第一篇:七年级数学上册:绝对值与相反数教学案
七年级数学上册:绝对值与相反数教学
案
【学习目标】
使学生能说出相反数的意义
2使学生能求出已知数的相反数
3使学生能根据相反数的意思进行化简
【学习过程】
【情景创设】
回忆上节的情境,小明从学校出发沿东西大街走了0千米,在数轴上表示出他的位置。点A,点B即是小明到达的位置。
观察A,B两点位置及共到原点的距离,你有什么发现吗?
观察下列各对数,你有什么发现?
‐与,‐61与61,‐34与+34
相反数的描述性定义:符号不同,绝对值相等的两个数,叫做相反数(只有符号不同)
规定0的相反数是0
想一想:你能举出互为相反数的例子吗?
【例题精讲】
例1
例2
试一试:化简―[―]
想一想:
请同学们仔细观察这五个等式,它们的符号变化有什么规律?
把一个数的多重符号化成单一符号时,若该数前面有奇数个“―”号,则化简的结果是负;若该数前面有偶数个“―”号,则化简的结果是正
练一练:填空
-2的相反数是
,37与
互为相反数,相反数是其本身的数是
;
-=,-=,-[+]=,-[-]=
;
判断下列语句,正确的是
①―是相反数;
②―与+3互为相反数;
③―是的相反数;
④―和互为相反数;
⑤0的相反数还是0
选择:
下列说法正确的是
A正数的绝对值是负数;
B符号不同的两个数互为相反数;
π的相反数是―314;
D任何一个有理数都有相反数
一个数的相反数是非正数,那么这
个数一定是
A正数
B负数
零或正数
D零
画一画:
在数轴上画出表示下列各数以及它们的相反数的点:
动脑筋:
如果数轴上两点A、B所表示的数互为相反数,点A在原点左侧,且A、B两点距离为8,你知道点B代表什么数吗?
【后作业】
判断题
0没有相反数。
()
任何一个有理数的相反数都与原来的符号相反。
如果一个有理数的相反数是正数,则这个数是负数
()
只有0的相反数是它本身
()
互为相反数的两个数绝对值相等
2填空题
-=_________;
-=_________;
-34的相反数是________
-26是________的相反数
│-34│=________;│7│=________;
-│26│=_______;-│-126│=_______
()绝对值等于的数是_________
相反数等于本身的数是__________
3化简:
-=______
+│-1978│=______+=______
-=_______
+│+XX│=______
4、选择题:
(1)在-
3、+(-3)、-(-4)、-(+2)中,负数的个数有()
A、1个
B、2个
、3个
(2)在+(-2)与-
2、-(+1)与+
1、-(-4)与+(-4)、-(+)与+(-)、-(-6)与+(+6)、+(+7)与+(-7)
这几对数中,互为相反数的有()
A、6对
B、对
、4对
D、3对、在数轴上标出
3、-2、2、0、以及它们的相反数。
6、请在数轴上画出表示
3、-
2、-3及它们相反数的点,并分别用A、B、、D、E、F来表示
(1)把这6个数按从小到大的顺序用<连接起来
点与原点之间的距离是多少?点A与点之间的距离是多少?
第二篇:七年级数学上册:绝对值与相反数教学案
七年级数学上册:绝对值与相反数(3)
教学案
学习目标:
1、理解有理数的绝对值和相反数的意义。
2、会求已知数的相反数和绝对值。
3、会用绝对值比较两个负数的大小。
4、经历将实际问题数学化的过程,感受数学与生活的联系。
学习重点:1.会用绝对值比较两个负数的大小。
2.会求已知数的相反数和绝对值。
学习难点:理解有理数的绝对值和相反数的意义。
学习过程:
一、创设情境
根据绝对值与相反数的意义填空:
、2、-的相反数是______,-10的相反数是______,的相反数是______;
3、|0|=______,0的相反数是______。
二、探索感悟
、议一议
(1)任意说出一个数,说出它的绝对值、它的相反数。
(2)一个数的绝对值与这个数本身或它的相反数有什么关系?
2、想一想
(1)2与3哪个大?这两个数的绝对值哪个大?
(2)-1与-4哪个大?这两个数的绝对值哪个大?
