苏科版七年级数学课堂教案、讲义、备课参考 2.3.2 绝对值与相反数2(推荐)

时间:2019-05-12 16:46:22下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《苏科版七年级数学课堂教案、讲义、备课参考 2.3.2 绝对值与相反数2(推荐)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《苏科版七年级数学课堂教案、讲义、备课参考 2.3.2 绝对值与相反数2(推荐)》。

第一篇:苏科版七年级数学课堂教案、讲义、备课参考 2.3.2 绝对值与相反数2(推荐)

九色鹿教育

2.3.2 绝对值与相反数

◆知识平台

1.相反数的概念: 只有符号不同的两个数称互为相反数,零的相反数是零.

互为相反数在数轴上位于原点两旁,且与原点的距离相等. 2.求有理数的相反数: 在一个数的前面添上“-”号,用这个新数表示原来那个数的相反数. ◆思维点击

1.求一个数的相反数的方法是:在这个数前面添上“-”号,•就得这个数的相反数.

例如,-4的相反数为:-(-4)=4,a的相反数为:-a. 2.在一个数前面添上“+”号,表示这个数本身.

例如:+(-5)=-5,+(+8)=8,+0=0. ◆考点浏览

给一个数,求它的相反数,此类题在考试中出现较多.

例 化简下列各数前面的双重符号.

(1)-(+3);(2)+(-1.5);(3)+(+5);(4)-(-12).

【解析】(1)-(+3)=-3;(2)+(-1.5)=-1.5;(3)+(+5)=+5=5;(4)-•(-12)=12.

说明

有理数前面双重符合化简规律是:同号得“+”;异号得“-”. ◆在线检测

1.________不同的两个数称互为相反数,零的相反数为________. 2.互为相反数在数轴上表示的点到_________的距离相等. 3.-111相反数是_____;-2是____的相反数;______与互为相反数. 2104.数轴上,若A、B表示互为相反数,A在B的右侧,并且这两点的距离为8,则这两点所表示的数分别是_______和_______. 5.化简下列各数前面的符号.

(1)-(+2)=_______;(2)+(-3)=________;

(3)-(-11)=________;(4)+(+)=________. 32九色鹿教育

九色鹿教育

6.判断题.

(1)-5是相反数.()

1与+2互为相反数.()233(3)与-互为相反数.()

441(4)-的相反数是4.()(2)-7.下列各对数中,互为相反数的是()

A.+(-8)和-8 B.-(-8)和+8 C.-(-8)和+(+8)D.+8和+(-8)8.下列说法正确的是()A.正数与负数互为相反数 B.符号不同的两个数互为相反数

C.数轴上原点两旁的两个点所表示的数是互为相反数 D.任何一个有理数都有它的相反数 9.在数轴上表示下列各数及它们的相反数:2

10.化简下列各数:(1)-(-100);(2)-(-5

(4)+(-2.8);(5)-(-7);(6)-(+12).

答案

1,-3,0,-1.5.233);(3)+(+); 4811 2-4.4-4 210115.(1)-2(2)-3(3)(4)•

321.只有符号 0 2.原点 3.16.(1)×(2)×(3)∨(4)× 7.D 8.D 9.略

九色鹿教育

九色鹿教育

10.(1)100(2)5 33(3)•(4)-2.8(5)7(6)-12 48九色鹿教育

第二篇:相反数与绝对值2教案

相反数与绝对值2 【数学小故事】

某环形道路上顺次排列着四所中学:A1,A2,A 3,A4.它们顺次有彩电15台,8台,5台,12台.为使各校的彩电台数相同,允许一些学校向相邻中学调出彩电,问:应怎样调配才能使调出的彩电总台数最少?并求出调出彩电的最少总台数.调出彩电的最少总台数为10,调运方案有四个.方案一:A1校调往A2校2台,调往A4校3台,A4校调往A3校5台;

方案二:A1校调往A2校3台,调往A4校2台,A2校调往A3校1台,A4校调往A3校4台;

方案三:A1校调往A2校4台,调往A4校1台,A2校调往A3校2台,A4校调往A3校3台;

