关于防止汽轮机大轴弯曲事故的学习交流材料(合集五篇)

时间:2019-05-14 01:56:25下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《关于防止汽轮机大轴弯曲事故的学习交流材料》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《关于防止汽轮机大轴弯曲事故的学习交流材料》。

第一篇:关于防止汽轮机大轴弯曲事故的学习交流材料

关于防止汽轮机大轴弯曲事故的学习交流材料

一、相关设备和系统情况

江苏新海发电有限公司1号机组系上海电气集团引进德国西门子技术生产的超超临界、一次中间再热、单轴、四缸四排汽、双背压凝汽式汽轮发电机组,额定容量1030MW。汽轮机型号为 N1000-26.25/600/600(TC4F),发电机型号为 THDF125/67。该机组于 2012年11 月24日投入商业运行。

机组轴系由高压转子、中压转子、两根低压转子、发电机转子和励磁机转子及相应的 8 个支持轴承组成。轴系中高压转子为双支撑结构,中压转子和两根低压转子都是单支撑结构,发电机和励磁机转子是三支撑结构。汽轮机轴承都是椭圆瓦落地轴承,发电机轴承是端盖轴承。机组的轴系结构示意图见图 1所示。

该机组自投产并运行至 2013年3月,#1 轴承瓦振偶尔出现波动,4月波动现象开始较为频繁出现,多次发生振动突跳现象,轴振动幅值大幅爬升,并且分别于 5月8日、7月10日和10月23日因#1轴承瓦振超过跳机值引发三次跳机。此问题的存在严重影响了机组运行的安全性和可靠性。在2013年12月开始的机组首次A级检修中,公司工程技术人员在前期充分、细致的准备工作基础上,通过设备检修彻底解决了这一重大缺陷,保证了机组的安全、稳定运行。

二、新电公司对照“二十五项重点要求”的检查情况

1、应具备和熟悉掌握的资料。

由于该机组为新建机组,未进行过机组大修,相关的机组安装资料已由施工单位移交公司档案部门。经检查档案部门保管的资料,确认资料齐全、记录完整,记录中的相关数据都符合质量标准的要求。运行规程、运行系统图、检修规程等相关文件都已完成编审批工作。

2、汽轮机启动前必须符合的条件。

上海电气集团引进德国西门子技术生产的1000MW机组在启动过程中,必须满足设定条件才可以执行后续操作。查看机组启动期间的相关历史数据,未发现异常。

3、机组启停过程操作措施。

对照“二十五项重点要求”的相关规定,未发现在机组启停过程中存在违规情况。

4、汽轮机发生下列异常情况,应立即打闸停机。

检查确认机组各项保护投入率100%,出现制造商规定的停机动作值,立即自动打闸停机。在2013年5月8日、7月10日和10月23日三次#1轴承瓦振超过跳机值时,保护动作及时、准确。

5、采用良好的保温材料和施工工艺,保证机组正常停机后的温差符合要求。查看机组停机后的历史数据,确认机组正常停机后的温差符合要求。

6、疏水系统保证疏水畅通;减温水管路阀门应能关闭严密,应设臵逆止阀和截止阀;门杆漏汽至除氧器管路应设臵逆止阀和截止阀;高、低压加热器应装设紧急疏水阀。

对照“二十五项重点要求”的相关规定,对机组现场的管道系统、阀门设臵等情况进行了排查,未发现不符合规定的情况。

7、机组监测仪表完好、准确,定期校验。

运行、检修人员对机组的监测仪表进行排查、梳理,确保电气仪表、热工仪表完好准确率≥99%;继电保护、热工保护正确动作率=100%;热工保护投入率=100%。

8、凝汽器应有高水位报警并在停机后正常投入;除氧器应有水位报警和高水位自动放水装臵。

对现场设备进行检查,确认凝汽器、除氧器具备“二十五项重点要求”中规定的要求。

9、严格执行运行、检修操作规程,严防汽轮机进水、进冷汽。对运行、检修的相关操作程序进行梳理、检查,确保不发生违反汽轮机进水、进冷汽的情况。

三、新电公司#1机组汽轮机振动大攻关工作开展情况

3.1 第一阶段 3.1.1 情况经过 2013年4月9日#1机组#1轴瓦振动首次异常,4月20日#1机组#1轴瓦振动再次异常。

图2 4月9日#1轴瓦异常振动时负荷、轴振、瓦振曲线

3.1.2 事后分析

3.1.2.1 2013年4月9日首次出现#1轴瓦异常振动后,对补汽阀进行检查,确认补汽阀处于关闭状态、未有动作,为确保机组运行期间补汽阀不发生误动,将补汽阀EH进油门关闭。但4月20日依然再次出现#1轴瓦异常振动,故基本可排除补汽阀问题。

