连轧无缝钢管产品缺陷(欠)分析

时间:2019-05-14 00:03:48下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《连轧无缝钢管产品缺陷(欠)分析》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《连轧无缝钢管产品缺陷(欠)分析》。

第一篇:连轧无缝钢管产品缺陷(欠)分析

缺陷(欠)分析

对无缝钢管生产中产生的主要缺陷类型的研究,由于受生产环境、试验条件、技术装备以及研究工作断续等因素的限制,有些问题没有给出结论,只提出了一些看法,也希望同行们能够参与讨论。1.1 内折

内折是指在钢管的内表面呈片状、直线状或螺旋状的折叠。关于采用连铸坯轧制产生的内折问题,近年有关专家学者通过试验分析提出:内折的产生与中心疏松、芯部缩孔以及柱状晶在铸坯内呈现的程度有关[。因为严重的管坯中心疏松在穿孔的咬入阶段会造成芯部开裂并在后续的穿孔、辗压过程中形成内折:缩孔由于在加热时内表面被氧 化,穿孔过程中又不能被焊合而形成内折,纵向剖开铸坯发现缩孑L在铸坯内是不连续的,所以只产生管端内折 而管坯内部的缩孑L由于穿孑L过程中形成的“隔墙”作用不会被氧化而产生内折:对柱状晶来讲,有试验表明柱状晶的粗化度越大其塑性越差,内折率越高。还有一些研究分析表明,连铸坯的内折除与中心疏松、缩孑L和柱状晶有关外,还与中心疏松区偏心有关,中心疏松区偏心的连铸坯其 内折率远高于无偏心或偏心小的连铸坯。另外,统计分析还发现内折率与碳当量大小有关,钢种的碳当量越大.生产出的钢管内折率越高,见表1。

表1钢管的碳当量与内折率的关系 % 钢种编号 1 2 3 4 碳当量 o.541 o.525 o.535 o.559 o.561 o.621 o.647 o.665 o.657 o.658 o.679 o.718 o.765 内折率 4.38 3.59 3.30 3.89 4.77 4.37 4.25 4.53 4.23 6.01 6.70 6.54 6.77 上述所讨论的内折是与铸坯内在质量以及材料本身有关 而定心内折、顶头前压下量过大、椭圆度过大产生的内折以及加热等原因产生的内折这里不加论述。从统计分析看连铸坯的内折率大大高于 轧坯.用 270 mm连铸坯改轧成 110 mm圆坯再进行轧制试验,其内折率大大降低。相当部分直线型内折是由磨损的芯棒造成的。这是由于芯棒表面严重磨损形成凹槽 这种芯棒在轧制时使钢管内表面形成纵向凸棱,再继续轧制时凸棱被辗压而形成线性折叠。线性内折(又称翘皮)一般折叠部分较窄,易于修磨掉。螺旋状内折可分为2类:一类与使用严重磨损的顶头有关,这种内折螺距较短:还有一类与穿孔前的工序有关,目前还不能完全断定是与铸坯内在质量有关,还是加热不当造成的,这类螺旋状内折螺距较大.折叠部分较窄 1.2外折

外折是指在钢管外表面与钢管的轴线成一定角度的折叠。外折的产生主要是由管坯的缺陷引起的,可分为3类:第1类是管坯表面的严重渣孑L和带有陡棱的凹坑,这类缺陷经轧制后在钢管外表面形成片状外折。第2类是管坯皮下裂纹(气泡),这类缺陷在管坯表面检查时很难发现,只有在低倍检验时才能被显示出来。这类缺陷在加热时将会延 伸、扩展,轧制后形成较长的外折并与钢管轴向成一定角度。第3类是管坯纵向裂纹,这类缺陷在加热后也将延伸、扩展,严重的在加热后管坯就已裂开,轧制后形成更严重的外折.有时甚至整管裂 开。第l类和第3类缺陷在管坯检查时能够发现,绝大部分可以被查出剔除.但有少部分很难发现而流人下工序。第2类缺陷尽管采用低倍检验可以发现,但由于低倍检验属抽检而且比例很低,有时也难以查到庄钢等:连轧无缝钢管产品缺陷(欠)分析轧制工具也是产生外折的原因之一。当使用严重磨损或掉肉的导板时,就会在毛管表面产生严重的划伤.进人下道工序轧制后就会被辗压成螺旋形外折。这种螺旋形外折螺距较小,折叠程度较轻。(前期轧制114*9的27SiMn)目前随着企业管理水平提高,规范操作,这种外折缺陷极少发生。1.3壁厚不均

壁厚不均是指钢管在同一截面上或沿长度方向上壁厚最薄点、最厚点与名义壁厚偏差较大(GB5310、GB 3087界定为偏差值超过壁厚公差的 80%)。连轧管机组的壁厚不均主要产生在穿孑L机上.其核心问题就是轧件在穿孑L过程中与轧制中心线的相吻合程度,包括人口导管、轧辊、导盘(导板)、定心辊、顶杆与轧制中心线对中;轧件在轧 制过程中的稳定性(如厚壁管轧制——因顶杆较细,轧件旋转甩动较大使轧制不稳定):过大的扩径量,另外管坯加热不均(如管坯与炉底接触带即阴暗面)、定心偏斜等都会对壁厚产生不良影响。除穿孑L机外,连轧管机的辊缝调整不当也会造成壁厚不均。穿孑L机产生的壁厚不均呈螺旋状.连轧管机产生的壁厚不均呈直线状。近些年新建的机组都在穿孑L机上采用了机内定心.这对毛管的前端壁厚乃至整管壁厚的改进起到明显的效果。1.4 结疤

结疤是指在钢管内外表面上呈现斑疤状的缺陷。产生的主要原因:①穿孑L导盘、轧辊粘结异物(俗称粘钢,尤其在生产低碳钢、不锈钢时)继续轧制时,那些被粘结的异物就会在钢管的外表面留下斑疤:②穿孑L毛管尾端的耳子在芯棒插人时被带进毛管内.轧制后形成内结疤。1.5 内麻坑

内麻坑是指在钢管内表面上呈现出带状或片状分布的麻坑。这种缺陷主要是与除氧化剂有关。一钢管2006年10月第35卷第5期维普资讯 http://www.xiexiebang.com 28 鹏嬲

是除氧化剂组成成分或颗粒度不符合要求.二是除氧化剂受潮结块变质,上述不合格的除氧化剂被喷入荒管后不能完全与氧化铁皮反应而结成硬块,这些硬块在轧制时被压人钢管内表面而形成麻坑 三是除氧化剂喷吹量不足,造成除氧化剂与氧化铁皮反应不完全而结成硬块。内麻坑缺陷产生在母管的后半段,多发生在秋末冬初,有时也发生在阴雨天,呈批量出现,麻坑内大部分有颜色呈灰褐色或灰黑色的异物,深度有时达4 5 mm并有被辗压的痕迹。1.6 内直道(内棱子)内直道是指在钢管内表面呈现有一定宽度和高度的沿纵向的凸棱或划道的缺陷。一般有2种情况,一种是在连轧轧制过程中,芯棒与毛管内表面产生相对滑动摩擦,而且在轧制过程中经常出现铁耳子将芯棒刮伤,以及芯棒表面龟裂而掉肉的现象随着芯棒使用次数增加,磨损逐渐增加并在刮伤或掉肉的局部形成了沿轴线方向的凹槽,这种带有凹槽的芯棒在轧制过程中与钢管内壁接触时就在钢管内表面形成了与芯棒凹槽相对应的凸棱即内直道。另一种情况是,芯棒表面因润滑不好,粘结了除氧化剂与氧化铁皮反应后的熔融液渣,这种芯棒 在轧制时就会在钢管的内表面产生一定深度的划道。1.7 轧折

轧折是指在钢管表面沿纵向局部或通长呈凹陷皱折状的缺陷[2]。当连轧过程中机架之间金属秒流量不等时。某两机架之间产生严重堆钢轧制,造成孔型过充满致使金属被挤入辊缝处,在经过下一机架或脱管机时发生叠轧形成轧折。此种缺陷多发生在薄壁管或新辊开轧时,主要产生在连轧后段。当在轧制过程中突然出现一个不稳定因素如安全臼断时。轧折更容易产生。1.8辊痕(辊印)辊痕是指在钢管外表面规律性出现的疤痕或压印缺陷,即轧辊(连轧辊、脱管辊、定减径辊)、传送辊表面被金属硬物碰伤后,在轧制或传送钢管时在其外表面留下的压痕。连轧辊表面的碰伤主要是 来自毛管尾端的耳子和芯棒端部的撞伤,尤其在轧制气瓶管时因毛管的壁厚比耳子的厚度小,当耳子被带人轧机时极易将轧辊硌伤。另外。轧制薄壁管时毛管尾端的飞翅也容易将轧辊硌伤。传送辊表面的碰伤主要是钢管管端向下弯曲,在辊道上运行时撞击辊面形成的。上述缺陷有很强的规律性.可以STEEL PIPE Oct.2006,Vo].35,No.5 根据其间隔的距离和呈现的形状确定产生的位置。通常由连轧辊造成的辊痕多在后两架,形状呈结疤状,传送辊产生的辊痕主要在脱管机出口后辊道上,形状呈指甲痕,深度较浅,但排列很密。脱管辊、定减径辊也有辊痕产生,但比例很少且深度较浅。1.9 发纹

发纹是指在钢管外表面呈现很细的纹状的缺陷。在连轧管机组轧制过程中,由于辊速差的原因(辊底线速度最小,辊肩线速度最大),在靠近辊肩处,轧辊的线速度大于毛管的运动速度.轧辊与轧件之间形成了较大的滑动。随着轧制支数的增多,在靠近辊肩处的轧辊表面逐渐粘结了瘤状金属物,随着轧制支数进一步增加,这种瘤状物逐渐呈锥 状。这种粘结有瘤状物的轧辊轧制毛管时就会在毛管的表面留下压、划的痕迹,在经过后几架次的轧制和后工序脱管和定(减)径机的轧制后,钢管被减壁、减径延伸,那些后来留在毛管表面的压、划痕 缺陷就变成了细长的发纹。这种缺陷有时用肉眼很难发现,用磁粉检查时会清晰暴露出来.缺陷的深度一般在0.1—0.3 mm。轧辊表面严重粘结瘤状物多发生在连轧管机的前3架,穿孔机来料过大、轧 辊冷却水不足、辊面硬度不够都会加速辊面结瘤。1.10 划(擦)伤

