第一篇:相反数与绝对值2教案
相反数与绝对值2 【数学小故事】
某环形道路上顺次排列着四所中学:A1,A2,A 3,A4.它们顺次有彩电15台,8台,5台,12台.为使各校的彩电台数相同,允许一些学校向相邻中学调出彩电,问:应怎样调配才能使调出的彩电总台数最少?并求出调出彩电的最少总台数.调出彩电的最少总台数为10,调运方案有四个.方案一:A1校调往A2校2台,调往A4校3台,A4校调往A3校5台;
方案二:A1校调往A2校3台,调往A4校2台,A2校调往A3校1台,A4校调往A3校4台;
方案三:A1校调往A2校4台,调往A4校1台,A2校调往A3校2台,A4校调往A3校3台;
方案四:A1校调往A2校5台,A2校调往A3校3台,A4校调往A3校2台;
【知识要点】
1、a与a称为互为相反数.数轴上互为相反数的两个数关于原点对称.2、绝对值的定义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值还是0.aa0)(a(0a=0)
(aa0)
3、绝对值的几何意义:在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.4、绝对值的性质:
(1)abab; aa; abba(2)ab等价于ab或ab,即ab
(3)ab就是数轴上表示数a的与表示数b的两点之间的距离(4)a0
5、去掉绝对值符号后的结果与绝对值符号内的数(或式)的符号和取值范围有关,为了判断绝对值符号内代数式的值的正负,一般采用“零点分段法”.22nn【例题】
例题7 若2xy5与3x2y2000互为相反数,求9x5y.分析:因为2xy5与3x2y2000互为相反数,所以2xy5+3x2y2000=0.2xy5=0 所以 又因为2xy50,3x2y20000,3x2y2000=0解:因为2xy50,3x2y20000,2xy5=0 所以3x2y2000=0x2010 解得y4015所以9x5y=9201054015=1985.例题8 化简3x22x1.分析:要化简即要去掉绝对值符号后才能进行,而去掉绝对值符号与代数式3x2和2x1的正负情况有关。若3x20,则x2;反之3x20,则x2.3321是一个分界点或称零点。同理可知对于2x1而言,x是另一个零点。把322211x,x.这样,就可以零点标在数轴上,可把数轴分成3个部分,即x,3322此时x在这3段上分类讨论化简,这种方法称为“零点分段法”。
(1)当x时,解: 23原式=3x22x15x1
(2)当21x时,32原式=3x22x1=x+3
1(3)当x时,2原式=3x2+2x1=5x+1
25x1x312即3x22x1=x+3x
2315x+1x2例题9 求y=x1x2的最小值.分析:先利用“零点分段法”来研究各段的取值情况。解:当x1时,y=1x2x32x 因为x1,所以y1.当1x2时,y=x12x1 当x2时,y=x1x22x3 因为x2,所以y1.综上所述:当1x2时,y的最小值为1.例题10 已知a,b是整数,且满足ab+ab2,求ab的值.分析:因为a,b是整数,所以ab与ab均为非负整数.所以ab+ab2,则有3种可能:(1)ab=0,ab2;(2)ab=1,ab1;(3)ab=2,ab0.解:(1)当ab=0,ab2时; 由ab2,只能a,b中有一个为2,另一个为1,则ab为奇数,与ab=0矛盾
(2)当ab=1,ab1时; 由ab1,只能a,b同时为1,则ab为偶数,与ab=1矛盾
(3)当ab=2,ab0时;此时ab=0.所以ab=0.例题11某环形道路上顺次排列着四所中学:A1,A2,A 3,A4.它们顺次有彩电15台,8台,5台,12台.为使各校的彩电台数相同,允许一些学校向相邻中学调出彩电,问:应怎样调配才能使调出的彩电总台数最少?并求出调出彩电的最少总台数.分析:可设A1校调往A2校x1台(若x10,则是A2校调往A1校x1台),A2校调往A3校x2台,A3校调往A4校x3台,A4校调往A1校x4台.15-x1x410x2x128xx1021解得:
x3x25x17 5xx1032xx54112x4x310所以调出的彩电总台数是y=x1+x2+x3+x4 =x1+x12+x17+x15 其中8x115.当0x17时,它有最小值7;在数轴上,x1+x17表示数x1到0和7的距离之和,当2x15时,它有最小值3;x12+x15表示数x1到2和5的距离之和,所以:当2x15时,y有最小值10.解:调出的彩电最少总台数是10.A1校调往A2校2台,调往A4校3台,A4校调往A3校5台; 方案
一、x1=2时,A1校调往A2校3台,调往A4校2台,A2校调往A3校1台,A4校方案
二、x1=3时,调往A3校4台;
A1校调往A2校4台,调往A4校1台,A2校调往A3校2台,A4校方案
三、x1=4时,调往A3校3台;
A1校调往A2校5台,A2校调往A3校3台,A4校调往A3校2台.方案
四、x1=5时,【习题】
练习6 若x1与y2互为相反数,试求xy2002.解:因为x1与y2互为相反数,所以x1+y2=0.又因为x10,y20,x1=0 所以y2=0x1 解得y2所以xy2002=122002=12002=1
练习7 化简x52x3.解:零点为-5和3 2(1)当x5时,原式=x52x33x23(2)当5x时,2原式=x52x3=-x+83(3)当x时,2原式=x5+2x3=3x+23x2x53即x52x3=x+85x
233x+2x2
1xx2,且-1x,求2的最大值与最小值S.2解:由-1x2知x20,x20,练习8 已知S=x2所以x2=2x,x2=x2
所以S=x21xx2 21=2x+x2x
21=4x
2因为0x2
所以,当x=0时,原式=41x=4-0=4 21当x=2时,原式=4x=4-1=3
2所以S的最大值是4,最小值是3.练习9 如果2ab0,求aa12的值 bb解:因为2ab0,所以b2a.aa12 bb=aa12 2a2aaa=12 2a2a当a0时,原式=aa12 2a2a=111+2 2211=1++2
22=3
当a0时,原式=aa12 2a2a11=1+2
22=1=3 11+2 22aa所以,当2ab0,12=3.bb练习10 在6张卡片的正面分别写上整数1,2,3,4,5,6,打乱次序后,将卡片翻过来,在它们的反面也随意分别写上1~6这6个整数,然后计算每张卡片正面与反面所写数字之差的绝对值,得到6个数,请证明所得的6个数中至少有两个是相同的.证明:设6张卡片正面写的数是a1,a2,a3,a4,a5,a6,反面写的数是b1,b2,b3,b4,b5,b6,则6张卡片正面写的数与反面写的数的差的绝对值分别是 a1b1,a2b2,a3b3,a4b4,a5b5,a6b6
若设这6个数两两不相等,则它们只能取0,1,2,3,4,5这6个数.所以a1b1+a2b2+a3b3+a4b4+a5b5+a6b6=0+1+2+3+4+5=15注意15是个奇数.另一方面,因为aibi与aib(2,3,4,5,6)的奇偶性相同,ii1,又因为a1b1+a2b2+a3b3+a4b4+a5b5+a6b6
=a1+a2+a3+a4+a5+a6b1+b2+b3+b4+b5+b6=0
注意0是个偶数.所以:a1b1+a2b2+a3b3+a4b4+a5b5+a6b6的结果也应该是个偶数.这和之前的证明矛盾,所以a1b1,a2b2,a3b3,a4b4,a5b5,a6b6
这6个数中至少有两个相同的.
第二篇:相反数与绝对值教案
相反数与绝对值
一、学习目标:
知识与能力
1、了解相反数的意义,会求有理数的相反数;
2、了解绝对值的概念,会求有理数的绝对值;
3、会利用绝对值比较两负数的大小。过程与方法
在绝对值概念的形成过程中,培养学生数形结合的思想 情感、态度与价值观
进一步培养学生分类讨论的思想和观察、归纳与概括的能力。
二、重点、难点:
理解相反数并掌握双重符号的化简原则,难点是能正确理解绝对值在数轴上表示的意义。
三、学习过程:
(一)自主学习
1、互为相反数:
(1)观察数轴上两对点-4.5和4.5,+3和-3,他们的位置关系怎样?有什么区别和联系?(2)(3)什么样的数被称为互为相反数? 指出下列各数的相反数;-3,-0.025,5,-4,0(4)在数轴上,表示互为相反数的点分别在()的两侧,并且到()的距离相等;
2、绝对值:(1)什么叫绝对值?