3.1.2.2 振动突变时,低频量(25Hz左右)突增。在振动未突变时,#1瓦也在一定范围内波动,其波动原因为存在低频量。

图3 1X振动列表图

从图3可以看出,4月9日在振动突然增大前,#1瓦X方向轴振0.5倍频(25Hz)在7μm~45μm范围内波动,在突变后#1瓦X方向轴振0.5倍频在78μm~101μm间波动,振动增大成分主要是低频成分(25Hz),同时工频振动也有一定的增大,在突变消失后#1瓦X方向轴振0.5倍频又变成在7μm~30μm间波动。

图4 #1瓦X方向轴振频谱

由图5可以看出,在4月20日#1轴瓦振动突然增大时,#1轴瓦的频谱分析中也有较大的25HZ分量。

图5 4月20日#1轴瓦异常振动时频谱图

从机组正常运行#1瓦轴振等存在低频量,且振动突变时也主要是低频量突增等现象,分析机组异常振动原因为#1瓦油膜失稳或高压转子汽流激振,但考虑到高压缸对称进气,汽流激振可能性较小(制造厂认为不可能是汽流激振)。

要消除低频量,只能增加轴瓦稳定性,提高轴瓦抗失稳能力。采取措施一般为:

1、提高#1瓦承载(提高#1瓦标高),2、检查轴瓦、及间隙、紧力情况,3、适当缩小轴瓦顶隙,增大轴瓦侧隙。但这种处理需要一定时间。

3.1.3 事后采取的措施

(1)运行人员采取措施,降低高缸两侧的调门进汽差异。(2)确保轴承进油量、油温正常。

(3)为确保机组运行期间补汽阀不发生误动,将补汽阀EH进油门关闭.(4)运行人员发现#

4、#5轴瓦的顶轴油模块逆止门不严,怀疑#

4、#5轴瓦的顶轴油进入#1轴瓦造成#1轴瓦异常,于5月1日#1机组开机后将#

4、#5轴瓦的顶轴油进油门关闭。

3.2 第二阶段 3.2.1 情况经过

2013年5月8日因#1机#1轴瓦振动异常汽机跳闸。2013年7月10日再次因#1机#1轴瓦振动异常机组跳闸。

3.2.2 事后分析

图6 2013年7月10日跳机#1轴X振动和1瓦振动频谱图

如图5所示,4月20日#1轴瓦异常振动时的轴振动已呈现较大的低频成分(≈60μm),且其瓦振动不但存在低频成分,还存在一定量的高频成分。

从图6来看,与此前相比较轴振动的低频成分显著增大(≈120μm),且轴承座振动也呈现明显的低频振动和大量的高次谐波。

图7 2013年7月10日跳机前1瓦轴振低频分量趋势图1

图8 2013年7月10日跳机前1瓦轴振低频分量趋势图2 从图7和图8 来看,19:20~19:40#1轴瓦的轴振低频成分最大不超过30μm,20:45~21:05低频振动成分最大接近80μm,从整体上看低频振动幅值呈现逐步增大趋势。

3.2.2.1 #1轴瓦的瓦振和轴振的振动特征

(1)轴瓦振动在运行中会突然跳升,轴振也呈现同步爬升。(2)轴瓦振动跳动现象最初发生在额定负荷附近,后在较低负荷也出现,且波动的频次趋于频繁,波动的幅值趋于增大,似乎有一定的随机性。

(3)振动跳动时轴振出现较大的25Hz(半频)振动成分,但瓦振除有一定的低频分量外,还有很多幅值较大的高次谐波分量,此时油膜压力也会同步波动。

(4)振动跳动是前箱附近伴随异常的声音。(5)振动跳动的持续时间长短不一。(6)#1轴瓦轴振的基数不断增大趋势。

(7)振动跳动时,通常采取降负荷或限制蒸汽流量来控制或消除振动突升,提高油温对抑制振动波动也有一定作用。(8)#1轴瓦润滑油压较以前略有降低,为2.5MPa左右。3.2.2.2 #1轴瓦瓦振大和轴振波动的可能原因(1)高压转子动静碰磨产生热弯曲。(2)轴承支座摆动。

当#1轴瓦垫铁与轴承支座接触差,呈局部点接触时,转子运行中会对轴承支座产生冲击振动,造成轴承支座的摆动,在瓦振动频谱上呈现高频振动分量,且会产生异常撞击声。当出现新的扰动时,#1轴瓦垫铁与轴承支座接触状态改变,振动可能复原,这种振动与扰动有关,呈现一定的随机性。(3)轴系稳定性不足。