划(擦)伤可分为热态和冷态划伤。热态划伤的划痕与管体呈同一个颜色,冷态划伤的划痕呈白亮色。冷态划伤主要是机械划伤如辊道、接料臂、传送链,矫直辊及出入El导槽(管)等,另外吊运过程 也会产生一些划伤。热区划(擦)伤与工具如轧辊、导槽(管)、设备如定心辊、辊道等有关。这里主要描述的是由热区再加热炉炉内辊道引起的划伤.因这类缺陷在生产中大量产生,尽管其深度较浅仅 0.3 mm左右。但由于批量出现且在每支管子上通体呈带状,严重地影响了钢管的外观质量,使用户难以接受。这种划伤的产生有2个原因:一是由于炉内个别辊子卡住不能旋转,在高温下辊面粘结了氧化 物,当荒管经过这一辊道时粘结的氧化物就会将荒管的外表面划伤。这种划伤的划线较长。二是辊速与轧件存在速度差,当荒管从再加热炉出炉并进入定(减)径机时,其运行速度受到定(减)径机轧制速 度的限制而立即减小,但炉内辊道还以原运行速度转动,此时辊道表面的线速度大于荒管运行的线速度,以致辊道表面粘接的氧化物就会划伤荒管外表维普资讯 http://www.xiexiebang.com跚与砚究 29面。一般这种划伤产生的划线较浅较短,呈断续状,多出现在荒管的后半部分。1.11青线

青线是指在钢管外表面,与轧辊辗缝相对应,沿轴线方向1—3条线呈现通体的线形轧痕。产生的 主要原因:①脱管机、定(减)径机孑L型错位;②定(减)径机轧辊孑L型设计不合理,长轴半径尺寸偏小(椭圆度过小),造成孑L型过充满;③轧辊辊边倒角 过小:④轧辊装配辊缝间隙过大等。1.12 离层(分层)离层是指在钢管的内外表面出现的片状或螺旋 状的分层缺陷。产生的主要原因:管坯内含有大型 的非金属夹杂物;连铸的铸余没有切净。这些含有 缺陷的管坯经轧制后形成上述缺陷。1.13 裂:fL(:fL洞)、拉凹

裂孑L是指在钢管上呈现出有规律性孑L洞;拉凹 是指在钢管内表面沿纵向排列成串的凹坑,实际上 是裂孑L缺陷的一种初期形式。这2种缺陷在形态上 都呈现出明显受拉的痕迹。形成的主要原因是由 于在孑L型设计中(考虑辊缝、开VI角)不可避免的不 均匀变形产生的附加拉应力和因辊速差产生的拉应 力以及因芯棒与毛管内壁之间的摩擦产生的拉应力 这3个力的叠加.再加上调整不当使机架之间形成 拉钢而产生的拉应力,当叠加的拉应力>被轧金属 的抗拉强度时,金属就会被拉裂而形成孑L洞,当金 属的屈服强度<叠加的拉应力<抗拉强度时,金属 就产生塑性变形而形成拉凹(在产生塑性变形的同时 应力释放)。

在实际生产中管坯的加热不均匀会增加不均匀 变形的程度.穿孑L来料过薄会造成连轧金属秒流量 不等而产生拉钢,上述原因都会增加裂孑L、拉凹缺 陷产生的可能。芯棒表面状态不好、润滑不好以及 限动速度过低造成芯棒与毛管内壁之间的摩擦力过 大是产生内表面拉凹的更直接原因。另外,径壁比 D/S越大.裂孑L、拉凹产生的概率越高;轧件的合 金含量越高,塑性越低(在相同的D/S情况下),裂 孑L、拉凹的发生率越高。1.14 外麻面(麻点)外麻面是指在钢管外表面出现的较大面积的麻 点缺陷。产生的主要原因是由于钢管在再加热炉内 停留时间过长或再加热炉温度过高,致使钢管表面 的氧化铁皮过厚,当这样的钢管经过定(减)径机 庄钢等:连轧无缝钢管产品缺陷(欠)分析 轧制时,其没有被除掉的氧化铁皮(有些合金钢管 氧化铁皮很难被除净)被压人金属表面,在后续工 序加工时氧化铁皮脱落形成麻面。另外,钢管在 烧嘴附近停留时间过长也会造成表面局部烧损或点 蚀而形成麻点或麻坑(麻坑——指麻点较深的缺陷,不可修磨)。1.1 5 内六方

内六方是指钢管内圆呈六方状。产生于三辊定(减)径机轧制过程中,多出现在减径量较大的中、厚壁钢管上。产生的主要原因是钢管在减径过程中 金属除了沿纵向流动外,还有一部分金属向横向流 动.即向着阻力最小点——辊缝处内壁流动。三 辊定(减)径机有3处辊缝,对应下一个机架的3处 辊缝正好与前一个机架孑L型顶部相交,所以在整个 机架排列中在横断面上就形成6处辊缝,这使得钢 管通过定(减)径机时呈现出2种趋向:一种趋向是 前一个机架孑L型顶部的金属向辊缝处内壁流动,而 后一个机架孑L型顶部的金属也向辊缝处内壁流动,这样来回交叉,使钢管横断面上的壁厚形成了周期 性变化:另一种趋向是由于辊速差的作用,在辊缝 处的线速度最大.大于金属的流动速度,金属受纵 向拉应力作用而增厚很小。这2种趋向的结果使孑L 型在3Oo角处钢管壁厚增厚较多,在辊缝处壁厚增 厚很少(甚至不增厚),最终使钢管内圆呈现出有规 律性的六方状。2 结 语

论述连轧管机组生产无缝钢管过程中容易产生 的缺陷(欠),是为了探求在实际生产中如何严格控 制产品质量,方便生产操作人员、技术监督人员以 及生产技术人员在工作中准确判断产品质量,找出 缺陷的产生原因,从而达到在本工序消除缺陷,把 高质量的产品提供给下道工序(用户),最终达到提 高钢管产品质量的目的。3 参考文献

1朱景清,傅晨光,刘宏宇,等.连铸圆管坯的质量及其控 制(上、下)[J].钢管,2003,32(1):14-20;2003,32(2):l3一l6. 卢于逑.热轧钢管生产问答[M].北京:冶金工业出版社,1 991.

(收稿日期:2005—12—05)钢管2006年10月第35卷第

第二篇:连铸连轧及人工智能技术课程总结报告

连铸连轧及人工智能技术课程总结报告

本课程主要讲述了连铸坯的热送热装技术、CSP连铸连轧工艺与传统工艺的区别与优势,薄板坯连铸连轧、CSP产品特征,还有热轧板带无头轧制、半无头轧制技术的设备、优点、应用现状和发展趋势;之后讲述了什么是人工智能技术,人工智能技术包括的具体内容,以及在连铸连轧工艺中的应用现状及前景。通过本课程的学习深入了解了CSP工艺过程及人工智能技术,以及人工智能技术在连铸连轧中的应用潜能。下面从学习的先后顺序进行本课程的分析、归纳和总结。

其一,从CSP工艺与传统工艺的比较可以看出,CSP工艺的流程短且紧凑通畅、设备相对简单、占地面积少、设备成本低、生产效率高、生产比较稳定,而最大的不同在于热历史:在CSP工艺中,板坯经历了由γ→α转变的单向变化过程,而传统板坯的热历史为γ(1)→α,α→γ(2),γ(2)→α过程,热历史、变形条件与过程的不同决定其再结晶、相变以及第二相粒子析出过程、状态和条件的不同,从而使板坯的组织性能不同。在CSP生产线中,精轧机组与均热炉紧密衔接,具有大压下和高刚度轧制等特点,采用轧制润滑技术和先进的板形厚度控制技术;直通式辊底隧道炉可保证坯料头尾无温降差;层流快速冷却可保证薄板在长度及宽度方向上温度均一,有利于相变细化和组织强化。CSP工艺具有超薄规格板坯轧制的能力,经辊底炉均热和升温的薄板坯温度可达1100-1150℃,板坯厚度达到1.4mm。CSP工艺还具有铁素体型钢种的轧制能力,像低碳钢、微碳钢、超低碳钢和无间隙原子钢等,该技术的关键在于粗轧与精轧之间要有强力冷却系统。

其二,介绍了半无头轧制的工艺特点及连铸连轧低碳钢的组织与力学性能。半无头轧制应用于第二代薄板坯连铸连轧生产线中,其特点是可消除穿带、甩尾过程中因头尾无张力而导致的头尾厚度、凸度和板形不良等缺陷;提高轧辊寿命;避免薄规格板坯的“漂浮”等。其关键技术有采用动态CVC轧机、动态PC轧机、等;采用动态变规格轧制技术;均匀轧辊磨损专用设备和技术;在卷取机前设置高速滚筒式飞剪;靠近末架精轧机近距离设置轮盘式卷取机;优化铸坯长度和拉坯速度;采用工艺润滑等。采用CSP工艺生产的低碳钢强度高、塑性好,成品板材晶粒细小均匀,氧化物、硫化物夹杂尺寸细小。

其三,讲解了热轧板带无头轧制、半无头轧制技术的现状和发展趋势,主要阐述了无头轧制技术的发展,热带无头轧制技术、无头轧制的中间坯连接技术(主要讲述了感应加热连接技术与北科大康永林教授自主研发的模压齿成形连接法)、板厚、板形和品质控制技术、无头轧制技术的应用、CSP生产薄规格半无头轧制技术等。

其四,讲授了人工智能技术的概念、产生与发展、涵盖的基本内容及研究途径,重点讲述了人工智能技术在轧制中的应用。人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。轧制中的人工智能技术与传统方法的不同在于它避开了过去那种对轧制过程深层规律的无止境的探求,转而模拟人脑来处理那些实实在在发生了的事情,它不是从基本原理出发,而是以事实和数据作依据,来实现对过程的优化控制。目前人工智能中的专家系统是应用最活跃、最有成效的一个研究领域。它是一种具有特定领域内大量知识和经验的程序系统,它应用人工智能技术、模拟人类专家求解问题的思维过程求解领域内的各种问题。例如,工字钢孔型设计专家系统、热轧钢材组织和性能预测及控制专家系统、带钢厚度偏差诊断与监控专家系统等;还有神经网络、模糊理论及协同智能系统在轧制中的应用也日益受到人们的关注。其中神经网络是一个具有高度的超大规模连续时间动力学系统,在处理非线性结构性问题方面显示了突出优点。

通过本课程的学习让我对CSP工艺及人工智能技术在连铸连轧过程中的应用有了比较全面且深刻的认识。虽然我的研究领域是铸造工艺,但科学都是相通的,相信在这门课所展现给我的一些现代科学与传统工业的完美结合会对我以后的研究大有启发。

第三篇:连铸连轧课程论文1

概述薄板坯连轧连轧技术在高强度钢产品方面的应用

摘要:近几年,薄板坯连铸连轧生产线在我国得到了迅速的发展,如何利用该技术来生产新的高强度钢,来满足社会日益发展的需要成为目前研究的重点。本文简要介绍一下薄板坯连铸连轧技术的优势和常见微合金元素在薄板坯连铸连轧技术中的应用;综述了近年我国在利用薄板坯连铸连轧工艺进行低成本高强度微合金化钢的研发方面的进展,指出该技术今后的发展方向。关键词:薄板坯连铸连轧;高强度钢;优势;微合金;应用

薄板坯连铸连轧是近十几年来世界钢铁工业取得的重要技术进步,目前在全球范围已得到广泛推广应用。然而,随着TSCR流程产能的不断扩大,国内外市场需求的变化以及与常规连铸连轧流程板带产品的竞争,对TSCR流程的板带产品研发提出了新的挑战,这就是如何根据新流程的特点不断研究开发出低成本、高性能的热轧板带产品。