方案四:A1校调往A2校5台,A2校调往A3校3台,A4校调往A3校2台;

【知识要点】

1、a与a称为互为相反数.数轴上互为相反数的两个数关于原点对称.2、绝对值的定义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值还是0.aa0)(a(0a=0)

(aa0)

3、绝对值的几何意义:在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.4、绝对值的性质:

(1)abab; aa; abba(2)ab等价于ab或ab,即ab

(3)ab就是数轴上表示数a的与表示数b的两点之间的距离(4)a0

5、去掉绝对值符号后的结果与绝对值符号内的数(或式)的符号和取值范围有关,为了判断绝对值符号内代数式的值的正负,一般采用“零点分段法”.22nn【例题】

例题7 若2xy5与3x2y2000互为相反数,求9x5y.分析:因为2xy5与3x2y2000互为相反数,所以2xy5+3x2y2000=0.2xy5=0 所以 又因为2xy50,3x2y20000,3x2y2000=0解:因为2xy50,3x2y20000,2xy5=0 所以3x2y2000=0x2010 解得y4015所以9x5y=9201054015=1985.例题8 化简3x22x1.分析:要化简即要去掉绝对值符号后才能进行,而去掉绝对值符号与代数式3x2和2x1的正负情况有关。若3x20,则x2;反之3x20,则x2.3321是一个分界点或称零点。同理可知对于2x1而言,x是另一个零点。把322211x,x.这样,就可以零点标在数轴上,可把数轴分成3个部分,即x,3322此时x在这3段上分类讨论化简,这种方法称为“零点分段法”。

(1)当x时,解: 23原式=3x22x15x1

(2)当21x时,32原式=3x22x1=x+3

1(3)当x时,2原式=3x2+2x1=5x+1

25x1x312即3x22x1=x+3x

2315x+1x2例题9 求y=x1x2的最小值.分析:先利用“零点分段法”来研究各段的取值情况。解:当x1时,y=1x2x32x 因为x1,所以y1.当1x2时,y=x12x1 当x2时,y=x1x22x3 因为x2,所以y1.综上所述:当1x2时,y的最小值为1.例题10 已知a,b是整数,且满足ab+ab2,求ab的值.分析:因为a,b是整数,所以ab与ab均为非负整数.所以ab+ab2,则有3种可能:(1)ab=0,ab2;(2)ab=1,ab1;(3)ab=2,ab0.解:(1)当ab=0,ab2时; 由ab2,只能a,b中有一个为2,另一个为1,则ab为奇数,与ab=0矛盾

(2)当ab=1,ab1时; 由ab1,只能a,b同时为1,则ab为偶数,与ab=1矛盾

(3)当ab=2,ab0时;此时ab=0.所以ab=0.例题11某环形道路上顺次排列着四所中学:A1,A2,A 3,A4.它们顺次有彩电15台,8台,5台,12台.为使各校的彩电台数相同,允许一些学校向相邻中学调出彩电,问:应怎样调配才能使调出的彩电总台数最少?并求出调出彩电的最少总台数.分析:可设A1校调往A2校x1台(若x10,则是A2校调往A1校x1台),A2校调往A3校x2台,A3校调往A4校x3台,A4校调往A1校x4台.15-x1x410x2x128xx1021解得:

x3x25x17 5xx1032xx54112x4x310所以调出的彩电总台数是y=x1+x2+x3+x4 =x1+x12+x17+x15 其中8x115.当0x17时,它有最小值7;在数轴上,x1+x17表示数x1到0和7的距离之和,当2x15时,它有最小值3;x12+x15表示数x1到2和5的距离之和,所以:当2x15时,y有最小值10.解:调出的彩电最少总台数是10.A1校调往A2校2台,调往A4校3台,A4校调往A3校5台; 方案

一、x1=2时,A1校调往A2校3台,调往A4校2台,A2校调往A3校1台,A4校方案

二、x1=3时,调往A3校4台;

A1校调往A2校4台,调往A4校1台,A2校调往A3校2台,A4校方案

三、x1=4时,调往A3校3台;