#1 轴承承载较轻,油膜压力只有 2.5MPa 左右,数值较同型机组 5MPa 左右的油膜压力明显偏小,因而轴承稳定性较差,轴瓦磨损后,转子下沉,承载进一步减小(油膜压力有降低趋势),同时顶隙增大,使得轴承稳定性继续降低。当转子在汽流力作用下发生移位时,转子偏心产生的汽流激振力进一步降低了轴系稳定性,造成轴系失稳,就会出现低频振动。(4)高压转子外伸端不平衡。

高压转子相对较小,其前与盘车装臵的齿形联轴器相连,后通过联轴器与中压转子相连,它们都可认为是高压转子的外伸端。当齿形联轴器过度磨损,或与高压转子连接存在较大偏差,在变工况时高压转子外伸端会产生不平衡,引起不平衡振动。同样,当高/中转子联轴器连接螺栓紧力不足或不均匀时,在变工况时联轴器连接状况恶化,会产生附加的质量不平衡,从而也会影响高压转子的振动。此外,当运行后因工况突变(如甩负荷)时或应力释放引起联轴器或盘车齿轮晃度增大,都会造成平衡恶化使振动出现爬升。

3.2.3 事后采取的措施

(1)由于2013年4月9日、4月20日#1轴瓦在机组负荷1000MW出现异常振动后,将机组负荷降低至950MW左右振动情况即回复正常,而5月8日机组跳机时的机组负荷也为1000MW。故在5月8日机组跳机后将机组负荷限制在950MW以下。但2013年7月10日机组跳闸时机组的负荷为930MW,后发现7月10日机组跳机时尽管未超过原有的负荷限值950MW,可是由于当时气温较高,机组背压偏高,主蒸汽流量为2540T/h,已达到5月份(第一次机组跳闸)950MW时的主蒸汽流量值,因此进行机组的负荷控制时以主蒸汽流量为准,主蒸汽流量不超过2450 T/h。

(2)在现场架设瓦振测量装臵监测目前DCS中的#1轴瓦瓦振数据是否受到干扰。(3)适当改变轴封温度。(4)运行进行压力偏臵试验。

(5)运行人员加强监视,一旦出现轴瓦振动异常的情况,立即降低机组负荷。

(6)将主机润滑油温由50℃提高至52℃。

3.3 第三阶段 3.3.1 情况经过

10月23日#1机#1轴承振动参数突然跳变,轴承振动保护动作,机组跳闸。

3.3.2 事后分析 3.3.2.1 振动特征

(1)引起跳机主要是低频成份,基频振动基本不变。(2)轴振动和轴承座振动同步增大。

(3)机组跳闸后转速降低低频振动即消失,再定速正常。振动趋势图和频谱图见图7所示。

图7 2013年10月23日跳机#1轴X振动和1瓦振动趋势和频谱图

3.3.2.2 振动分析

综合以上振动特征,就#1轴瓦振动突增并跳闸而言,原因与此前两次跳机是一致的,即,机组在运行中低频振动成分急剧增大,振动迅速发散引起机组跳闸。

因为负荷稳定#1轴瓦仍然又诱发了很大的低频成分,因此其振动性质属于轴承自激振动,这种振动本身就具有突发性,其出现和消失都非常快,以秒计。

据目前的状况来看,#1轴瓦自身的油膜形成非常脆弱,任何轻微扰动都可能破坏其正常工作并诱发失稳加剧,进而导致低频振动成分剧增。当机组跳闸后转速下降,工作状态离开了失稳区域则低频成分很快消失。

增加轴承稳定性需要采取提高轴承比压,消除轴瓦缺陷等等措施,估计#1轴瓦可能存在比较大的缺陷,使轴承本身就工作在失稳区域的边缘。

3.3.3 事后采取的措施

(1)将机组的轴瓦进口润滑油温由当时的52℃,提高至55℃。(上海汽轮机厂要求的润滑油温范围为50℃--55℃。)(2)运行人员严控两侧主汽温,确保两侧主汽温不出现过大偏差。(3)运行人员密切监视#1轴瓦的顶轴油压,当#1轴瓦顶轴油压下降到1.7MPa以下时,机组限负荷运行。

