初中数学 《相反数》教案3

时间:2019-05-12 16:37:31下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初中数学 《相反数》教案3》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初中数学 《相反数》教案3》。

第一篇:初中数学 《相反数》教案3

《相反数》教案

教学目标:

1.使学生理解相反数的意义; 2.给出一个数能求出它的相反数;

3.会根据相反数的意义简化一个有理数的符号; 4.体验数行结合思想.教学重点

相反数的概念.教学难点

相反数在数轴上表示的点的特征和双重符号的简化.教学过程

一.创设情景 导入新课

问题1: 首先,画一条数轴,然后在数轴上标出下列各点:2与-3,4与-4,1与-21请同学们观察: 2(1)上述这三对数有什么特点?

(2)表示这三对数的数轴上的点有什么特点?(3)请你再写出同样的几对点来? 显然:

(1)上面的这三对数中,每一对数,只有符号不同.

(2)这三对数所对应的点中每一组中的两个点,一个在原点的左边,一个在原点的右边,而且离开原点的距离相同.

1.相反数的概念:像以上这样,只有符号不同的两个数互称为相反数,例如1和1互为相反数,121211111是1的相反数,1是1的相反数. 2222我们还规定:0的相反数是0 说明:

(1)只有符号不同的两个数叫做互为相反数,如-1999与1999互为相反数.(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数.如4与-4是互为相反数。

(3)0的相反数是0.也只有0的相反数是它的本身.(4)相反数是表示两个数的相互关系,不能单独存在. 2.相反数的表示

在一个数的前面添上“-”号就成为原数的相反数.若a表示一个有理数,则a的相反数表示为-a.在一个数的前面添上“+”号仍与原数相联系同.例如,+7=7,特别地,+0=0,-0=0.

3.相反数的特性 若a、b互为相反数,则二.应用迁移 巩固提高 例1.3,-7,-2.1, ;反之若

,则a、b互为相反数.

25,-31122的相反数是-;33解:3的相反数是-3;-7的相反数是7;-2.1的相反数是2.1;-55的相反数是;0的相反数是0;20的相反数是-20.1111从例1可以看出:一个正数的相反数是一个负数,而一个负数的相反数是一个正数. 例题可以看出:在一个数前面添上“-”号,用这个新数表示原来那个数的相反数;在一个数的前面添上“+”号,表示这个数本身.

4.多重符号化简

(1)相反数的意义是简化多重符号的依据。如-(-1)是-1的相反数,而-1的相反数为+1,所以-(-1)=+1=1.

(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则结果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”.

例如,由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写.

例2.简化下列各数的符号:

(1)-(+7);(2)+(-5);(3)-(-3.1);(4)-[+(-2)];(5)-[-(-6)] 解:

(1)(7)7(2)(5)5(3)(31.)31.(4)[(2)]2(5)[(6)]6三.总结反思 拓展升华

我们这节课学习了相反数,归纳如下:

1.________________的两个数,我们说其中一个是另一个的相反数. 2.+a表示求a的_____________,-a表示a的_____________. 四.作业

1.分别写出下列各数的相反数:

2.在数轴上标出2,-4.5,0各数与它们的相反数. 3.填空:(1)-1.6是______的相反数,______的相反数是-0.2 4.化简下列各数:(1)-(-16)(2)-(+20)(3)+(+50)

5.填空:(1)如果a=-13,那么-a=______,(2)如果-a=-5.4,那么a=______,(3)如果-x=-6,那么x=______,(4)-x=9,那么x=______.

第二篇:初中数学《相反数》教学反思

教学反思

黑龙江省林口县龙爪中学刘子延

本节课是一节概念及概念应用课.教科书以现两个思考形式呈现本节的内容.

为了顺利完成教学任务,我先以发散思维的形式,让学生感受数字的变化,一下子把学生的注意力全集中在课堂上.带有激励性的语言,使数学积极参与到对问题的思考之中,符合七年级学生的年龄特点,带着好奇心和求知欲,学生很快进入学习状态.