又由于微合金化技术是提高钢材综合性能的有效的技术措施,于是国内外在这方面做了大量研究,通过对钢中微合金化元素的固溶、析出、相变组织形成以及板带力学性能关系的研究,逐步形成了TSCR流程微合金化技术,开发出了一批具有较低成本的高性能、高强度微合金化板带新产品。薄板坯连铸连轧技术的优势

薄板坯连铸连轧的工艺过程与常规厚板坯连铸连轧工艺的最大不同在于热历史不同。在薄板坯连铸连轧工艺过程中,从钢水冶炼、浇铸到热连轧板卷成品约为2h,板坯经历了由高温到低温、由γ→α单向变化过程,而常规连铸连轧工艺中板坯的热历史为γ(1)→α,α→γ(2),γ(3)→α的3次反复相变过程。由于薄板坯和厚板坯连铸连轧的热历史及变形条件与过程不同,决定其再结晶、相变以及第二相粒子析出过程和条件不同,从而对成品板材的组织性能具有不同的影响[ 1]。

拿涟钢在CS P线上开发的一种低合金高碳高强钢65Mn来说,所生产的65Mn的碳含量为 0.65%,屈服强度为490MPa,抗拉强度为870MPa,延伸率为18%。所生产的65Mn强度比传统工艺生 产的65Mn强度提高了约40%—30%。金相检验其组织为铁素体和珠光体,在薄板试样中发现了纳米级珠光体。与传统生产工艺比较,CSP生产的高碳钢晶粒更细小。其细小的沉淀析出强化物也能 在试样中发现[ 2]。

正是由于薄板坯连铸连轧技术具有传统工艺所没有的巨大优势,使开发新的钢种出来产生了可能。例如,国内外还未见其关于生产TRIP钢的报道,如何利用现有的薄板坯连铸连轧生产线开发TRI P钢种并使之批量化生产,对钢铁企业、汽车工业及其相关行业的发展具有深远的意义。于浩等人在实验室条件下模拟薄板坯连铸连轧工艺试制了600MPa级C—Si—Mn系TRIP钢,其力学性能检测及组织分析结果表明,用此工艺生产600MPa级C—Si—Mn系TRI P钢是可行的[ 3]。

由此可见,薄板坯连铸连轧技术在开发新钢种方面具有巨大的潜力。常见微合金元素在薄板坯连铸连轧技术中的应用

(1)V元素

V微合金化技术是最早应用于薄板坯连铸连轧流程的微合金化技术。V在奥氏体中固溶度大、析出温度低、对粗晶奥氏体再结晶的抑制作用小的特点,与薄板坯连铸连轧流程加热温度低、加热时间短、铸造粗晶组织直轧的特点相适应,特别是氮含量高的电炉一薄板坯连铸连轧流程更有利于发挥钒的作用;已开发出屈服强度275~550 MPa级各种用途的低合金高强度钢;例如马钢和安徽工业大学开发的X60管线钢[ 4]。同时还发现了钒及其碳氮化物在薄板坯连铸连轧流程上对组织超细化的作用,由此开发出了超细晶高成形性结构钢。例如珠钢与钢铁研究总院在电炉一薄板坯连铸连轧流程上采用V—N微合金化技术获得铁素体晶粒尺寸3~4µm,屈服强度可达到550 MPa级高成形性结构钢[ 5]。

(2)Nb元素 Nb微合金化技术在传统流程中已得到广泛应用,人们对其在薄板坯连铸连轧流程上的应用也寄予了厚望。基于大量的试验研究结果和工业化生产经验,人们已认识到铌微合金化技术应用于薄板坯连铸连轧流程所面临的混晶和无效Nb的问题,并已找到解决问题的办法。目前,Nb微合金化技术已较广泛地应用于薄板坯连铸连轧流程,采用薄板坯连铸连轧Nb微合金化技术已开发出系列低合金高强度钢,包括QSt E34O~46OTM的高强度汽车结构钢、X52~X70的管线钢以及石油套管用钢J55、马钢开发了低合金高强度钢Q460D、邯钢开发了汽车大梁板H510等。

(3)Ti元素

由于Ti微合金钢强度波动大、性能不稳定的问题,Ti微合金化技术在传统流程上没有得到广泛应用,受此影响基于薄板坯连铸连轧流程的Ti微合金化技术的研究一直无人问津。最近,珠钢与北京科技大学合作,以Ti为微合金化元素,在普通集装箱板SPA—H的基础上,开发出组织和性能良好的屈服45O~700MPa级高强耐候钢系列产品[ 6]。

(4)B元素

随着薄板坯连铸连轧技术 的广泛应用,人们逐步认识到薄板坯连铸连轧流程生产的热轧板卷组织细化、强度偏高,不适于用做冷轧原料的特点,受在传统流程上向低碳铝镇静钢加入微量B能够实现晶粒粗化的经验的启发,开始研究薄板坯连铸连轧B微合金化技术。目前,人们已对B粗化铁素体晶粒、降低强度的机理有了清楚的认识,并普遍用B微合金化的方法解决薄板坯连铸连轧冷轧原料强度偏高的问题,已批量生产出冷轧原料用钢SPHC、SPHD和SPHE。

同时,为完善薄板坯连铸连轧微合金化技术,我们需重点从以下几个方面着手:①深入研究上面四种常见元素在连铸连轧技术中对钢组织和性能的影响;②加强基于薄板坯连铸连轧流程的复合微合金化技术的研究,特别是薄板坯连铸连轧流程各种微合金元素的耦合作用,丰富和拓展薄板坯连铸连轧微合金化技术;③充分发挥薄板坯连铸连轧微合金化技术的特点,开发低成本地生产各类高性能的低合金高强度钢的生产技术,进而建立低成本高性能钢的技术体系。利用薄板坯连铸连轧技术开发的高强度钢种

(1)高强、超高强耐候钢

高强耐候钢主要用于车辆、桥梁和集装箱等的制造,属于高附加值的钢材。因同时要求高强度、高耐蚀性以及良好成形性和焊接性能,故对其冶金工艺控制要求很高。国内已有多家TSCR企业研制开发出高强及超高强耐候钢板带系列产品,其屈服强度在450~700MPa 级,不仅相对成本较低,而且具有良好的综合性能。就拿广州珠钢同北京科技大学合作开发的钢来说吧,在SPA—H普通耐候钢成分的基础上,添加成本最低的微合金元素Ti,通过合理调整化学成分、优化热连轧及控冷工艺,控制组织细化和析出强化,从而生产出性能良好的Ti微合金化高强及超高强耐候钢系列产品,屈服强度在450~700MPa级[ 6]。其冶金成分特是不添加价高的Nb,V,Mo等合金元素,采用添加微量的合金元素Ti(Ti含量质量分数为0.04% ~0.13%)通过优化控制热连轧及冷却卷取工艺参数,使钢中形成大量弥散分布的纳米析出粒子,从而形成强烈的析出强化效果,使钢的强度达到高强和超高强。

(2)低碳贝氏体超高强钢

利用TSCR线采用微合金化技术可以生产屈服强度600 MPa和700 MPa级低碳贝氏体超高强钢,这类超高强钢主要用于制造高空作业车、起重机吊臂等工程机械,以达到减轻结构重量的作用。表1为在本钢的TSCR线上研究开发出的600 MPa和700 MPa级低碳贝氏体超高强钢的力学性能[ 7]。

表1 本钢TSCR线上生产的600 MPa和700 MPa级低碳贝氏体超高强钢的力学性能。

由表1可见,低碳贝氏体超高强钢的屈服强度在655~845MPa,抗拉强度在720~870MPa,伸长率在15.5%~22%,钢板具有良好的塑性和强韧性。钢的微观组织由均匀细小的B+F构成,B组织约占50%(体积分数)。

(3)高强汽车结构用钢

近年,在我国的一些TSCR线上研究开发出Nb,V,Ti单一微合金化或复合微合金化技术,生产汽车大梁板或轮辋、轮辐用热轧高强汽车用钢。其中,生产汽车大梁板多采用低碳(c≤0.20%)+Nb微合金化技术生产。表2为邯钢、珠钢及马钢CSP线,本钢FTSR线和济钢ASP线开发生产的510 L汽车大梁板的冶金成分范围[ 8-13],表3为板材的力学性能。

表2 TSCR线开发生产微合金化5IOL钢的成分范围(w/%)

表3 TSCR线开发生产微合金化5IOL钢的力学性能

从表2冶金成分看,前三个企业的510L均采用Nb微合金化,Nb含量≤0.045%,而后两者(马钢和珠钢)采用更经济、成本更低的微量Ti处理(Ti≤0.03%)。从表3力学性能来看,钢板的抗拉强度在520~605MPa,均达到或明显超过51OL的强度要求,并且均具有较高的强韧性、良好的塑性和成形性能[ 8-13]。

在珠钢CSP线上,采用V微合金化开发出屈服强度550 MPa级高强汽车板。表4为 V微合金化汽车用钢的主要化学成分,表5为其力学性能。化学成分设计采用低碳(C=0.05%)添加微合金元素V(0.12%)[ 14],钢板组织为超细晶组织,晶粒尺寸3—4 µm。随板厚不同,屈服强度范围在590~625 MPa,并具有良好的成形性能。该热轧汽车板主要用于制造物流货运用半挂车车体结构件。

表4 V微合金化汽车用钢的主要化学成分

表5 V微合金化钢的主要力学性能和组织

包钢CSP线采用低成本的成分设计,C≤0.07%,Si≤0.40%,Mn≤1.6%,P≤0.015%,S≤0.00 5%通过热轧工艺控制开发出DP540MPa级热轧双相钢。其屈服强度为355~460MPa,抗拉强度540~645MPa,延伸率28.0%~38.5%,该双相钢主要用于制造轿车及卡车车轮、汽车横梁和纵梁等[ 15]。

(4)冷冲压用钢

目前我国已建成14条TSCR线,绝大多数建有冷轧和退火线,并在转炉后建有RH处理炉,用以生产汽车和家电用冷轧深冲板。开发生产超深冲IF(无间隙原子)钢多采用Ti或Ti+Nb微合金化成分设计,有的企业在生产DQ级冲压板时为了降低热轧板的强度,采用加 B微合金化处理。

马钢CSP线和本钢FTSR线的IF钢化学成分和成形性能[ 7,16]见表6和7。均采用Ti微合金化处理,冷轧退火或热镀锌后的板材具有良好的成形性能,可用于汽车内板成形件。

表6 马钢CSP线和本钢FTSR线的IF钢化学成分

表7 马钢CSP线和本钢FTSR线的IF钢成形性能

(5)高性能管线钢

管线钢、石油套管用钢是薄板坯连铸连轧微合金化产品开发生产的另一重要方向。根据TSCR线的工艺特征,国内外已研究开发出X46,X52,X60,X65,X70,X80等多种级别的石油天然气用管线钢以及J55石油套管用钢。

例如本钢和唐钢的FTSR线以及包钢的CSP线开发生产的X65管线钢[ 17-19],成分设计均采用微量Nb+V+Ti复合微合金化方式,钢板的力学性能均超过X65级别标准,并具有良好的强韧性。钢板的典型显微组织为铁素体+珠光体+针状铁素体。