A1校调往A2校5台,A2校调往A3校3台,A4校调往A3校2台.方案

四、x1=5时,【习题】

练习6 若x1与y2互为相反数,试求xy2002.解:因为x1与y2互为相反数,所以x1+y2=0.又因为x10,y20,x1=0 所以y2=0x1 解得y2所以xy2002=122002=12002=1

练习7 化简x52x3.解:零点为-5和3 2(1)当x5时,原式=x52x33x23(2)当5x时,2原式=x52x3=-x+83(3)当x时,2原式=x5+2x3=3x+23x2x53即x52x3=x+85x

233x+2x2

1xx2,且-1x,求2的最大值与最小值S.2解:由-1x2知x20,x20,练习8 已知S=x2所以x2=2x,x2=x2

所以S=x21xx2 21=2x+x2x

21=4x

2因为0x2

所以,当x=0时,原式=41x=4-0=4 21当x=2时,原式=4x=4-1=3

2所以S的最大值是4,最小值是3.练习9 如果2ab0,求aa12的值 bb解:因为2ab0,所以b2a.aa12 bb=aa12 2a2aaa=12 2a2a当a0时,原式=aa12 2a2a=111+2 2211=1++2

22=3

当a0时,原式=aa12 2a2a11=1+2

22=1=3 11+2 22aa所以,当2ab0,12=3.bb练习10 在6张卡片的正面分别写上整数1,2,3,4,5,6,打乱次序后,将卡片翻过来,在它们的反面也随意分别写上1~6这6个整数,然后计算每张卡片正面与反面所写数字之差的绝对值,得到6个数,请证明所得的6个数中至少有两个是相同的.证明:设6张卡片正面写的数是a1,a2,a3,a4,a5,a6,反面写的数是b1,b2,b3,b4,b5,b6,则6张卡片正面写的数与反面写的数的差的绝对值分别是 a1b1,a2b2,a3b3,a4b4,a5b5,a6b6

若设这6个数两两不相等,则它们只能取0,1,2,3,4,5这6个数.所以a1b1+a2b2+a3b3+a4b4+a5b5+a6b6=0+1+2+3+4+5=15注意15是个奇数.另一方面,因为aibi与aib(2,3,4,5,6)的奇偶性相同,ii1,又因为a1b1+a2b2+a3b3+a4b4+a5b5+a6b6

=a1+a2+a3+a4+a5+a6b1+b2+b3+b4+b5+b6=0

注意0是个偶数.所以:a1b1+a2b2+a3b3+a4b4+a5b5+a6b6的结果也应该是个偶数.这和之前的证明矛盾,所以a1b1,a2b2,a3b3,a4b4,a5b5,a6b6

这6个数中至少有两个相同的.

第三篇:苏科版七年级数学课堂教案、讲义、备课参考 2.2 数轴

九色鹿教育

2.2 数轴

◆知识平台

1.数轴的定义:规定了原点、正方向和单位长度的直线叫数轴.原点、•正方向、单位长度称为数轴的三要素.

2.数轴的画法:三要素缺一不可,单位长度统一. 3.利用数轴比较有理数的大小

(1)在数轴上表示的两个数,右边的数总比左边的数大.

(2)正数都大于0,负数都小于0,正数大于一切负数. ◆思维点击

正确画出数轴,利用数轴比较有理数的大小.

两个负数大小的比较方法:将两个数用数轴上的点表示,看两个点哪个在左,哪个在右,然后利用“数轴上表示的两个数,右边的数总比左边的数大”的性质进行比较. ◆考点浏览

1.能正确画出数轴.

2.能将已知数在数轴上表示出来,能说出数轴上已知点表示的数. 3.会比较数轴上数的大小.

例 判断下列图形中所画数轴是否正确,如不正确,指出错在哪里?

0-2-1012234-1ABC01D

【解析】 画数轴三要素缺一不可.故以上数轴都不正确.A缺少单位长度;•B缺少正方向;C缺少原点;D单位长度不一致. ◆在线检测

1.画一条水平直线,在直线上取一点表示0,叫做_________;•选取某一长度作为________;规定直线上向右的方向为_________,这样就得到了数轴.•我们把上述三方向称为数轴的三要素.所有的有理数都可以用数轴上的______来表示.