(3)任意写出两个负数,并说出这两个负数哪个大?他们的绝对值哪个大?
(4)两个有理数的大小与这两个数的绝对值的大小有什么关系?
三.例题精讲
例1求下列各数的绝对值:
+9,-16,-02,0
求一个数的绝对值,首先要分清这个数是正数、负数还是0,然后才能正确地写出它的绝对值。
议一议:(1)两个数比较大小,绝对值大的那个数一定大吗?
(2)数轴上的点的大小是如何排列的?
例2比较-1012与-2的大小。
例3求
6、-6、14、-14的绝对值。
小节与思考:
这节你有何收获?
四.练习
填空:
⑴的符号是
,绝对值是
;
⑵10的符号是
,绝对值是
;
⑶符号是“+”号,绝对值是的数是
;
⑷符号是“-”号,绝对值是9的数是
;
⑸符号是“-”号,绝对值是037的数是
2正式足球比赛时所用足球的质量有严格的规定,下表是6个足球的质量检测结果(用正数记超过规定质量的克数,用负数记不足规定质量的克数)
请指出哪个足球质量最好,为什么?
第1个
第2个
第3个
第4个
第个
第6个
+20
+30
+1
3比较下面有理数的大小
(1)-07与-17
(2)
(3)
(4)-与0
五、布置作业:
P2习题23
家庭作业:《评价手册》
《补充习题》
六、学后记/教后记
第三篇:相反数与绝对值学案
相反数与绝对值学案
相反数与绝对值学案
学习目标:
1)借助数轴初步理解绝对值的概念,能求一个数的绝对值。
2)通过应用绝对值解决实际问题。
学习时数:1课时
学习过程:
一、快乐自学(8分钟)如上图,学校位于数轴的原点处,小光、小明、小亮家分别位于点A、B、C处,单位长度表示1千米。小光、小明、小亮家分别距学校多远? 在数轴上,一个数所对应的点到原点的距离叫做该数的绝对值。如在数轴上,小光家所在的位置对应的数是-2,到原点的距离是2,那就是说,-2的绝对值是2,记作 =2;小明家所在的位置对应的数是+1,到原点的距离是1,那就是说+1的绝对值是1,记作 =1。
二、合作探究
1、探索绝对值的性质
试一试,填空,你一定会: =
;=
;=
;= =
;=
;=
;从上面的解答中发现什么规律吗?小组讨论后,回答: 1)正数的绝对值是____________,如: =12 0的绝对值是________,负数的绝对值是它的______________,如: =7.5。2)如果用字母a表示一个数,① 当a是正数时,② 当a是正数时,③ 当a=0时,2、绝对值等于8.7的有理数有哪些?
________________________________________________________________ 小组讨论:互为相反数的两个数的绝对值有什么关系?
________________________________________________________________
三、小结:(3分钟)通过本节课的学习,你知道了什么? ____________________________________________________________________
____________________________________________________________________
四、达标训练
必做题(2分钟)
1、求下列各数的绝对值:3,3.14,-2.8。
____________________________________________________________________
2、在数轴上画出表示绝对值分别等于0.5,0,1.5 的数的点。
选做题(8分钟)
1、根据要求在空框内填上合适的数。8 相反数-8 绝对值 8 8 相反数-0.87 绝对值 8-.16 相反数-8 绝对值 8 8 相反数-8 绝对值-5
2、如果a是正数,那-a是什么数? _________________________ ____________________________________________________________________
五、学后反思
1、通过本节课的学习我知道了
数学知识:________________________________________________________ 学习数学的经验:__________________________________________________
2、我还存在的疑问是:
____________________________________________________________________
3、我对老师的建议是:
____________________________________________________________________
七年级数学合并同类项教案
七年级新人教版有理数复习教案
更多初一数学教案请关注
第四篇:1.2.3相反数学案:七年级数学人教版上册
教学方案
年级:七年级
学科:数学
第一章;有理数
第2小节
第3课时
累计
课时
主备教师:
上课教师:
审批领导:
授课时间:
****年**月**日
课
题
1.2.3
相反数
教学目标
1.借助数轴了解相反数的概念,知道表示互为相反数的两个点的位置关系;
2.会求一个已知数的相反数,会对含有多重符号的数进行化简。
重点难点
重点:理解相反数的意义,能熟练地求出一个已知数的相反数。
难点:理解和掌握多重符号的化简规律。
法制渗透
中考链接
在中考中常考填空题或选择题
一、激趣导入
提问
1、数轴的三要素是什么?