(2)
在数轴上,-4.5,-3,-0.5,0,0.5,3,4.5到原点的距离是多少?一个数与他的绝对值之间存在着怎样的联系?(3)求出下列各数的绝对值:
∣+5∣= ∣-4∣= ∣+0.04∣= ∣2.5∣= ∣0∣= ∣-1.104∣=
3、两负数比较大小:
(1)负数绝对值大了,离原点就越远,就越靠近数轴的()边,因此,两负数比较大小,绝对值大的数()。(2)根据例1解答:
比较:-4∕7和-6∕11
(二)合作交流:
1、独立完成,小组内交流;
2、进行组际交流;
(三)精讲点拨:
1、互为相反数是两个数的关系,注意互为相反数的绝对值相等; 2、0的相反数和绝对值都是它本身;
3、两负数比较大小,绝对值大的反而小;
(四)有效训练
1、若x+1与-3互为相反数,则x=();
2、说出下列各数的相反数和绝对值: 0.25,-18,-0.002,0,5 3.比较下列各组数的大小:
(1)0和-1(2)0.25和0(3)-0.125和-0.12
(五)拓展提升:
1、若-x=-(-3.5),则x=______;若a=-6.3,则-a=______;
2、若|a|=6,则a=______;(2)若|-b|=0.87,则b=______;
3、若x+|x|=0,则x是______数;
四、小结:
通过本节课的学习你都学到了哪些知识?
五、达标检测:
课本P35:练习1、2、3;
六、作业:
课本P36:习题2.3 A组
第三篇:相反数和绝对值教案
相反数和绝对值教案
以下是查字典数学网为您推荐的相反数和绝对值教案,希望本篇文章对您学习有所帮助。相反数和绝对值
1、知道相反数的概念,并会在已知的有理数中,借助数轴识别互为相反的数。
2、会求已知数及字母的相反数。
3、正确理解互为相反数的几何意义和代数意义。
4、理解绝对值的意义。
5、熟记绝对值的性质,会求一个数的绝对值。
6、已知一个数的绝对值利用绝对值的定义能求这个数。7、用绝对值知识解决实际问题。重 点
难点 利用相反数、绝对值的性质求一个有理数的相反数、绝 对值。
理解绝对值的几何意义。
教学流程及内容 师生活动 复备 标注
一、自学与思考:请认真仔细通读课本1011页相反数的内容。通过自学争取解决以下问题:
1、符合什么条件的两个数是相反数? 0 的相反数是 什么?
2、在相反数的定义中只有的准确含义是什么?
3、数轴上到原点的距离相等的点有几个?它们是什么关系?
第 1 页
4、怎样表示a的相反数?
5、比一比:看谁通过自己自学能提出自己更新的见解?
6、做课本11页练习。
二、认真仔细通读课本第1112页的内容,通过自学争取独立解决以下问题:
1、读第一段,回答两辆汽车行驶路程的远近相同吗?-10与10的联系和区别是什么 ?
2、完成并熟记:a的绝对值是指,记作
由此可知,正数的 绝对值是,负数的绝对值是,0的绝对值是。即 当a 0时,∣a∣=;
当a0时,∣a∣=;当 a= 0时,∣a∣=。
3、一个数的绝对值是什么样的数?举例说明。
4、请你通过思考提出一个有助于理解本课知 识的问题,让同学解答。
5、课本12页练习
三、训练与提高: 相反数提高性练习:
⑴观察数轴,发现A、B在原 点的_____边和______边,但它们与原点的距离都等于__ ____。则A、B为_________。⑶、画一个数轴,请在你的数轴上标出2、2、1.5、1.5、0.5、0.5、0;你 发现了 什么? ⑷、如果a的相反数是2018,则a等于_________。
第 2 页 ⑹、如果m的相反数是m,则m =_________。⑺、化简下列各数:(0)=(+6)=(+5)=(0.7)=(99)=(+6.7)=(8)=(+4.1)= 〔(+7)〕= 问题:化简中你有什么好方法吗?括号内的与括号外 的意义一样吗? 思考:你会化简[(a)]与{[(+a)]}吗? ⑻、若2x+1是9的相反数,求x的值? 学生先快速 按要求阅读课本,自学本章的基本考点,然后 后在 组内交流疑难问题。
教师深入学生中,了解学生自学情况,接受学生的质疑,并指导个别学生复习收集学生存在的共同问题,及时点拨。教师巡视,关注学生的学习情况。
课本练习每题找2学生板演,其余独立完成后对 照 板演查缺补漏。教师针对学生问题点拨。
能力提升题教师用课件出示问题,学生独立现场完成,随时发 现问题,师生共同及时矫正 绝对值提高性练习:
(1)、下列各式不正确的是()A、|-5 | =5 B、-|5| =-|-5| C、|-5 | = |5| D、-|-5| =5(2)、填空:+3的符号是,绝对值是;
第 3 页-3的符号是,绝对值是;符号是正,绝对值是7的数是;符号是负,绝对值 是7的数是;绝对值是13的数是。
(3)、根据以下条件求值∣a∣+∣b∣ ①a=-3,b=0 ②a=1.7,b=-2.3 ⑴正数的相反数是___________;⑵负数的相反数是_________;⑶0的相反数是___________;⑷相反数等于它本身的数___ ___;⑸相反数大于它本身的数是_______;⑹相反数小于它本身的数是_________。
(4)、填空: 如果 ∣x∣=0,那么x=;如果∣x∣=9,那么x=。
(5)、如果∣a-3∣=0则∣a+2∣=(6)、绝对值小于5的整数是(7)、下列说法不正确的是()A、-3表示的点到原点的距离是|-3 | B、一个有理数的绝对值一定是正数 C、一个有理数的绝对值一定不是 负数 D、互为相反数的两个数的绝对值一定相等。(8)、选择下列说法正确的:
A、-a一定是负数 B、-∣a∣一定是非正 数
第 4 页 C、∣a∣一定是正数 D、-∣a∣一定是负数(9)、∣a∣=∣b∣,则a与b有什么关系?
