑴正数的相反数是___________;⑵负数的相反数是_________;⑶0的相反数是___________;⑷相反数等于它本身的数___ ___;⑸相反数大于它本身的数是_______;⑹相反数小于它本身的数是_________。
(4)、填空: 如果 ∣x∣=0,那么x=;如果∣x∣=9,那么x=。
(5)、如果∣a-3∣=0则∣a+2∣=(6)、绝对值小于5的整数是(7)、下列说法不正确的是()A、-3表示的点到原点的距离是|-3 | B、一个有理数的绝对值一定是正数 C、一个有理数的绝对值一定不是 负数 D、互为相反数的两个数的绝对值一定相等。(8)、选择下列说法正确的:
A、-a一定是负数 B、-∣a∣一定是非正 数
第 4 页 C、∣a∣一定是正数 D、-∣a∣一定是负数(9)、∣a∣=∣b∣,则a与b有什么关系?
第 5 页
第四篇:1.2.3相反数教案
1.2.3 相反数 教案
【教学目标】
(一)知识技能 1.了解相反数的概念。
2.能在数轴上表示出两个互为相反数的数,并且发现表示互为相反数的两点在原点的两侧,到原点的距离相等。
3.利用互为相反数符号表示方法化简多重符号。
(二)过程方法
1.利用数轴,直观认识互为相反数的位置特点,理解相反数的代数定义和几何定义的一致 性。
2.渗透数形结合等思想方法,并注意培养学生的概括能力。3.会正确求一个数的相反数并知道它们之间的关系。
(三)情感态度
通过相反数的学习,体会数学符号化和数形结合的思想,进而进一步认识事物之间的联系。教学重点
1.相反数的概念及其表示方法,理解相反数的代数定义和几何定义的一致性。2.能准确写出任意数的相反数,对简化符号能正确应用。教学难点
负数的相反数的表示方法,化简多重符号。【复习引入】
1.在数轴上分别找出表示各数的点。
3与―3,―5与5,―1.5与1.5 想一想:在数轴上,表示每对数的点有什么相同?有什么不同? 2.观察数3与―3,―5与5,―1.5与1.5有何特点?,观察每组数所对应的两个点的位置关系有什么规律? 再提思考问題:(1)数轴上与原点的距离是2的点有---个?这些点表示的数是---(2)数轴上与原点的距离是5的点有---个?这些点表示的数是---学生归纳:每组中的两个数只有符号不同,他们所对应的两点分别在原点的两侧,到原点的距离相等。【教学过程】
1.归纳相反数的定义:
像3与―3,―5与5,―1.5与1.5这样只有符号不同的两个数称互为相反数。代数概念:只有符号不同的两个数称互为相反数。0的相反数是0.。
几何意义:在数轴上,表示互为相反数的两个数分别位于原点两侧,且与原点的距离相等。辩析:(1)符号不同的两个数叫做互为相反数。
(2)3.5是相反数,(3)+3和-3是相反数。说明:(1)相反数是指只有符号不同的两个数。
(2)相反数是成对出现的,不能单独存在,因而不能说“-6是相反数”。特别强调的是0的相反数为0,因为0既不是正数,也不是负数,它到原点的距离就是0,这是相反数等于本身的唯一的数。
因此,求一个数的相反数的方法:根据相反数的定义,只要改变一下这个数的符号,即将正号改变为负号,负号改变为正号.如2的相反数是-2,-5的相反数是5。
2.一般地,数a的相反数是-a,其中a可是正数和负数和0. 小结:当a>0时,a<0;
⑴当a=7时,-a=-7,7的相反数是-7. 当a=0时,a=0;
⑵当a=-5时,-a=-(-5)=5,-5的相反数是5. 当a<0时,a>0.
⑶当a=0时,0的相反数是0,因此-0=0. [注意]a不一定是正数,同样-a也不一定是负数。
解:6.9的相反数是-6.9;-12的相反数是12 。
反数?
解:-(+20)是+20的相反数;
3.规定:在任何一个数的前面添上一个“+”号,表示这个数本身;添上一个“-”号,就表示这个数的相反数.想一想:按照这样的规定,+(-7)表示什么意思?它的值等于多少?-(-7)表示什么意思?它的值等于多少? 提示: +(-7)不能记为+-7,-(-7)也不能记为--7.4.思考:在式子“7-3 = 4”中,“-”号一般表示___________;在式子“-7”中,“-”号一般表示______;式子“-a”中,“-”号表示_______.“-”号的三种主要意义:
(1)性质符号:写在一个数值的前面,表示这个数是负数.比如,-5表示“负5”这个负数,在这里的“-”号就是表示负数的一种符号,它表明“-5”的性质是负数.(2)相反数符号:表示一个数的相反数时,我们常在这个数的前面添上“-”号.比如,-(-5)= 5,就表示-5的相反数是5.(3)运算符号:这点和小学的意义是相同的,用“-”号表示减号.比如,2-3表示“2减3”,其中的“-”号就表示了减法运算.例3根据相反数的意义,化简下列各数:
(1)-(-48)(2)-(+2.56)
解:(1)-(-48)=48(2)-(+2.56)=-2.56
(4)-[-(-91)]=-(+91)=-91 注意:化简一个数前面的“多重符号”的规则是:只要这个数前面的“-”号的个数是奇数个时,化简结果的符号为“-”,当“-”号的个数为偶数时,化简结果的符号为“+”.