2.数轴上表示负数的点在原点的__________,表示正数的点在原点的_______,原点表示的数是________.

3.数轴上表示-2的点离原点的距离是______个单位长度;表示+2•的点离原点的距离是 _____个单位长度;数轴上与原点的距离是2个单位长度的点有_______个,它们表示的九色鹿教育

九色鹿教育

数分别是________.

4.判断下列所画的数轴是否正确,如不正确,请指出.

(1)-101(2)

0(3)

-101

(4)-2-1012(5)

1234(6)-1-2-30123

5.在所给的数轴上画出表示下列各数的点:2,-3,1

-5-4-3-2-101311,0,5,2。

2322345

6.指出数轴上A,B,C,D,E,F各点所代表的数字.

D-5-4-3-2A-10B1C23E4F5

7.在数轴上画出表示下列各数的点,并回答下列问题.-3,2,-1.5,-2,0,1.5,3.

(1)哪两个数的点与原点的距离相等?

(2)表示-2的点与表示3的点相差几个单位长度?

8.将-1所对应的点在数轴上先向右移动4个单位长度,再向左移动5•个单位长度后,得到的点对应的数是什么?

九色鹿教育

九色鹿教育

答案

1.略 2.左边 右边 0 3.2 2 2 ±2 4.(1)错误,单位长度不一致(2)错误,没有单位长度(3)错误,没有正方向(4)正确(5)错误,没有原点 •(6)错误,负数排列次序颠倒 5.略 6.略 7.略 8.-2

九色鹿教育

第四篇:七年级数学上册:绝对值与相反数教学案

七年级数学上册:绝对值与相反数教学

【学习目标】

使学生能说出相反数的意义

2使学生能求出已知数的相反数

3使学生能根据相反数的意思进行化简

【学习过程】

【情景创设】

回忆上节的情境,小明从学校出发沿东西大街走了0千米,在数轴上表示出他的位置。点A,点B即是小明到达的位置。

观察A,B两点位置及共到原点的距离,你有什么发现吗?

观察下列各对数,你有什么发现?

‐与,‐61与61,‐34与+34

相反数的描述性定义:符号不同,绝对值相等的两个数,叫做相反数(只有符号不同)

规定0的相反数是0

想一想:你能举出互为相反数的例子吗?

【例题精讲】

例1

例2

试一试:化简―[―]

想一想:

请同学们仔细观察这五个等式,它们的符号变化有什么规律?

把一个数的多重符号化成单一符号时,若该数前面有奇数个“―”号,则化简的结果是负;若该数前面有偶数个“―”号,则化简的结果是正

练一练:填空

-2的相反数是

,37与

互为相反数,相反数是其本身的数是

;

-=,-=,-[+]=,-[-]=

;

判断下列语句,正确的是

①―是相反数;

②―与+3互为相反数;

③―是的相反数;

④―和互为相反数;

⑤0的相反数还是0

选择:

下列说法正确的是

A正数的绝对值是负数;

B符号不同的两个数互为相反数;

π的相反数是―314;

D任何一个有理数都有相反数

一个数的相反数是非正数,那么这

个数一定是

A正数

B负数

零或正数

D零

画一画:

在数轴上画出表示下列各数以及它们的相反数的点:

动脑筋:

如果数轴上两点A、B所表示的数互为相反数,点A在原点左侧,且A、B两点距离为8,你知道点B代表什么数吗?

【后作业】

判断题

0没有相反数。

()

任何一个有理数的相反数都与原来的符号相反。

如果一个有理数的相反数是正数,则这个数是负数

()

只有0的相反数是它本身

()

互为相反数的两个数绝对值相等

2填空题

-=_________;

-=_________;

-34的相反数是________

-26是________的相反数

│-34│=________;│7│=________;

-│26│=_______;-│-126│=_______

()绝对值等于的数是_________

相反数等于本身的数是__________

3化简:

-=______

+│-1978│=______+=______

-=_______

+│+XX│=______

4、选择题:

(1)在-

3、+(-3)、-(-4)、-(+2)中,负数的个数有()

A、1个

B、2个

、3个

(2)在+(-2)与-

2、-(+1)与+

1、-(-4)与+(-4)、-(+)与+(-)、-(-6)与+(+6)、+(+7)与+(-7)

这几对数中,互为相反数的有()

A、6对

B、对

、4对

D、3对、在数轴上标出

3、-2、2、0、以及它们的相反数。

6、请在数轴上画出表示

3、-

2、-3及它们相反数的点,并分别用A、B、、D、E、F来表示

(1)把这6个数按从小到大的顺序用<连接起来

点与原点之间的距离是多少?点A与点之间的距离是多少?