近年,在鞍钢和济钢的中薄板坯连铸连轧线ASP上也相继开发出高级别管线钢X70和X80。在成分设计上,鞍钢2150ASP线开发生产的X70采用C—Mn—Mo—Nb系(其中C=0.03%~0.06%,Nb=0.06%~0.08%,Mn≤1.70%);X80采用C—Mn—Mo—Cr—Nb系(其中C=0.02%~0.05%,Nb=0.07%~0.11%,Mn≤1.90%),适当添加Cu,Ni等元素,工艺上采用洁净钢冶炼、连铸技术、热装轧制技术和热机械轧制技术,保证板材具有良好的强韧性匹配和良好的抗HIC性能。X70钢的组织特征为针状铁素体,X80钢的组织特征为在针状铁素体中分布大量细小的M/A岛组织[ 20]。济 4 钢1700ASP线开发生产X70管线钢的合金成分设计采用Nb+Ti,Nb+V+Ti和 Nb+V+Ti+Mo3种微合金化方案,由此得到的组织分别为铁素体+珠光体(晶粒尺寸4~10µm)、细小的铁素体+珠光体(晶粒尺寸6~8µm)、铁素体+贫珠光体+针状铁素体(晶粒尺寸5~8µ m)。钢板的强度和韧性值随复合微合金化种类的增加而提高,屈强比和塑性值相差不大[ 21]。结语

目前,薄板坯连铸连轧微合金化技术体系的框架已形成、各类微合金钢的产品结构已基本建立随着薄板坯连铸连轧技术更广泛地推广应用,基于薄板坯连铸连轧流程的各类微合金化技术的基础研究将进一步深化、系统化、将会发现更多的不同于传统流程的特殊规律,各类微合金化钢的生产技术将进一步完善、产品范围将进一步拓展、产品性能将进一步提高,薄板坯连铸连轧微合金化技术的发展将进一步丰富和发展微合金化技术、增强薄板坯连铸连轧技术的竞争力,为钢铁工业产品结构调整和技术进步作出更大的贡献。

参考文献

[1] Kang Yonglin(康永林),Fu Jie(傅杰),Liu Delu(柳得橹)eta1.Control on Microstructure and Properties of Steel Products of Thin Slab Castting and Rolling.(薄板坯连铸连轧钢的组织性能控制)[M].Bei jing:Metallurgical Industry Press,2006.[2] 张亮洲.薄板坯连铸连轧生产65Mn高碳高强钢的实践[J].金属材料与冶金工程,2009,37(4):15-20.[3] 于浩,康永林.薄板坯连铸连轧工艺试制600MPa级C—Si—Mn系TRIP钢的研究[J].工业技术,2005,5(9):594-596.[4] 苏世怀,何宜柱,胡学文,等.钢铁,2006,41(9):73.(SU Shhuai,HE Yi-zhu,HU Xue-wen,eta1.Iron and Steel,2006,41(9):73.)[5] 潘涛,杨才福,毛新平,等.钢铁钒钛,2007,28(2):21.(PAN Tao.YANG Cai—f u,MA0 Xin —ping,eta1.Iron Steel Vanadium Titanium,2007,28(2):21.)

[6] 毛新平,林振源,谢利群,等.薄板坯连铸连轧流程Ti微合金化高强钢开发与应用[J].技术与研究,2007,3:99-102.[7] Benxi Steel(本钢公司).本钢薄板坯连铸连轧生产线品种开发[C].Proceedings of 5thTSCR

technology interchange and deveopment symposium(薄板坯连铸连轧技术交流与开发协会第五次技术交流会文集).Chengdu:Metallurgical Industry Press,2007:416-444.

[8] Wang Wenlu(王文录),Lv Jianquan(吕建权),Zhou Yingchao(周英超),eta1.汽车大梁510L的开发与研究[C].2009,International Symposium on Thin Slab Casting and Rolling(2009年薄板坯连铸连轧国际研讨会论文集).Nanjing:Chinese Academy of Engineering,2009:412-415.[9] Wu Gang(吴刚),Liang Xuedong(梁雪冬),Zhang Yongfu(张永富).本钢FTSR热轧BG51OL钢板组织与性能的研究[C].Proceedings of 4th TSCR Technology Interchange and Deve1opment Sy mposium(薄板坯连铸连轧技术交流与开发协会第四次技术交流会文集).Ma’anshan:Chinee Academy

of Engineering,2006:467-472.[10] Luan Caixia(栾彩霞).济钢ASP生产强韧性510L的开发[C].Proceedings of 5th TSCR technology interchange and deve1opment symposium(薄板坯连铸连轧技术交流与开发协会第五次技术交流会文集).Hunan:Chinese Academy of Engineering,2007:517-519. [11] Rao Tianrong(饶添荣),Zhu Tao(朱涛),Shi Huaiyan(史怀言),eta1.马钢CSP线5lOMPa汽车大梁板的开发[C].Proceedings of 4th TSCR technology interchange and development symposium(薄板坯连铸连轧技术交流与开发协会第四次技术交流会文集).Ma’anshan:Chinese Academy of Engineering,2006:85-88.[12] Kang Yonglin(康永林),Fu Jie(傅杰),Mao Xinping(毛新平).薄板坯连铸连轧钢的组织性能 5 综合控制理论及应用[J].Iron&Steel(钢铁),2005,40:41-45.

[13] Zhao Zhengzhi(赵征志).Toughening Mechanism and Control for CSP Hot—Rolled low—Carbon High—Strength Automotive Sheet(CSP热轧低碳高强度汽车板的强韧化机理及控制)[D],Beijing:University of Science and Technology,2006.

[14] Mao Xinping,Huo Xiangdong,Liu Qing you,eta1.Research and Application of Microalloying

Technology Based on Thin Slab Casting and Direct Rolling Process[J].Iron&Steel Supplement(1),2006,41:109-118. [15] Dong Ruifeng,Li Degang,Sun Ligang,eta1.Production and Application of Common Type C-Mn Hot Rolled Dual-Phase Steal in CSP Line[J].J of Iron and Steel Research International,2009,16,396-399. [16] Zhu Tao(朱涛),Yang Xingliang(杨兴亮).CSP线超低碳无间隙原子(ULC—IF)钢的研发 [C].Proceedings of 4th TSCR Technology Interchange and Development Symposium(薄板坯连铸连轧技术交流与开发协会第四次技术交流会文集).Ma’anshan:Chinese Academy of Engineering,2006:18-23.

[17] 文小明,王旭生.本钢薄板坯连铸连轧的产品研发和生产实践[C].2009年薄板坯连铸连轧国际研讨会论文集.Najing:Chinese Academy of Engineering.2009:53-57.[18] 冯运莉,万德成,丁润江,等.唐钢热轧X65管线钢的组织及性能[C].2009年薄板坯连铸连轧国际研讨会论文集.Najing:Chinese Academy of Engineering.2009:377-381.[19] 李德刚,刘德勤,董瑞峰,等.CSP生产线开发矿浆输送用X65管线钢生产试验[C].2009年薄板坯连铸连轧国际研讨会论文集.Najing:Chinese Academy of Engineering.2009:381-386.[20] 黄国建,沙庆云,何毅,等.ASP生产厚规格高级别管线钢热轧卷板开发[C].2009年薄板坯连铸连轧国际研讨会论文集.Najing:Chinese Academy of Engineering.2009:362-367.[21] 陈庆军,项本朝,王金华,等.济钢ASP生产线厚规格X70工艺实践[C].2009年薄板坯连铸连轧国际研讨会论文集.Najing:Chinese Academy of Engineering.2009:397-399.6

第四篇:连铸连轧课程论文6

连铸连轧技术

题目: 薄板坯连铸连轧技术及高强度微合金钢

产品开发

院: 专

业: 学

号: 学生姓名: 指导教师: 日

期:

摘 要

薄板坯连铸连轧工艺的生产流程有别于传统工艺流程。由于连铸薄板坯没有经过α-γ和γ-α 和这两个相变过程,因而导致轧前奥氏体晶粒粗大,不利于产品的组织细化和性能提高。另外,因轧前奥氏体中微合金元素的溶解量相对较高,故而轧后的沉淀强化效果较强。通过优化道次变形量、轧制速度、轧制温度、冷却速率和卷取温度等工艺参数可得到综合性能优良的微合金高强度的带钢产品。

关键词:薄板坯;连铸连轧;微合金化;高强度钢;工艺参数

1.引言

薄板坯连铸连轧生产宽带钢是80年代末开发成功的一项短流程工艺。该工艺能缩短生产周期、节约能源、提高钢材收得率和生产率、降低基建和生产费用、减少占地面积和操作人员;因而受到冶金界的青睐。但近年来的实践和研究结果表明,用薄板坯连铸连轧技术产的微合金高强度钢仍存在一些影响产品质量的问题,如:原始组织细化不足,晶粒尺寸分布不均匀以及存在中心偏析和带状组织等。

本文归纳了薄板坯连铸连轧的典型工艺(CSP)—(Compact Strip Production)工艺的特点,分析了存在的问题,探讨了对其进行技术改进和提高微合金高强度钢产品质量的途径。

2薄板坯连铸连轧工艺技术

世界上第一条薄板坯连铸连轧生产线即采用了CSP技术,它于1989 年由美国纽柯公司的克拉福兹维尔厂建成并投入使用。该工艺设备包括漏斗型结晶器、立弯式连铸机、辊底式隧道均热炉及5-6机架连轧机。钢水经连铸机铸成50-70mm厚的薄板坯,进入均热炉匀热,再经高压水除鳞后进入热连轧机组轧制,然后冷却后成卷,从钢水浇铸到成品离线仅需1.5小时。如图1。

图1 薄板坯连铸连轧设备图

薄板坯连铸连轧工艺以生产低碳钢为主,其工艺过程与传统连铸-热轧工艺相比,冶金差异显著,因而得到的组织有所不同。因薄板坯厚度减薄,它在结晶器内的冷却速率远远大于传统的板坯,其二次、三次枝晶更短,某些试验已经证明,枝晶间距已由230mm厚板坯的90-230μm 减小到50mm厚板坯的50-120μm。

2.1 CSP工艺技术(Compact Strip Production)CSP工艺也称紧凑式热带生产工艺。CSP生产工艺流程一般为:电炉或转炉炼

钢→钢包精炼炉→薄板坯连铸机→剪切机→辊底式隧道加热炉→粗轧机(或没有)→均热炉(或没有)→事故剪→高压水除鳞机→小立辊轧机(或没有)→精轧机→输出辊道和层流冷却→卷取机。

2.2 ISP工艺技术(Inline Strip Production)ISP工艺也称在线热带钢生产工艺。ISP生产线的工艺流程一般为:电炉或转炉炼钢→钢包精炼→连铸机→大压下量初轧机→剪切机→感应加热炉→克日莫那炉→热卷箱→高压水除鳞机→精轧机→输出辊道和层流冷却→卷取机。