在对相反数概念的提炼及应用的过程中,学生通过探究、合作、交流,以及师生有目的的对话,使学生对相反数有了更深的理解,培养了学生良好的思维品质,并用数学知识进行了检验,学生参与积极,思维活跃,兴趣高.通过对0有没有相反思的讨论,我又设计了一个开放问题,让学生自己解释有没有的原因,它具有思维的跨度,目的是让学生经历从发现、推理、验证到判断这一重要数学探究过程,同时这一问题也是相反数概念的外延,达到巩固新知的目的.

本节课我感到不足的地方是,学生参与面不够大,部分学生在活动中没有积极思考,不够大胆主动地发表自己的观点,担心自己说错了会让老师和同学们笑自己.

通过本节课我得到这样一个启示:

(一)导入新课要结合实例.良好的开端是成功的一半,引入阶

段正处在一堂课的起始阶段,处理的是否恰当,直接影响到学生学习的情绪,以及思维的活跃程度.结合学生身边的实例导入新课,不但可提高学生的学习兴趣,激发求知的内驱力,而且可使所要学习的数学问题具体化,形象化.

(二)加深理解新知要联系生活实际.在新知的教学时,如果能结合学生的日常生活,创设学生熟悉与感兴趣的具体生活活动情况,就能引导学生通过联想、类比,沟通从具体的感性实践到抽象概括的道路,加深对新知的理解.

(三)巩固新知要在生活实践应用中.数学来源于实践,又服务于实践,为此在数学教学中,我们要创设运用数学知识的条件给学生以实际活动的机会,使学生在实践活动中加深对新学知识的巩固.

今后我要善于从学生已有的生活经验出发,创设生活中生动、有趣的的情境,强化感性认识,引导学生在情境中观察、操作、交流,使学生体验数学与日常生活的密切联系,感受数学在生活中的作用;加深对数学的理解,并运用数学知识解决现实问题.同时,鼓励学生多角度思考问题,优化解题策略.

第三篇:相反数初中一年级教案

教学目标

1.了解相反数的意义,会求有理数的相反数;

2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.

3.初步认识对立统一的规律。教学建议

一、重点、难点分析

本节的重点是了解相反数的意义,理解相反数的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为相反数。另外,“0的相反数是0”也是相反数定义的一部分。关于“数a的相反数是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。

二、知识结构

相反数的定义 相反数的性质及其判定 相反数的应用

三、教法建议

这节课教学的主要内容是互为相反数的概念。

由于教材先讲相反数,后讲绝对值,所以相反数的定义只是形式上的描述,主要通过相反数的几何意义理解相反数的概念。教学中建议,直接给出相反数的几何定义,通过实例了解求一个数的相反数的方法。按着数轴——相反数——绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。

四、相反数的相关知识

1.相反数的意义

(1)只有符号不同的两个数叫做互为相反数,如-1999与1999互为相反数。

(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。如5与-5是互为相反数。

(3)0的相反数是0。也只有0的相反数是它的本身。

(4)相反数是表示两个数的相互关系,不能单独存在。

2.相反数的表示

在一个数的前面添上“-”号就成为原数的相反数。若 表示一个有理数,则 的相反数表示为-。在一个数的前面添上“+”号仍与原数相联系同。例如,+7=7,特别地,+0=0,-0=0。

3.相反数的特性

若 互为相反数,则,反之若,则 互为相反数。

4.多重符号化简

(1)相反数的意义是简化多重符号的依据。如 是-1的相反数,而-1的相反数为+1,所以。

(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则

果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。

例如。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。

第四篇:数学f1初中数学【教案】2.3绝对值与相反数

知识决定命运 百度提升自我

本文为自本人珍藏

版权所有

仅供参考 本文为自本人珍藏

版权所有

仅供参考

2.3绝对值与相反数(1)

【教学目标】

1.理解有理数的绝对值和相反数的意义.

2.会求已知数的相反数和绝对值.

3.会用绝对值比较两个负数的大小.

4.经历将实际问题数学化的过程,感受数学与生活的关系.

【教学过程设计建议(知识决定命运 百度提升自我

此外,还可以设计一些距离相同但方向相反的实际问题,引入互为相反数的概念.

2.探索活动

(1)给出相反数的描述性定义后,要让学生大量举例以巩固概念.