第五篇:苏科版七年级数学课堂教案、讲义、备课参考 2.4.1 有理数的加法与减法1(定稿)

九色鹿教育

2.4.1 有理数的加法与减法

◆知识平台

1.有理数的加法法则

(1)同号两数相加,取相同的符号,并把绝对值相加.

(2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大加数的符号,并用较大的绝对值减较小的绝对值.

(3)一个数同0相加,仍得这个数. 2.有理数加法的运算律

(1)加法交换律:a+b=b+a.

(2)加法结合律:(a+b)+c=a+(b+c). ◆思维点击

有理数的加法运算及简化运算:在进行有理数的加法时,首先应判断相加两数的符号是同号还是异号,选定有理数的加法法则,然后确定和的符号,最后进行绝对值的计算.

异号两数的加法运算:关键应首先判断两加数的绝对值大小,确定和的符号.若正数的绝对值较大,则和取正;若负数的绝对值较大,则取负;然后判断用谁的绝对值减去谁的绝对值.

注意:在有理数的加法中,和不一定小于每个加数. ◆考点浏览

1.有理数的加法运算.

2.利用运算律进行简便计算,考试中经常与其他运算结合在一起出现.

例 计算

(1)(-21)+(-31);(2)-15+0;

(3)(-111)+(+);(4)(-3)+0.3. 323 【解析】 按有理数的加法法则计算.

(1)原式=-(21+31)=-52;(2)原式=-15;

111-)=; 236131(4)原式=-(3-)=-3 31030(3)原式=+(九色鹿教育 九色鹿教育

◆在线检测

1.(+5)+(+7)=_______;(-3)+(-8)=________;

(+3)+(-8)=________;(-3)+(-15)=________; 0+(-5)=________;(-7)+(+7)=________.

2.比-3大-6的数为_______;上升20米,再上升-10米,则共上升_______米. 3.一个数为-5,另一个数比它的相反数大4,这两数的和为________. 4.(-5)+______=-8; ______+(+4)=-9.

5.若a,b互为相反数,c、d互为倒数,则(a+b)+cd=________. 6.若两数的和为负数,则这两个数一定()

A.两数同正 B.两数同负;C.两数一正一负 D.两数中一个为0 8.下列各组运算结果符号为负的有()

(+346513)+(-),(-)+(+),(-3)+0,(-1.25)+(-)557634 A.1个 B.2个 C.3个 D.4个 9.计算:(1)(-4

(4)│-7│+│-9

(7)(-22

九色鹿教育

21225)+(+3);(2)(-8)+(+4.5);(3)(-7)+(-3); 363367│;(5)(+4.85)+(-3.25);(6)(-3.1)+(6.9); 1519)+0;(8)(-3.125)+(+3).

814九色鹿教育

10.一位同学在一条由东向西的跑道上,先向东走了20米,又向西走了30米,能否确定他现在位于原来的哪个方向,与原来位置相距多少米?

11.存折中原有550元,取出260元,又存入150元,现在存折中还有多少元钱?

答案

1.略 2.-9 10 3.4 4.-3-13 5.1 6.D 7.B 8.D 9.(1)-111179(2)-4(3)-11(4)16(5)1.6(6)-10(7)-22 2621514(8)0 10.西10米 11.440元

九色鹿教育

下载苏科版七年级数学课堂教案、讲义、备课参考 2.3.2 绝对值与相反数2(推荐)word格式文档
下载苏科版七年级数学课堂教案、讲义、备课参考 2.3.2 绝对值与相反数2(推荐).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