2.3 FTSR工艺技术(Flexible Thin Slab Rolling)FTSR工艺(Flexible Thin Slab Rolling)被称之为生产高质量产品的灵活性薄板坯轧制工艺。FTSR工艺流程一般为:电炉或转炉炼钢→钢包精炼→薄板坯连铸机→旋转式除鳞机→剪切机→辊底式隧道式加热炉→二次除鳞机→立辊轧机→粗轧机→保温辊道→三次除鳞装置→精轧机→输出辊道和带钢冷却段→卷取机。

2.4 CONROLL工艺技术

CONROLL工艺是奥钢联工程技术公司开发的用于生产不同钢种的连铸连轧生产工艺。CONROLL工艺流程为:常规连铸机→板坯热装(或直接)进步进梁式加热炉→带立辊可逆粗轧机→精轧机架→输出辊道和层流冷→卷取机。

2.5 QSP工艺技术

QSP技术是日本住友金属开发出的生产中厚板坯的技术,开发的目的在于提高铸机生产能力的同时生产高质量的冷轧薄板。QSP工艺生产流程一般为:电炉或转炉炼钢→钢包精炼炉→薄板坯连铸机→剪切机→辊底式隧道加热炉→立辊轧边机→粗轧机→高压水除鳞机→精轧机→卷取机。

2.6 TSP工艺技术(Tippins-Samsung Process)倾翻带钢新技术,简称TSP。TSP工艺流程一般为:电弧炉(AC或DC)或转炉炼钢→钢包精炼→薄板坯连铸机→步进式加热炉→高压水除鳞机→立辊轧边机→单机架斯特克尔轧机→层流冷却→卷取机。

2.7 CPR工艺技术(Casting Pressing Rolling)

CPR工艺即铸压轧工艺,用于生产厚度小于25mm的合金钢和普碳钢热轧带材。它利用浇铸后的大压下(60%的极限压下量),仅使用一组轧机,最终可生产厚度为6.0mm的薄带卷,也可生产低碳钢、管线钢、铁素体和奥氏体不锈钢及高硅电工钢等。该生产线包括一台连铸机、一台感应炉、除鳞机、一台四辊轧机。工艺流程示意为:电炉或转炉炼钢→钢包精炼炉→薄板坯铸压轧→感应加热炉→旋转

式高压水除鳞机→精轧机→层流冷却→卷取机。

3Ti微合金化高强耐候钢系列产品开发与应用

高强耐候钢的开发,主要技术路线是晶粒细化和沉淀强化。微合金化在细化晶粒的同时,还能提供可观的沉淀强化效果,钢中常用的微合金元素有Nb、V和Ti。珠钢根据集装箱和汽车行业对高强耐候钢的需求,结合珠钢电炉薄板坯连铸连轧流程产品组织和性能的特点,通过Ti微合金化技术,合理调整化学成分、优化热连轧工艺及冷却工艺,开发出综合性能优良、屈服强度450—700 MPa级的高强钢系列产品。其主要生产工艺流程为:原料一电炉冶炼一钢包精炼一薄板坯连铸一均热一热连轧一层流冷却一卷取。

珠钢高强耐候钢主要在集装箱、载重汽车等物流运输、工程机械制造行业应用。应用结果表明,高强耐候钢在零部件冲压、焊接和组装成形等工序都表现出性能稳定、强度较高,具有良好的加工成形性能,满足工业制造工艺的要求;同时实现了减轻重量、提高运输效率、降低运输成本的目的[4]-[7]。

3.1 CSP厂生产铌微合金化低合金高强度钢的工艺

Nb微合金化对热机械工艺是必不可少的。它能起强烈的奥氏体加工硬化作用,并像Mn那样可以降低奥氏体向铁素体转变的温度,因此具有强烈的晶粒细化作用。晶粒细化为其它强化机制的应用打下了基础和提供了关键的前提条件。Nb微合金化还有促进贝氏体组织的形成和析出强化作用。

CSP厂生产的Nb微合金HSLA钢范围很广,覆盖了屈服强度至700MPa的可成形热轧薄板钢。强度高至X70的API钢种可以大规模生产。更高强度的微合金热轧钢和耐酸性气体的管线钢正在开发当中。薄板坯连铸和直轧工艺生产的Nb微合金钢具有均匀的细晶粒微观组织,有很高水平的强度、塑性和韧性,满足标准的要求。CSP厂生产的热轧带钢在不同工业领域都有广泛的应用[8]。

3.2 钒微合金化技术——坯连铸连轧高强度钢

20世纪60年代发展起来的V、Ti、Nb微合金化技术,以其显著的技术经济优势,在世界范围内获得了广泛的应用。微合金化技术的发展对钢铁工业的进步起到了巨大的推动作用,有入把它称为20世纪钢铁工业领域最突出的物理冶金成就之一。在V、Ti、Nb三种微合金化元素中,般认为V主要是通过沉淀强化来提高钢的强度。

研究结果表明,为充分发挥V的沉淀强化作用,含钒钢中增氮是十分必要的。含钒钢中增氮。通过利用廉价的氮元素,优化了钒的析出,显著提离沉淀强化效

累,达到节约钒熙用量,降低成本的目的。钒氮钢中V(CN)在奥氏体中析出,起到晶内铁素体核心作用,明显细化铁素体晶粒。钒在贝氏体中的析出起到明显强化作用,提高了贝氏体的强度。钒氮徽合金化技术在高强度钢筋、非调质钢、薄板坯连铸连轧高强度带钢等产品中获得广泛应用。

薄板坯连铸连轧工艺与传统热轧带钢工艺存在很大差异。首先,薄板坯连铸连轧工艺因其近终形和快速凝固的特点,包晶区成分的钢(C含量0.07%-0.15%范围)无法采用此工艺生产,而这一成分范围恰恰是传统HSLA钢的典型成分。为了适应工艺条件的要求,薄板坯连铸连轧技术生产的高强度钢大多采用低碳含量设计(低于0.07%C)。其次,传统的高强度热轧带钢主要采用了Nb微合金化技术,通过对含Nb钢的控轧控冷依靠晶粒细化和沉淀强化来提高钢的强度。但对薄板坯连铸连轧工艺。含Nb钢因铸坯裂纹问题造成了生产上的困难,这一问题至今仍未能得到很好的解决。另外,国际上薄板坯连铸连轧生产线主要采用电炉工艺来冶炼。电炉钢中较高的氮含量(80-100ppm)不仅加剧了含Nb钢连铸坯形成横向裂纹的倾向,而且由于NbCN在奥氏体内的析出,减弱了Nb的细化晶粒效果并降低Nb的强化作用。针对薄板坯连铸连轧工艺的上述特点,其合金设计的原理必须作出相应的调整。V-N微合金化技术的发展为高强度薄板坯连铸连轧产品的开发开辟了一条有效的途径。目前,国际上针对薄板坯连铸连轧工艺开发的系列HSLA钢采用V-N微合金化的技术路线。

屈服强度为350-550 MPa级的薄板坯连铸连轧高强度钢均采用了低碳(

4工艺参数对组织性能的影响

对低碳微合金钢来说,薄板坯连铸连轧最终组织为晶粒细小的铁素体和少量珠光体组织 其中还分布有合金元素的碳氮化合物沉淀,整个工艺过程的每一个环节都会影响最终材料的组织和性能,下面对各种工艺参数的影响作简单归纳

4.1板坯加热温度

薄板坯在铸后进入隧道式加热炉,其目的是使铸坯达到一定的温度,并保持温度均匀一致,为随后的开坯粗轧作准备,此均热炉的温度对板坯中合金元素的均匀分布,减少偏析有一定作用。但板坯加热温度的最大影响还是对粗轧段的热变形,再结晶过程和晶粒长大的作用,以及间接对连轧机组的轧制以前,关于板坯加热温过程和组织变化产生的影响度对组织和性能影响的研究,大多是针对再

加热厚板坯工艺的。其结果说明,过高的板坯加热温度特别是超过晶粒粗化温度很多时,会引起最终铁素体和珠光体组织的粗化并降低低温韧性。但对钢的强度影响不大,至于厚板坯加热温度的这种影响是否适用于薄板坯连铸连轧,还有待进一步探讨。

4.2轧制温度

直接轧制材料出现组织不均匀的原因不仅是由于未经过α-γ和γ-α的相变过程而保持了粗大的奥氏体晶粒而且轧制时奥氏体再结晶行为的变化也是很重要的。在粗轧阶段应有足够高的开轧温度和大的变形量,使奥氏体晶粒发生再结晶。细化晶粒但是温度过高也会使再结晶后的晶粒长大,一般认为,尽量在发生再结晶的较低温度区域开轧能获得最细的再结晶奥氏体晶粒。

4.3道次规程

传统板坯生产的热带一般是将厚板坯轧制到成品厚度,而薄板坯连铸连轧的板坯是从50-70mm轧到成品厚度,前者的总压下率相当于后者的3-5倍,两者的显著差异必然会影响产品质量。为了获得具有良好力学性能的细化铁素体晶粒必须在γ-α相变之前使奥氏体组织尽可能细化 提高相变前的奥氏体位错密度 促进铁素体形核。因此,合理的安排道次规程是非常重要的。

在直接轧制工艺过程中,由于开始时是在较粗大的奥氏体晶粒基础上进行热变形,单位体积内可再结晶形核的奥氏体有效晶界面积较少。此外,合金元素对再结晶的阻碍比冷装工艺时大,因此,为了得到完全的再结晶细晶组织,需要比冷装工艺更高的加工温度和更大的变形量,已有实验结果证明Nb-Ti微合金钢热直接轧制工艺的总变形量不足60%时,因粗大奥氏体晶粒的淬硬性强,会有大量贝氏体产生。

4.4冷却速度

提高冷却速率可以有效细化晶粒这是因为,首先,提高冷却速率会降低奥氏体向铁素体转变的温度,减少珠光体的体积并细化相变铁素体组织从而改善强韧性。显著提高低温冲击性能,其次,提高冷却速率促使细小的VCN和NbCN在铁素体中沉淀,有效地起到沉淀强化的作用。但是,冷却速率过高时也会因增加游离态氮和形成贝氏体而使韧性一般来说,冷却速率控制在10-30℃可得降低到最好的强韧性结合.为了避免产生贝氏体和马氏体,必须严格控制冷却停止温度 提高冷却停止温度 对最终铁素体晶但会降低屈服强度,提高材料的粒尺寸的影响不大韧性,戈拉庭厂对HLSA80钢的控制轧制研究结果表明,冷却停止温度应高于500℃ 并且板材温度超过640℃时冷却速率应为35℃/s,板材温度低于640℃时,应降低冷却速率。

5.结语

(1)薄板坯连铸连轧时,连铸板坯在凝固后高温直接入炉并紧跟着进行带钢连轧,此时,微合金元素在奥氏体中的溶解量,相对于传统工艺较高,轧后在铁素体中以碳氮化合物的形式析出,能充分起到沉淀强化的作用。

(2)直接轧制工艺的连铸薄板坯没有经过α-γ和γ-α这两个相变过程,轧前奥氏体晶粒粗大,但由于铸坯冷却速率远大于传统的铸坯,其枝晶较短。(3)尽量在再结晶的较低温度区域开轧能获得最佳韧性,终轧温度一般控制在再结晶停止温度以下。