(2)围绕“只有符号不同”展开讨论,让学生充分发表看法.搞清它的意义是判断两个数是否互为相反数的需要,要及时肯定学生中的较好的解释,如:

“两个数的符号不同,绝对值相等.”

“除0以外,绝对值相等的数有两个,一个是正数,一个是负数,它们仅仅是符号不同.”

“写已知数的相反数,只要在这个数的前面添一个负号.”

“有理数由符号和绝对值两部分组成,如果改变有理数的符号,那么数轴上表示有理数的点就从原点的一侧变到另一侧.”

(3)通过“议一议”,归纳出一个数的绝对值与这个数本身或它的相反数的关系.需要注意的是,在写一个数的绝对值时,要紧扣课本

第五篇:初中数学优秀教学案例相反数

初中数学优秀教学案例:《相反数》课堂教学实录及反思 [复制链接]

──《相反数》课堂教学实录及反思 课堂实录:

一、发散思维,引出课题

师:请同学们自己找出一条理由,将-4,+3,+4,-3分成两组.

生1:我将-

4、-3分在一组,将+

4、+3分为另一组,就是将负数分为一组,正数分为另一组.

师:简单地说,就是将符号相同的放在一组.

生2:我将-4,+4分在一组,将-3,+3分为另一组,就是把数是否相同作为分组的依据. 师:你的意思是-4与+4相同,所以把它们放在一组?

生2:不是那个意思,我指的是-4与+4中都有4这个数,也就是符号后面的数相同,所以把它们放在一组.

师:什么数相同一定要说明,否则容易引起误会.(板书:符号后面的数)

生3:我把-4与+3分在一组,把+4与-3分在另一组.理由是两个数的符号不同,符号后面的数也不相同.

二、比较概括,提炼定义

师:一般地,一个数由两部分构成,即符号和刚才提到的“符号后面的数”,考虑这两个方面,大家也就采用了三种不同的分法.两个方面都不相同是一种分法,把“符号”是否相同作为分组的依据,得到的是已经学过的一组正数和一组负数;把“符号后面的数”是否相同作为分组的依据,得到了-4与+

4、+3与-3这样成对的数,那么它们又应该叫什么数呢? 生4:相反数.

师:你是怎样想到把它们叫相反数的呢? 生4:看书知道的.(众笑)

师:你先预习了今天的内容,知道了像+4与-4这样一对数是相反数(板书课题),不知是否想过,为什么叫相反数而不叫别的数呢? 生4:没有想过.

师:现在请大家思考一下.

生5:一个正数,一个负数,表示的意义相反,所以叫相反数.

师:说出了最重要原因.不过照这种说法,-4与+3也是相反数,是吗? 生(众):不是,它们符号后面的数不同.

师:分析的有道理.现在请大家用尽可能简单的一句话说明什么样的两个数叫相反数. 生6:符号不同、符号后面的数相同的两个数叫相反数.(板书)生7:一个数前面添上不同的符号后得到的两个数叫相反数.(板书)师:请你举例说明.

生7:如5前面添上“+”“-”得到的+5和-5是相反数.

师:说的都很好,用简洁的语言把数的两个部分的关系都讲清楚了,课本上说“只有符号不同的两个数叫做互为相反数”(板书),这与刚才两个同学的说法一致吗?

生(众):是一致的.“只有符号不同”说明其它的都相同,包含了“符号后面的数相同”的意思. 师:很好,挖掘出了言外之义.关于什么叫相反数,谁还有新的说法? 生8:只有符号后面的数相同的两个数叫做互为相反数.(板书)

师:反应很快,“只有符号后面的数相同”的言外之意是“符号不同”,与课本上的说法是一致的.由此可见,同样的意思,可以用不同的语言来表达,在数学学习中,对此我们应该多加注意.需要说明的是,课本用“只有符号不同”包含“符号后面的数相同”的意思,好处是使相反数的概念更精炼,同时也避免了使用“符号后面的数”这一说法容易引起的误会,关于这一点,以后我们还将看到.

关于相反数,谁有什么疑问,请提出来. 生9:为什么说“互为相反数”?

师:“互”就是“相互”的意思,如+4是-4的相反数,也可以说-4是+4的相反数,即+4与-4互为相反数.请大家一起把“+3与-3互为相反数”的意思说具体一点. 生(众):+3是-3的相反数,-3是+3的相反数. 师:谁还有问题吗?