例如:-{+[-(+5)]}=5(个数为偶数2,结果应为正)-〔-〔+(一5)〕〕=-5(“一”号个数为奇数3,结果应为负)例4 说出下列各式表示的意义并化简:
4.化简下列各数:
1); 21(5)+(-6.09);(6)-[-(+3)];(7)+[-(-1)];(8)-[-(-)](1)-(-16);(2)-(+20);(3)+(+50);(4)-(-3(9)-(+7)(10)+(-5)(11)-(-3.1)(12)-[+(-2)](13)-[-(+5)](14)-[-(+5填空:
(1)如果a=-13,那么-a=______;(2)如果a=-54,那么-a=_____;(3)如果-x=-6,那么x=_____;(4)如果-x=9,那么x_________
参考答案: 1.(1)×(2)√
2.-5的相反数是5; 1的相反数是-1;-3的相反数是3; 0的相反数是0;-1的相反数是1;6的相反数是-6;-0.2相反数是0.2; 的相反数是-;-0.5的相反数是0.5 3.(1)1.6 0.2(2)-32)](15)+[-(-8)](16)-[-(-)]
4514141-(x+1)(3)-1 3(4)-a-a-a 负数 0 正数
1; 21(5)-6.09;(6)3;(7)1;(8)
32;(15)8;(16)-。
第五篇:相反数教学反思
相反数教学反思
篇一:相反数>教学反思
这节课我是根据“新课标”的教学思想设计并实施的。我尽力激发学生学习的积极性,向学生提供活动的机会,帮助他们在自主探索和合作交流的过程中真正的理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验。在整个教学过程中,学生是学习的主人,我是组织者、引导者和合作者。
在整节课的教学中我觉得做的比较好的地方是:一个操作、三个讨论。
相反数这节课实在数轴一节课后学习的,而数轴又是初中数形结合的一个重要图形,所以我重点利用数轴对相反数进行理解。我让学生在一张白纸上画数轴,并将数轴沿原点对着折,感受互为相反数的两数的对称性。通过对这还比较容易的解决了的相反数是这一难点。(因为对折后远点与本身重合)
本节课我设计了三个地方让学生分组讨论。第一次讨论是通过观察两个互为相反数的两数,讨论它们的异同点及在数轴上的位置关系;第二次讨论是让学生讨论是否任何有理数都有相反数;第三次讨论是让学生讨论化简双重符号的数的规律。通过参与其中某些组的讨论,我感觉到学生通过讨论既加深了对数学知识的理解,又增强的合作交流的能力。特别是对是否有相反数的讨论,同学们都很投入,讨论得很激烈,有的认为有,有的认为无,他们都各持己见,最后在我的引导下得出的相反数是的结论。
本节课的教学我也觉得有不足的地方。我设置的三次讨论的时间都比较短,每次都只有2——3分钟,学生讨论得不够深入。可能设置少一两次讨论,而讨论的时间长一点会更好。最后就是这节课针对中考的练习少了一点。这些都是我以后在教学中要加强的。
篇二:相反数教学反思
本节课的教学目标是让学生借助数轴理解相反数的概念,会求出一个有理数的相反数;会根据a的相反数是——a,能把多重符号化成单一符号。教学重点是让学生理解相反数的意义,难点是理解和掌握多重符号化简的规律。
在设计教学时,是先让学生把2对相反数分别在不同的数轴上表示出来,让学生观察出数轴上与原点的距离相等的点出现2个,进一步可发现这两个点表示的数只有符号不同,由此引出相反数的概念:只有符号不同的两个数称为相反数。通过从符号、数字两方面来比较,分析其特征,刻画相反数的模型:数a 的相反数是——a。再通过求具体数值的相反数归纳出:正数的相反数是负数;负数的相反数是正数;0的相反数是0。并强调清楚——a不是负数。在难点的处理上利用相反数的概念进行化简。在任何一个数前面添一个“——”号,新的数就是原数的相反数。例如:——(——6)表示——6的相反数,即是 6 ——[——(——6)] 表示——(——6)的相反数,即是 ——6。
再让学生归纳出多重符号化简的规律,是由“——”号的个数来定,当“——”号个数为偶数是,化简结果为正;当“——”号个数为奇数是,化简结果为负。
上完这节课的课后反思:
成功之处是学生对求一个具体的数的相反数,掌握得不错,也理解相反数的代数意义和几何意义。
不足之处有以下几点:
1、有些学生把相反数和倒数混淆在一起,这一点在设计教学时?有想到。
2、学生对多重符号简化的规律不太理解,运用得不好。
针对以上问题,我在习题设计上做了修改。
1、编写几道分别求同一个数的相反数和倒数的题目,让学生区分这两个不同的概念。如:分别求出6的相反数和倒数。这样让学生体会相反数是指一对数,它们的绝对值相等,符号相反;倒数也是指一对数,它们的绝对值不等,符号相同。
2、把多重符号化简的习题的难度、数量控制好,难度不要大,题目适量。
篇三:相反数教学反思
教学引人以开放的形式创设情境,让学生进行讨论,并培养分类的能力,培养学生的观察与归纳能力。把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解,体验对称的图形的特点,为相反数在数轴上的特征做准备;问题2能帮助学生准确把握相反数的概念,深化相反数的概念;“零的相反数是零”是相反数定义的一部分;问题3实际上给出了求一个数的相反数的方法。
本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地。
通过练习发现本节课最容易出现的错误是:
1、相反数是成对出现的,它们不能单独存在,是相互存在的如:-2是相反数。
2、书写错误如:2的相反数 有的学生直接就写成2=-2
3、求字母或代数式的相反数时如x-y的相反数
4、化简过程弄错符号
5、关于相反数的变式应用如:a与b互为相反数则a/b的值是、a+b=*