(4)由于直接轧制工艺热变形开始时存在较粗大的奥氏体晶粒,单位体积内可再结晶形核的奥氏体有效晶界面积较少,且合金元素对再结晶的阻碍比冷装工艺时大,因此需要加大道次压下量以细化奥氏体晶粒,为了保证再结晶的充分行 连轧机组轧制的前几个道次可以采用较大压下量。

(5)合理控制冷却速率和卷取温度,以保证材料的最终组织和性能,一般情况下,采用的10-30℃/s冷却速率可得到最佳的强韧性结合。

参考文献

[1] B.Mukhopadhyay,S.Roychoudhury.Past, Present and Future of Thin Slab Casting and Rolling.China academic journal electronic publish house [2] 文小明,王旭生等.本钢薄板坯连铸连轧的产品研发和生产实践[J],2009年薄板坯连铸连轧国际研讨会论文集,2009 [3] 林振源,毛新平,余驰斌,赵刚等.珠钢Ti微合金化高强耐候钢系列产品开发与应用[J],钢铁钒钛,2009:30 [4] 谢利群,毛新平,霍向东等.面对钢的组织性能的影响[J].冶金丛刊,2005,155(1):1-4.)[5] 毛新平,孙新军,康永林,林振源等.薄板坯连铸连轧Ti微合金化钢的物理冶金学特征[J].金属学报,2006,42(10):1091-1095 [6] 毛新平,霍向东,康永林,林振源等.TSCR流程生产钛微合金化高强耐候钢中的析出物[J].北京科技大学学报,2006,28(11):1023-1028 [7] Fulvio Siciliano 1,Luis A.Leduc Lezama 2,Christian Klinkenberg 3,Karl.Ernst Hensger.Processing of Nb-microalloyed HSLA Steels in CSP Facilities [8]张世祥,刘凤潮.邯钢薄板坯连铸连轧设备[J]邯钢科技.1999,(1):18-21 连铸薄板坯的轧制和 紧凑式热轧带钢生产

[9] Flemming G.连铸薄板坯的轧制和CSP紧凑式热轧带钢生产设备[A],冶金部情报研究总所编.国外连铸新技术之六[C].北京:冶金部情报研究总所,1991,273-285

第五篇:安工大连铸连轧知识点

连铸连轧部分知识点

1、连铸生产工艺对连铸设备的要求:

1)必须适合高温钢水由液态变成液固态,又变成固态的全过程; 2)必须具有高度的抗高温,抗疲劳强度的性能和足够的强度; 3)必须具有较高的制造和安装精度,易于维修和快速更换,充分冷却和良好的润滑等。

2、连铸流运行轨迹将连铸机分为哪几种?简述每种机型的特点?

1)立式连铸机、立弯式连铸机、弧形连铸机、椭圆形连铸机和水平连铸机。2)A、立式连铸机:此铸机坯壳冷却均匀,且不受弯曲矫直作用,故不宜产生内部和表面裂纹,有利于夹杂物上浮,但其设备高度大,操作不方便,投资费用高,设备维护及事故处理难,铸坯断面和定长及拉速受限,并且铸坯因钢水静压力大,板坯股肚变形较突出。B、立弯式连铸机:铸机的中间包,结晶器,导辊,引锭杆沿垂线分布。拉矫机切割机沿水平布置,浇注和冷却凝固在垂直方向上完成,完全凝固后被顶弯90°,进入弯曲段,在水平方向出坯,它的铸机高度比立式下降,运输方便,可适合较长定尺的要求,但由于增加了一次弯曲和矫直,一造成裂纹。C、弧形连铸机:分为单点矫直弧形连铸机,多点矫直弧形连铸机,直结晶器弧形连铸机。a)单点矫直弧形连铸机:优点:高度比立式、立弯式低,故设备重量轻,投资费用低,安装和维修方便,钢水对铸坯的静压力小,可减少因股肚造成的内列和偏析,有利于提高拉速改善铸坯质量。缺点:钢水凝固过程中,非金属夹杂物有向弧内聚焦的倾向,一造成铸坯内部杂物分布不均匀。b)多点矫直弧形连铸机:优点:固液界面变形率降低铸坯带液芯矫直时,不产生内部裂纹,有利于提高拉速。c)直结晶器弧形连铸机优点:具有立式的优点,有利于大型夹杂物的上浮及钢中夹杂物的平均分布,比立弯式高度更高,建设费用低。缺点:铸坯外弧侧坯壳受拉伸,两相区易造成裂纹缺陷,设备结构复杂,检修,维修难度大。D、椭圆形连铸机:其优点是高度较弧形大大减小,钢水静压力低,铸坯股肚量小,内部裂纹中心偏析得到改善,投资节约20%----30%(比弧形)。但结晶器内钢水中的夹杂物几乎无上浮机会,故对钢水要求严格。E、水平连铸机:其优点是设备高度最低,钢水物二次氧化,铸坯质量得到改善,不受弯曲及矫直作用,有利于防止裂纹,设备维护简单,事故处理方便,但中间包和结晶器 连接处的分离较贵,结晶器和铸坯间润滑困难,拉坯时结晶器不振动,适合小坯量,多种浇注,200mm以下方坯,圆坯,特殊钢。

3、连铸连轧的定义:由连铸机生产出来的高温无缺陷坯,不需要清理和再加热(但需经过短时均热和保温处理)而直接轧制成材,这样把“铸”“轧”直接连成一条生产线的工艺流程就称为连铸连轧。

4、连铸和连轧紧凑联结的方法:连铸坯热装、直接轧制。连铸坯热装工艺是指连铸机生产的钢坯不经过冷却,在热状态下卷入加热炉加热,然后进行轧制的方法。连铸坯直接轧制工艺是指铸机出来的高温铸坯不再经过加热或只对边棱进行轻度的补充加热就直接送往轧机轧制成材。

5、连铸连轧的优点:1)简化生产工艺流程,生产周期短; 2)占地面积少; 3)固定资产投资少; 4)金属的收得率高; 5)钢材性能好; 6)能耗少; 7)工厂定员大幅降低; 8)劳动条件好,易于实现自动化。

6、提高拉坯速度的限制因素:1)拉坯力的限制; 2)铸坯断面影响; 3)铸坯厚度影响; 4)结晶器导热能力的限制; 5)速度对铸质的影响; 6)钢水过热度的影响;7)钢种的影响。

7、二冷区包括:足辊段、支撑导向段和扇形段。

二冷区冷却方式:1)干式冷却;2)水喷雾冷却;3)水—气喷雾冷却(效果最好)。

8、倒锥度:为了减少气隙,加速钢水的传热和坯壳生长,通常结晶器的下口断面比上口断面小。倒锥度过小会导致坯壳过早脱离铜壁产生气隙,降低冷却效果,或使结晶器的坯壳厚度不够产生拉漏事故;倒锥度过大容易导致坯壳与结晶器铜壁之间的挤压力过大从而加速铜壁的磨损。

9、结晶器满足要求:1)结构简单重量轻;2)良好的导热性和水冷条件; 3)应做上下往复运动并加润滑剂; 4)结晶器有足够的刚度,以免影响铸坯质量。

10、结晶器震动方式:同步式、负滑脱式、正弦振动式

11、结晶器调宽方法:1)停机变宽; 2)平移变宽; 3)转动加平移变宽(最具代表性)。

12、立式轧边机中立辊的基本形状:1)平辊; 2)锥形辊; 3)带平或凸槽的底表面的孔型辊;4)带斜槽底表面的孔型辊。

13、轧制调宽中特殊的辊型法:1)扇贝形轧辊增宽; 2)具有交错辊环的轧辊增宽; 3)具有中部凸出块的轧辊增宽; 4)具有可变环型凸出块的轧辊增宽锥形辊增宽; 5)大凸度辊增宽; 6)锥形辊增宽。

14、短锤头调宽压力机分为:1)起—停式调宽压力机; 2)连续式调宽压力机; 3)摇动式调宽压力机。特点:1)起停式条款压力机:工件在工作中保持静止,定位精确,夹持辊可以防止板坯和弯曲;2)连续式条款压力机:对工件的压缩与工作的前进是同步的,作业周期短,效率高,工作连部表面质量高; 3)摇动式条款压力机:以上两个优点结合。

15、长锤头压力机对板坯减宽时通常需要一个行程。

16、轧件调宽过程中易出现的失稳情况:板坯的倾翻、板坯的翘曲。板坯的倾翻预防办1)用孔型辊或带底腔的锥度辊来防止脱分; 2)采用倾斜立辊防止板坯升高。

板坯翘曲预防办法:1)中心支撑,两端支撑,三点支撑; 2)采取防止下弯的措施; 3)把两个立辊斜置。

17、减少调宽切量的方法:1)利用凸形板坯法; 2)润滑轧制法; 3)后推板坯轧制法; 4)凸形断面轧制法; 5)利用可变孔形尺寸轧制法; 6)板坯端部预成型法。

18、轧制过程瞬时速度变化的影响因素:1)轧制规格对速度的影响;2)换辊对速度的影响; 连铸过程瞬时速度变化的影响因素:1)中间包液面高度变化对拉速的影响; 2)水口通流截面变化对拉速的影响;3)钢温变化对拉速的影响; 4)过渡过程对坯料的处理。

19、热带轧制中采用的保温罩系统:绝热保温罩,反射保温罩,逆辐射保温罩(保温效率最高)。20、连铸坯在线保温技术:1)为了保证铸坯达到剪切机前,液芯完全凝固,应该知道该冶金长度,为了保证拉速,适应轧制需要,增加结晶器的长度; 2)软二冷,进入矫直机的温度应保证在1000℃以上; 3)铸坯被切断后,利用高速辊道运输,或采用保温辊道运输,降低温度损失; 4)铸坯边角散热快,采取(补)加热措施。

21、连铸坯热送热装特点:1)节能效果显著;2)提高了炉子的加热能力; 3)提高了成材率;4)缩短了生产周期;5)降低炉子的热效率。

22、连铸坯的质量概念包括: 1)铸坯洁净度;2)铸坯表面质量;3)铸坯内部质量;4)铸坯断面形状。连续铸坯表面质量决定于钢水在结晶器的凝固过程;铸坯内部质量主要决定于钢水在二冷区的凝固过程。

23、连铸夹杂物形成显著特征: 1)连续递加速度快,夹杂物长大机会少,尺寸小,不易上浮; 2)连铸多了中间包,钢液与大气、熔渣接触时间长,易被污染; 3)模铸钢锭夹杂多集中在头尾部,通过切头尾可减轻夹杂物危害,而连铸仅靠切头尾难以解决问题。

24、星状裂纹形成原因:主要是因结晶器的铜渗入钢液所致,铸坯在少许应力作用下晶间即会发生断裂。预防措施:采用镀Cr、Ni结晶器。(较薄时采用镀Cr较厚时采用镀Ni)

25、表面纵向裂纹发生在板坯那个部位?形成原因?