生10:我的问题是零有没有相反数? 师:你怎么想起了这样一个问题呢?

生10:前面提到的相反数总是一正一负,我就想到是否遗漏了零.

师:老师真为你高兴,你想到了一个不能遗漏的重要问题.关于零有没有相反数,请大家不要急于看课本,先思考一会,然后相互交流各自的看法. 生:(思考,讨论).

师:先请一个认为零没有相反数的同学说明理由.

生11:因为相反数总是一正一负符号不同,而零既不是正数也不是负数,所以零没有相反数. 师:有道理.那么认为零有相反数的理由又是什么呢?

生12:0也可以写成+0和-0.比如说某人做生意不赚也不亏,也可以说赚了0元,或说亏了0元,即可记作+0元和-0元,所以+0=-0=0,+0的相反数-0,0的相反数就是0. 师:也有道理.从表面上看,0与0互为相反数好象不符合符号不同这个要求,但是象生12举的例子中提到+0和-0,并且+0=-0=0,也是可以的,所以,关于特殊的零,课本上特别指出(板书):0的相反数是0.

口答练习:说出下列各数的相反数:-7,-0.5,0,6,+1.5 例 请在数轴上标出表示+4的相反数的点.(老师有意隐藏了三角板、圆规,板演学生凭眼估计画出了表示-4的点)师:请大家判断,表示-4的点位置是否正确? 生(众):好象偏右了一点,应该还在左边一些. 师:正确的点应该在什么样的位置?

生13:-4到原点的距离与+4到原点的距离相等. 师:还补充几个字就好了.

生14:表示-4的点到原点的距离与表示+4的点到原点的距离相等.

师:非常准确.不是数到原点的距离,而是点到点的距离,表示数的点到原点的距离.谁到黑板上来检验表示-4的点的位置是否正确?

(一名学生利用三角板测量出了表示-4的点的正确位置,老师用圆规又检验了一次)练习:把-6,5,0,-2.5和它们的相反数都表示在数轴上.

师:练习中,我们发现:除零外,在数轴上表示相反数的点分别位于原点的左右两边.为什么除零外表示相反数的点一定会分别位于原点的左右两边呢?

生15:因为除零外,两个相反数总是一负一正,所以表示相反数的点分别位于原点的左右两边. 师:分析得对.谁能用相反数的概念中的某些词语来说明这个问题? 生16:就是“符号不同”.

师:很好,因为“符号不同”,所以表示相反数的点分别位于原点的左右两边.当我们用眼观察图形,看出了相反数的一个特点后,一定要进一步开动大脑思考为什么会有这样的特点,而往往从概念中就能找到原因.从数轴上看,相反数的另外一个特点是:表示每一对相反数的点到原点的距离相等(板书).为什么表示相反数的两点到原点的距离相等?

生17:相反数的概念中“只有符号不同”包含着其它的相同,就是“符号后面的数相同”,在数轴上就是距离相等.

师:很好,很快就掌握了老师提到的分析问题的方法.关于相反数,我们是从“符号”和“符号后面的数”两个方面去研究的,这两方面的特点既包含在相反数的概念中,又体现在数轴上,将二者结合起来考虑将有助于以后的数学学习.

师:在前面的分析中,我们总是将特殊的的零排除在外.请大家回顾一下,到现在为止,关于零的特殊性,表现在哪些方面?

生众:零既不是正数,也不是负数;零的相反数还是零;零不能作除数. 师:前面提到的三个方面中,有哪两个方面是联系在一起的?

生18:前面两个方面是联系在一起的.因为零既不是正数,也不是负数,所以零的相反数还是零.

师:说的好,希望大家以后能向今天一样开动脑筋思考问题.请看练习. 练习及解答(略)

教学反思:本节课是一节概念及概念应用课.教科书以现两个思考形式呈现本节的内容. 为了顺利完成教学任务,我先以发散思维的形式,让学生感受数字的变化,一下子把学生的注意力全集中在课堂上.带有激励性的语言,使数学积极参与到对问题的思考之中,符合七年级学生的年龄特点,带着好奇心和求知欲,学生很快进入学习状态.