2、填空:数轴上与原点的距离是2的点有
个,这些点表示的数是
;与原点的距离是5的点有
个,这些点表示的数是。
(小组讨论,交流合作,动手操作)
二、预习分享
采用教师抽查或小组互查的方法检查学生的预习情况:
1.什么叫做相反数?
2.5的相反数是,-(-7)=,-(+7)=。
三、合作探究
探究1:
相反数的概念
观察下列各数:1和-1,2.5和-2.5,并把它们在数轴上标出来。
学生讨论:
(1)上述各组数之间有什么特点?
(2)表示这三组数的点在数轴上的位置关系有什么特点?
(3)你还能写出具有上述特点的几组数吗?
教师点评:
只有符号不同的两个数,我们称它们互为相反数,零的相反数是零。
概念的理解:
(1)互为相反数的两个数分别在原点的两旁,且到原点的距离相等。
一般地,数a的相反数是,不一定是负数。
(2)在一个数的前面添上“-”号,就表示这个数的相反数,如:-3是3的相反数,-a是a的相反数,因此,当a是负数时,-a是一个正数
-(-3)是(-3)的相反数,所以-(-3)=3,于是
(3)互为相反数的两个数之和是0
即如果x与y互为相反数,那么x+y=0;反之,若x+y=0,则x与y互为相反数
相反数是指两个数之间的一种特殊的关系,而不是指一个种类。如:“-3是一个相反数”这句话是不对的。
例1
求下列各数的相反数:
(1)-5
(2)
(3)0
(4)
(5)-2b
(6)
a-b
(7)
a+2
探究2:多重符号的化简
学生讨论:
若a表示一个数,-a一定是负数吗?
教师点评:
在正数前面添上一个“-”号,就得到这个正数的相反数,在任意一个数前面添上一个“-”号,新的数就表示原数的相反数,如:-(-5)=+5,那么你能借助数轴说明-(-5)=+5吗?
四、目标检测
[基础题]
1、判断:
(1)-2是相反数
(2)-3和+3都是相反数
(3)-3是3的相反数
(4)-3与+3互为相反数
(5)+3是-3的相反数
(6)一个数的相反数不可能是它本身
[能力提高题]
2、化简下列各数中的符号:
(1)
(2)-(+5)
(3)
(4)
[探索拓展题]
3、填空:
(1)若-(a-5)是负数,则a-5
0.(2)
若是负数,则x+y
0.五、小结
本节课你学到了什么?还有哪些疑惑?
1.相反数的概念
2.多重符号的化简
六、巩固目标
作业:课本P14
第4题
七、安排下节预习
预习课本P11至P13“1.2.4
绝对值”并回答:
1.绝对值的概念.2.有理数的大小应怎样比较?
修订意见
反思
第五篇:相反数与绝对值习题精选
绝对值习题精选
一、选择题
1.绝对值是最小的数()
A.不存在 B.0 C.1 D.-1
2.当一个负数逐渐变大(但仍然保持是负数)时()
A.它的绝对值逐渐变大
B.它的相反数逐渐变大
C.它的绝对值逐渐变小
D.它的相反数的绝对值逐渐变大
二、填空题
1.若| -1| =0,则 =______,若|1-|=1,则=______.
2.一个数的倒数是它本身,这个数是______,一个数的相反数是它本身,这个数是______.
3.若 的相反数是5,则 的值为______.
4.一个数比它的绝对值小10,则这个数为______.
5.若
三、解答题
1.填空题,且,则 ______.
(1)符号是+号,绝对值是8.5的数是__________.
(2)符号是-号,绝对值是8.5的数是__________.
(3)-85的符号是__________,绝对值是___________.
(4)
(5)________的绝对值等于7.2.
(6)绝对值等于 的数是_________.
(7)
2.计算:(1)
参考答案:
一、1.B 2.C
二、1.1,0或-2; 2.
三、略
;(2)
,0;3. ;4. ; 5. .