答:主要发生在板坯宽面中央位置及内部。原因:初生坯壳厚度不均匀,在薄的地方应力集中,当应力超过坯壳抗拉强度时产生纵向裂纹。

26、表面横向裂纹发生的原因:ALN沿晶界析出所致。

27、液面结壳:液面结壳就好像浮在结晶器保护渣层下边,钢水表面之上,当它与坯壳的凝 固层接触时,就融在坯壳表皮层上冰一起被拉入结晶器之中。

凹坑:铸坯表面粗糙形成了铸坯表面出现皱纹,严重的呈现出山谷状的凹陷。

重皮:对于横向凹陷,由于沿拉坯方向收到结晶器摩擦力的作用,很容易产生横裂纹。如果这时有钢水渗漏出来,遇到结晶器壁若能重新凝固,就形成所谓的重皮。

28、内裂纹形成的三阶段:1)拉伸力作用到凝固界面; 2)造成柱状晶间开裂; 3)偏析元素富集的钢液填充到开裂的空隙小。

29、鼓肚变形:是连铸工艺过程的一种特有现象,它是由于铸坯已经凝固的坯壳受到了内部钢水的静压力作用,使两个支撑辊之间的坯壳宽面向外凸起。铸坯鼓肚量大小的影响因素:1)铸坯横断面的尺寸与形状; 2)钢水静压力; 3)支持辊的间距; 4)凝固的坯壳的厚度; 5)钢的高温弹性模数; 6)坯壳的温度; 7)拉速。

减小鼓肚的措施:1)降低连铸机的高度; 2)二冷区采用小辊距、密排列、铸机由上到下辊距应由密到疏; 3)支持辊要严密对中; 4)加大二冷区冷却强度; 5)防止支持辊的冷却变形,板坯的支持辊最好选用多节辊。

30、连铸保护渣三层结构:由下到上 → 熔渣层;过渡层(烧结层);粉渣层。

31、薄板坯连铸机浸入式水口要求:1)与结晶器铜板间需有一定的间隔,以保证不凝钢; 2)水口直径大小能提供足够的钢水流量; 3)水口应有足够的壁厚,以使其有较长的使用寿命; 4)浸入式水口的内部与外部形状,尤其是开口的布置和配置,决定了结晶器内钢水的流向和钢液的形状,以及注入结晶器后引起的功能配置。

32、对薄板坯结晶器要求:1)结晶器应具有良好的导热性和钢性; 2)重量要轻,以减少振动时的惯性力; 3)内表面耐磨性和耐腐蚀性要好且不应该出现结晶器的铜渗入到钢液之中的问题; 4)结晶器结构要简单,以利于制造和维护

34、薄板坯连铸保护渣的名称及特点:

名称:1)是否发热:分为发热渣和绝热保护渣;2)外形:粉渣,实心颗粒和空心颗粒渣; 3)从基料来看:混合型,预溶型和烧结型渣;4)是否含氟:有氟渣和无氟渣。

特点:1)绝热保温;2)隔绝空气,防止钢水二次氧化; 3)净化钢渣界面,吸附钢液中夹杂物;4)润滑凝坯壳并改善传热; 5)充填坯壳与结晶器之间气隙,改善结晶器传热条件。

35、电磁搅拌技术的作用:1)明显的提高铸坯质量;2)改善了晶体结构; 3)提高了一冷端的冷却效率;4)中心碳偏析也显著减少。

36、液芯压下技术的定义:是在铸坯出结晶器下口后,对其坯壳施加压力加工,此时液芯仍保留在其中。就是在液芯末端以前对铸坯施以压缩加工。

注意事项:液芯压下厚度必须小于产生裂纹的最大压下值,压下后的叠加应变低于产生裂纹的临界应变,最好在上部扇形段完成压下,且不要集中在很短的区域。

37、薄板坯连铸连轧生产中常用三种加热炉,那种占地面积大、最简单、技术最新? 1)隧道式辊底加热炉(CSP、FTSR):加热段、均热段、缓冲段、出料端。优缺点:使用最多,可靠性强,工艺顺畅,使用灵活,占地面积过大,生产线过长,维护费用高(耐热辊的定期更换)。2)感应加热(ISP):是在加热炉中采用排列在辊道上的一组感应线圈实行加热技术。优缺点:较长的缓冲时间,可灵活调整加热温度和深度,占地小,新技术不成熟,维护困难,投资相对大。3)步进梁式加热炉(CONROLL): 优缺点:最简单,技术成熟,投资少,使用维修费用低,易掌握,对铸坯单位重量有限制(单重增大、炉子过宽导致投资增多)。

38、薄板坯轧制有必要采用升速轧制吗?

答:没必要,因为对连铸连轧来说受拉坯速度和连续条件的限制,终渣速度一般都不能超过12m/s,由于同步升速轧制技术来恒定轧制温度的速度条件是大于10-12m/s,固没必要用同步加速技术来控制轧件首尾温差。

39、半无头轧制:就三将几块中间坯焊接在一起然后通过精轧机进行连续轧制。铁素体轧制:轧体在进入精轧机之前,就应该完成r-α的相变。

40、相同条件下在连铸板坯和连铸方坯的温度散失:连铸方坯散失大。

41、连铸坯内弧凝固前沿上出现裂纹的可能性大,还是外弧凝固前沿出现的可能性大? 答:内弧凝固前沿可能性大。

1、连铸连轧:1)由连铸机生产出来的高温无缺陷坯,不需要清理和在加热(但需进过短时均热和保温处理)而直接轧制成材,这样把“铸”“轧”直接连成一条生产线的工艺流程就称为连铸连轧; 2)分为:液芯轧制法和凝固太轧制法; 3)突出优点是使铸坯热量得到充分利用; 4)必要条件:无缺陷坯的生产技术和在线、离线协调一致性。连铸机:完成连续铸钢所需的成套设备(包括钢包、中间包、结晶器、扇形段、引锭杆及切割系统等)。

2、生产工艺:模铸:钢锭---轧制或锻压---钢坯---轧制---钢材。连铸:钢坯---轧制---钢材。

3、连铸机按铸坯的运行轨迹分为:立式、立弯式、弧形、椭圆形和水平连铸机。(按断面大小和形状分为板坯、大方坯、放板坯复合式、圆坯、导行坯和薄板坯连铸机等)。4、1)浇注温度:指中间包内钢水的温度。2)对浇铸的要求:温度而适当的温度,不得过高或过低,要有一定的过热度才能保证浇铸的顺利进行;均匀钢包内上下温度偏低,导致中间包内钢水的温度两头低,中间高,不易控制浇铸,因此要求钢水温度上下尽量均匀。3)拉坯速度:单位时间内通过铸机钢水的重量。4)提高浇注速度的限制因素:a)浇铸过程的稳定性;b)铸坯的质量保证; c)提高浇铸速度时拉坯的速度相应提高,轧机的轧制速度也相应做出改变。5、1)一次冷却:钢水在结晶器内冷却。作用:确保铸坯在结晶器内形成一定厚度的出生坯壳。结晶器冷却水流动方式:低进高出。2)二次冷却:出结晶器的铸坯字连铸机二冷段进行冷却过程。作用:对带有液芯的铸坯实施喷水冷却,使其完全凝固以达到拉坯过程的均匀冷却。

6、结晶器的震动要求:1)震动方式能有效的防止因坯壳的连接而造成的拉漏事故; 2)震动参数有利于改善铸坯表面质量,形成表面光滑的铸坯; 3)震动机构能准确的、实现圆弧轨迹,不产生过大的加速引起的冲击和摆动;4)设备结构:制造,安装,维护方便,便于事故处理,传动系统有足够的安全储备。

7、鼓肚量:板坯宽面中心凸起的厚度与边缘厚度之差。

8、连续铸钢:把高温钢液连续不断地浇铸成具有一定断面开关和一定尺寸规格铸坯的生产 工艺过程。

9、连铸坯分为:板坯、方坯、圆坯、异形坯。

10、热连铸机组设备通常包括:步进式连续加热炉、高压水除磷装置、粗轧机、飞剪、精轧机组、卷取机、层流冷却装置、废品收集设备和各种运输辊道。

11、钢液凝固成型:1)模铸----获得钢锭----钢坯;2)连铸---钢坯

12、连铸比:指连铸合格坯产量占钢总产量的百分比。

13、铸坯断面的选择原则:1)根据轧材所需的压缩比确定; 2)连铸机生产能力和炼钢,能力合理匹配;3)适合连铸工艺要求; 4)根据轧机组成,轧材品种和规格确定。

14、连铸机机型的选择原则: 1)满足钢种和断面规格的要求:全弧形应用最多,直结晶,多点矫直次之; 2)满足铸坯质量要求:①铸坯裂纹及中心偏析;②铸坯的纯净度;③节省建设投资,源于各种新技术,理想的机型应为设备高度低,钢水静压力小,这样可以简化辊列设计。多点和椭圆比弧形设计有所增加

15、连铸机的高度关系:立式>立弯式>弧形>椭圆形>水平式

16、连铸机机型的确定:1)全弧连铸机(小型材,小方坯,线坯); 2)普碳钢,结构钢和低合金钢的方坯,板坯选全弧形,多点,和椭圆形连铸机; 3)高纯净度,质量要求严格的钢种采用直结晶

17、压力机调宽的优点:1)成材率高,压力机调宽有控制头尾形状的功能,夹尾形状得以优化,板坯变形均匀,鱼尾大大减轻,切损大大减小;2)调宽能力大; 3)调宽效率高; 4)宽度精度高; 5)降低能耗。

18、钢水温度过高的危害:1)出结晶器时坯壳过薄,容易漏钢;2)钢水对耐火材料的侵蚀加快,易导致铸流失控降低浇铸安全性;3)易增加非金属,影响板坯内的质量; 4)铸坯柱状晶发达; 5)中心偏析严重。

19、钢水温度过低的危害:1)容易发生水口堵塞,导致浇铸中断;2)铸坯表面容易产生结疤,夹渣,裂纹等式缺陷;3)非金属夹渣物不易上浮,影响斜坯质量

20、轧制过程的热传递:1)热辐射引起的温降;2)热对流引起的温降;3)水冷引起的温降;4)向工作辊和辊道热传导引起的温降;5)力学加工和摩擦引起的温降

21、保温罩的作用:通过保持较高的中间料的环境温度而使热辐射速度降低绝热保温罩,效率低,逆辐射保温罩高,反射保温罩,效率低,清洁难。

22、连铸设备的组成:1)主体设备:浇铸设备、拉坯矫直设备、切割设备。2)辅助设备:出坯及精整设备,工艺性设备,自动控制与测量仪表。

23、连铸机洁净度评价:钢水进结晶器的各环节总氧量。

24、影响连铸洁净度的因素:1)机型; 2)连铸操作; 3)耐火材料质量。

25、提高铸坯洁净度的措施:1)无渣出钢; 2)选择合适的精炼处理方法; 3)采用无氧化浇铸技术; 4)充分发挥中间包冶金净化技术; 5)选用优质耐火材料; 6)充分发挥结晶器的作用;7)采用电磁搅拌技术,控制铸流运动。