在对相反数概念的提炼及应用的过程中,学生通过探究、合作、交流,以及师生有目的的对话,使学生对相反数有了更深的理解,培养了学生良好的思维品质,并用数学知识进行了检验,学生参与积极,思维活跃,兴趣高.通过对0有没有相反思的讨论,我又设计了一个开放问题,让学生自己解释有没有的原因,它具有思维的跨度,目的是让学生经历从发现、推理、验证到判断这一重要数学探究过程,同时这一问题也是相反数概念的外延,达到巩固新知的目的.

本节课我感到不足的地方是,学生参与面不够大,部分学生在活动中没有积极思考,不够大胆主动地发表自己的观点,担心自己说错了会让老师和同学们笑自己. 通过本节课我得到这样一个启示:

(一)导入新课要结合实例.良好的开端是成功的一半,引入阶段正处在一堂课的起始阶段,处理的是否恰当,直接影响到学生学习的情绪,以及思维的活跃程度.结合学生身边的实例导入新课,不但可提高学生的学习兴趣,激发求知的内驱力,而且可使所要学习的数学问题具体化,形象化.

(二)加深理解新知要联系生活实际.在新知的教学时,如果能结合学生的日常生活,创设学生熟悉与感兴趣的具体生活活动情况,就能引导学生通过联想、类比,沟通从具体的感性实践到抽象概括的道路,加深对新知的理解.

(三)巩固新知要在生活实践应用中.数学来源于实践,又服务于实践,为此在数学教学中,我们要创设运用数学知识的条件给学生以实际活动的机会,使学生在实践活动中加深对新学知识的巩固.

今后我要善于从学生已有的生活经验出发,创设生活中生动、有趣的的情境,强化感性认识,引导学生在情境中观察、操作、交流,使学生体验数学与日常生活的密切联系,感受数学在生活中的作用;加深对数学的理解,并运用数学知识解决现实问题.同时,鼓励学生多角度思考问题,优化解题策略.

下载初中数学 《相反数》教案3word格式文档
下载初中数学 《相反数》教案3.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    相反数教案(精选8篇)

    篇1:相反数教案教学目标1.了解相反数的好处,会求有理数的相反数;2.进一步培养学生分类讨论的思想和观察、归纳与概括的潜力.3.初步认识对立统一的规律。教学推荐一、重点、难点分析......

    相反数和绝对值教案

    相反数和绝对值教案 以下是查字典数学网为您推荐的相反数和绝对值教案,希望本篇文章对您学习有所帮助。 相反数和绝对值 1、知道相反数的概念,并会在已知的有理数中,借助数轴识......

    1.2.3相反数教案

    1.2.3 相反数 教案 【教学目标】 (一)知识技能 1. 了解相反数的概念。 2. 能在数轴上表示出两个互为相反数的数,并且发现表示互为相反数的两点在原点的两侧,到原点的距离相等......

    相反数-教学教案(合集)

    1.了解相反数的意义,会求有理数的相反数; 2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力. 3.初步认识对立统一的规律。 教学建议 一、重点、难点分析 本节的重点是了解......

    《相反数》数学教学反思

    上周讲了《相反数》,这是本单元的重点,知识点也比较多,学生理解掌握起来有一定的难度。本课教学目标是让学生借助数轴理解相反数的概念,会求一个有理数的相反数并会多重符号的......

    初中数学 《近似数》教案3(精选五篇)

    《近似数》教案 教学目标 1.知识与技能:使学生初步理解近似数的概念,并由给出的近似数,说出它精确到哪一位. 2.过程与方法:通过近似数的学习,体会近似数的意义及其在生活中......

    初中数学 《有理数的乘法》教案3

    《有理数的乘法》教案 教学目标: 1.经历探索有理数乘法法则的过程,发展归纳、猜测等能力; 2.能运用法则进行有理先相加数乘法运算; 3.理解有理数倒数的意义; 4.能用乘法解决......

    7.2.3相反数优质教案

    7.2.3相反数优质教案 教学目标 1.借助数轴理解相反数的概念,会求一个数的相反数; 2.培养学生观察、猜想、归纳的能力,初步形成数形结合的思想。 教学重点 理解相反数的概念和求......