第 5 页
第四篇:相反数与绝对值习题精选
绝对值习题精选
一、选择题
1.绝对值是最小的数()
A.不存在 B.0 C.1 D.-1
2.当一个负数逐渐变大(但仍然保持是负数)时()
A.它的绝对值逐渐变大
B.它的相反数逐渐变大
C.它的绝对值逐渐变小
D.它的相反数的绝对值逐渐变大
二、填空题
1.若| -1| =0,则 =______,若|1-|=1,则=______.
2.一个数的倒数是它本身,这个数是______,一个数的相反数是它本身,这个数是______.
3.若 的相反数是5,则 的值为______.
4.一个数比它的绝对值小10,则这个数为______.
5.若
三、解答题
1.填空题,且,则 ______.
(1)符号是+号,绝对值是8.5的数是__________.
(2)符号是-号,绝对值是8.5的数是__________.
(3)-85的符号是__________,绝对值是___________.
(4)
(5)________的绝对值等于7.2.
(6)绝对值等于 的数是_________.
(7)
2.计算:(1)
参考答案:
一、1.B 2.C
二、1.1,0或-2; 2.
三、略
;(2)
,0;3. ;4. ; 5. .
第五篇:相反数与绝对值学案
相反数与绝对值学案
相反数与绝对值学案
学习目标:
1)借助数轴初步理解绝对值的概念,能求一个数的绝对值。
2)通过应用绝对值解决实际问题。
学习时数:1课时
学习过程:
一、快乐自学(8分钟)如上图,学校位于数轴的原点处,小光、小明、小亮家分别位于点A、B、C处,单位长度表示1千米。小光、小明、小亮家分别距学校多远? 在数轴上,一个数所对应的点到原点的距离叫做该数的绝对值。如在数轴上,小光家所在的位置对应的数是-2,到原点的距离是2,那就是说,-2的绝对值是2,记作 =2;小明家所在的位置对应的数是+1,到原点的距离是1,那就是说+1的绝对值是1,记作 =1。
二、合作探究
1、探索绝对值的性质
试一试,填空,你一定会: =
;=
;=
;= =
;=
;=
;从上面的解答中发现什么规律吗?小组讨论后,回答: 1)正数的绝对值是____________,如: =12 0的绝对值是________,负数的绝对值是它的______________,如: =7.5。2)如果用字母a表示一个数,① 当a是正数时,② 当a是正数时,③ 当a=0时,2、绝对值等于8.7的有理数有哪些?
________________________________________________________________ 小组讨论:互为相反数的两个数的绝对值有什么关系?
________________________________________________________________
三、小结:(3分钟)通过本节课的学习,你知道了什么? ____________________________________________________________________
____________________________________________________________________
四、达标训练
必做题(2分钟)
1、求下列各数的绝对值:3,3.14,-2.8。
____________________________________________________________________
2、在数轴上画出表示绝对值分别等于0.5,0,1.5 的数的点。
选做题(8分钟)
1、根据要求在空框内填上合适的数。8 相反数-8 绝对值 8 8 相反数-0.87 绝对值 8-.16 相反数-8 绝对值 8 8 相反数-8 绝对值-5
2、如果a是正数,那-a是什么数? _________________________ ____________________________________________________________________
五、学后反思
1、通过本节课的学习我知道了
数学知识:________________________________________________________ 学习数学的经验:__________________________________________________
2、我还存在的疑问是:
____________________________________________________________________
3、我对老师的建议是:
____________________________________________________________________
七年级数学合并同类项教案
七年级新人教版有理数复习教案
更多初一数学教案请关注