26、角部纵向裂纹:由于结晶器窄边锥度与宽边方向上的坯壳收缩量不一致所致。

27、横向裂纹:钢坯处在高温脆性区;改善措施:提高结晶器的振动频率;降低液面波动程度,降低N2和Al的含量;避开高温脆性区。

28、液面结壳产生的原因是:液面附近温度低,加之钢水不活动,因此浸入式水口侧孔角度对此有绝对性影响。

29、深振痕:结晶器上下振动时,在铸坯表面形成周期性的和拉坯方向垂直的振动的痕迹。振痕谷部会产生缺陷,危害成品质量。

30、表面气泡(和皮下气泡):1)露出表面的称为表面气泡,潜伏在表面下边又靠近表面的称为皮下气泡;2)形成原因:凝固过程中,钢中O、H、N、C等元素在凝固界面富集,当其生成CO、H2、N2等气体总压力大于钢水静压力和大气压力之和时,即有气泡产生; 3)措施:控制钢中的总气体含量。

31、保护渣行为: 注意:随着保护渣连续的被带出结晶器,要持续,分批的像结晶器中添加新保护渣,各渣层必须有符合实际需要的厚度,以保证保护渣的使用效果。

作用:1)绝热保温;2)隔绝空气,防止钢水二次氧化;3)净化钢渣界面,吸附钢液中 的夹杂物; 4)润滑凝固坯壳并改善凝固传热;5)充填坯壳与结晶器间的气隙,改善结晶器传热。组成:1)基料部分;2)辅助材料;3)熔速调节剂。

性能:1)熔化温度:指保护渣熔化达到一定流动性的温度;2)熔化速度:指一定质量的

试样在测定温度下完全熔化所需时间;3)粘度:直接影响到熔渣吸收氧化物夹杂的速度和润滑铸坯的效果,根据钢种铸坯断面,拉速等确定合适的粘度;4)表面张力:是影响钢渣分离,液渣吸收夹杂物并使之从钢中排出的重要参数。

32、对保护渣润滑行为的影响因素: 1)降低保护渣熔化温度、粘度,可以增加液态摩擦区域,降低铸坯所受摩擦力; 2)浇铸温度越高液体摩擦区域越大,熔渣的摩擦力越小,但对于高拉速而言,应采取低温浇铸的工艺思想;对一定熔化温度和粘度的保护渣,随着拉坯速度的提高液态润滑区增大; 3)结晶器振幅、频率、倒锥度增大,液体摩擦力增大;拉坯速度一定时降低结晶器的振幅和振动频率可以减小铸坯所受摩擦力; 4)随着波形偏移率的增大,正滑脱液体摩擦力逐渐减小,负滑脱液体摩擦力增大;选用合适的波形偏移率的非正弦波振动方式是实现高拉速的一个重要的工艺措施。

第十章 薄板坯连铸技术

1、近终型连铸技术:浇铸接近最终产品形状和尺寸的浇铸方式。

2、分类:薄板坯连续带钢/坯连铸、薄板钢连铸。

3、主要条件:1)具备高温无缺陷板坯的生产技术;2)连铸机具有板坯在线调宽技术; 3)炼钢、连铸机、热轧机操作高度稳定。

4、薄板坯连铸连轧技术特点: 1)工艺器简化、设备减少、生产线短; 2)生产周期短; 3)节约能源,提高成材率; 4)更有利于生产薄带和超薄带钢。

5、实现薄板坯连铸连轧工艺的技术关键是薄板坯连铸,其中连铸机的结晶器是关键。

6、典型的薄板坯连铸连轧棱柱中的CSP、FTSR、CONROLL薄板坯连铸机均为立弯型,ISP连铸机为弧形。最广泛的是弧形连铸机。

7、结晶器的形状特点:1)结晶器上口面积的增大,使结晶器形成了漏斗型形状; 2)使博坯壳运动阻力增加; 3)铸坯表面形成横裂缺陷; 4)振动机构实施小振幅、高振频的振动装置。

8、结晶器的发展趋势:上口面积加大,在断面上广泛采用鼓肚形上口,合理的倒锥度,以及浸入式水口的配套使用,合理的上口形状有利于浸入式水口的插入及保护渣的熔化,从而改善铸坯表面质量。

9、新型保护渣:提高坯壳与结晶器之间的润滑效果,就需要能适应高拉速的保护渣。特点:采用熔点和黏度都更低的,且流动性更好的渣系。中空颗粒保护渣,具有能在坯壳和连铸机结晶器间形成可控的稳定的渣膜的特点,发挥其润滑和吸附的作用。

10、电磁制动的作用:限制钢流速度,降低液面流动。

11、高压水除磷技术的必要性:薄板坯表面积大,不及时清除氧化铁皮,会与轧辊在高温下接触,不仅损毁轧辊,常因轧制速度远高于浇铸速度而将氧化铁皮轧入。除磷装置有高压水,旋转高压水多种类型。除磷机可以多点布置,加热炉前,粗轧机前,精轧机后。

12、液芯压下: 优点:1)铸坯厚度减薄,表面质量及平整度好,减轻铸坯中的偏析; 2)改善铸坯中心的疏松和细化晶粒方面也有显著效果; 3)减少精轧机架数,缩短连铸机和连轧机之间的距离,减少加热装置的长度; 4)不会产生漏钢; 5)提高铸坯质量,进一步降低能耗; 6)采用自动控制的设备,实现自动调整扇形段辊值来实现准确的轻压下操作。

13、无头轧制:从加热炉出来的钢坯,经除磷机去除氧化铁皮,然后其头部与前一根已经进入粗轧机的钢坯尾部在运动中经过闪光对焊结成一体,从而形成不间断地轧制。半无头轧制:就是将几块中间坯焊接在一起,然后通过精轧机进行连续轧制。半无头轧制的优点:1)有利于生产超薄带钢和宽而薄的带钢,拓宽产品大纲; 2)稳定轧制条件以利于产品质量; 3)消除了与穿带和甩尾有关的麻烦; 4)显著提高了轧机的作业效率和金属收得率; 5)避免了常规连轧机组无头轧制工艺的投资和焊接质量问题。实现半无头轧制的关键设备:轧机后部配备的专业高速飞剪,高速通板装置,两台告诉地下卷取机

14、长锤头压力机作用:1)可以提供真正的矩形板坯;2)进行板坯减宽。

15、压力机调宽优点:1)成材率高; 2)调宽能力大; 3)调宽效率高; 4)调宽精度高;5)降低能耗。

16、脱矩:倾翻发生的时候,将产生非矩形板边横断面形状,即所谓脱矩。

17、翘曲:板坯横向失去稳定性称为翘曲。条件:减宽量超过最大允许减宽量。防止翘曲系统:中心支撑、两端支撑、三点支撑。

18、板坯端部预成型法:火焰切割、轧辊压边、压缩。

19、连铸连轧法轧制时铸坯温度不同分为液芯(半凝固态)轧制法和凝固态轧制法。

20、影响板边横断面形状因素:1)水平轧制时产生的轧制接触区中的摩擦; 2)变形区的几何形状。

补充

1、目前连铸机车间有两种布置形式:横向布置和纵向布置。

2、台数:凡是共用一个钢包浇铸一流或多流钢坯的一套连续铸钢设备称一台连铸机。

3、连铸机规格:aRb-c:a – 机数,为1可省;R—机型为弧形或椭圆形连铸机;b—连铸机的圆弧半径,m。c –拉辊辊身长度,mm。例:3R5.25—240表示此台连铸机为3机,弧形连铸机,其圆形半径为5.25米,拉辊辊身长度为240mm。

4、冶金长度:拉坯速度最大时的液芯长度。

5、坯壳凝固厚度:结晶器出口处的最小坯壳厚度。

6、未完全凝固:带液芯结晶液面到最后一对拉辊间的长度。

7、金属收得率:连铸过程中,从钢水到合格产品有各种金属损失。

8、磨损和温度是随轧制过程变化的因素。

9、无顺序轧制技术:是指在板带轧制过程中,宽度顺序不受限制。

10、用于连铸过程中的变宽方法: 1)两次浇铸之间变宽:操作不便,效果不理想; 2)暂停浇铸过程变宽:导致断面阶跃,增加切损; 3)通过降低浇铸速度变宽:适合缩宽,不适合增宽; 4)在恒定浇铸速度期间变宽:缩宽与增宽均可实现。

11、结晶器调宽的意义:提高连铸机和轧机的生产能力,增加金属收得率。

12、轧辊基本形状:平辊、锥形辊、带平或凸槽底表面的孔型辊、带斜槽底表面的孔型辊。

13、轧制增宽方法:横轧法、特殊辊形法

下载连轧无缝钢管产品缺陷(欠)分析word格式文档
下载连轧无缝钢管产品缺陷(欠)分析.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    连铸连轧续建工程施工方案(土建)

    1、 工程概况: 本工程为邯郸钢铁集团有限责任公司薄板坯连铸连轧续建工程,是经国家计委审批的重点项目。此项目在复兴路南,邯钢厂区西侧的原邯钢连铸连轧厂区内。该项目是在原......

    浅谈锅炉用热轧无缝钢管质量缺陷检测方法(5篇范文)

    浅谈锅炉用热轧无缝钢管质量缺陷检测方法 摘要:锅炉用无缝钢管使用前,对管材加工成形工艺中一般都用计算机在线预报、检测钢管质量的环节来保证管材的使用质量。文章简述了钢......

    产品分析

    产品分析: (一)产品特征分析: 1特征: 功能: 主要特性是天然芳香,止痒。其次是柔顺,光泽,补水,保湿,滋润。 质量: 质量有保证,保护发质,值得消费者信赖。 价格:和同类产品比较价格偏低 工艺:......

    产品分析

    关于对飘柔洗发水公司(宝洁)的认识与规划 1、对该产品和对产品公司的认识 1989年10月,作为宝洁旗下的品牌,飘柔进入中国。十六年来,飘柔一直是中国洗发水市场的领导品牌,成为中国......

    连轧作业区精整热处理工段交接班管理制度

    连轧作业区精整热处理工段交接班管理制度 第一节 总则 第一条为了加强精整热处理工段交接班管理,落实岗位工作职责,保证安全生产,特制定本制度。 第二条班组长是岗位交接班工作......

    产品表面外观缺陷的定义

    产品表面外观缺陷的定义 1.焊接 1.1咬边:咬边是焊缝边缘局部低于母材面的凹陷缺陷.它是由于焊接电流过大,焊接速度太快,电弧过长或运条操作不当形成. 1.2 焊瘤:焊瘤是熔化金......

    锡槽缺陷分析

    锡槽氧、硫污染物的控制 (秦皇岛—付沛) 摘要:讲述了锡槽氧、硫污染的机理,控制的基本方法,当槽内保护气被污染后的补救 措施。 关键词:锡槽 氧 硫 污染 密封 控制 纯锡对玻璃......

    2013护理缺陷分析第二

    二零一三年第二季度护理缺陷分析 本季度发生护理不良事件共22起,其中发生护理并发症5起(其中跌倒2起、坠床1起,压疮2起),护理缺陷中主要为用药方面错误13起,其他方面4起。现具体分......