3.4 检修情况

2013年12月,江苏新海发电有限公司开始#1机组的首次A级检修,本次机组检修的重点任务就是要解决#1轴瓦的异常振动问题,确保机组修后的安全运行。

3.4.1 检修中发现的问题

(1)#1轴瓦顶隙不符合标准(0.17--0.21mm,标准为0.30--0.35mm)。

(2)#1轴瓦两侧垫块间隙超标(两侧的垫块间隙一侧为0.06mm,另一侧为0.29mm,标准为0.01--0.03mm)。

(3)#1轴瓦底部垫铁接触情况较差,存在较深的沟痕。(4)#1轴承座紧固螺栓松动。(5)#1轴瓦进油口处有冲刷痕迹。

(6)高压缸动静部件同心度偏差较大。检查高压缸动静部件同心度,发现高压缸#1轴瓦端转子偏B 0.65 mm,转子偏上0.05 mm;(7)液压盘车传动轴推力间隙超标。3.4.2 基于发现问题进行的振动原因分析

(1)轴承的安装缺陷,包括垫铁与轴承支座的接触不良、轴瓦间隙不均匀等,进而引发了低频、基频,甚至高次谐波的振动波动。(2)轴承承载较轻、稳定性裕度不足,再加上汽流扰动力影响,使得轴承存在轻微失稳,引发了低频振动波动。

(3)该型机组的高压缸受热后是以2号轴承座为死点向机头膨胀,由于高压缸重量轻,且长期处于高温、高压等恶劣环境下运行,现场容易出现因缸体跑偏或高压转子的大幅浮起而引发的动静碰摩,最终导致1号轴振的基频振动波动。

3.4.3 针对问题采取的处理措施(1)轴瓦返厂处理,加工至标准尺寸。(2)轴瓦底部的球面垫块接触面返厂重新加工。(3)轴瓦两侧的垫块间隙调整至标准值;(4)调整高压缸动静部件同心度。(5)将#1轴瓦的标高向上调整0.09 mm。

3.5 机组修后情况

#1机组A级检修后于2014年2月11日冲转至3000 rpm,目前机组负荷最大已达到1030MW,各道轴瓦的轴振最大不超过55um,瓦振最大不超过5.0mm/s,且振动情况非常稳定。同时,根据修后#1轴瓦振动频谱的分析,修前#1轴瓦一直存在的25HZ分量,现在也基本消失(见图8)。根据目前的机组运行情况,可以认定#1机组#1轴瓦异常振动问题已得到圆满解决。

图8 2014年3月19日#1轴振动和#1瓦振动频谱图

四、意见或建议

1、在问题的分析过程中,公司技术人员通过多种方式进行验证,确认在轴瓦异常振动时出现的高次谐波(见图6)是真实的。这点与当前的主流观点(即轴瓦振动不应该出现200 Hz以上的高次谐波)相左。建议在机组出现轴瓦振动异常且存在高频值时,在没有确认此高频值是否是干扰的情况下,不要草率加装滤波装臵将此高频值滤掉,确保设备安全。

2、在现场的测量过程中发现,我们现场的数据采集仪器中反映出来的数据与DCS中反映的数据有偏差(即峰峰值与有效值的偏差),后经上海汽轮机厂确认该单位在1000MW机组上提供的#1轴瓦的瓦振跳机值11.8mm/s是有效峰值,即峰峰值。因此,上海汽轮机厂1000MW机组的瓦振跳机值比国家标准中的瓦振跳机值要求更严格。此点提醒同类型机组的厂家予以注意。

第二篇:防止汽轮机进水措施

防止汽轮机进水措施

1、防止高加满水倒灌汽轮机

1.1运行中高加水位保护必须投入并在高加投运前试验高加水位保护动作正常;

1.2运行中高加保护动作后应检查确认高加水位保护是否是正确动作,如是正确动作,不可在水位高情况下强行解除高加水位保护投高加,应退出高加汽水侧运行并检查高加是否泄漏,如高加泄漏应通知检修处理,确认高加无泄漏后,方允许在水位正常后重投高加水汽侧运行;

1.3运行中应维持高加水位正常,当出现高加水位异常应通过核对就地水位计、高加出口水温等方法确认高加水位,如无法监视高加水位应按规程要求处理。

1.4按规程要求定期对各段抽汽止回阀开关灵活性进行检查,并检查开关是否到位。定期对抽汽止回阀进行解体检查,及检查各段抽汽电动门严密性。

2、防止低加满水倒灌汽轮机

2.1运行中低加水位增高时,应开启至凝结器直疏门,保持低加正常水位;

2.2运行中应保持低加水位正常,当出现低加水位异常应通过核对就地水位计、低加出口水温、就地是否有水击声音等方法确认低加是否满水,如无法监视低加水位应退出低加汽水侧进行查漏;

2.3开停机过程中出低加水位过高,如是#2高加疏水影响则应开启#2高加危机疏水,并开启低价直疏门来降低低加水位至正常; 2.4按规程要求定期对各段抽汽止回阀开关灵活性进行检查,并检查开关是否到位。定期对抽汽止回阀进行解体检查,及检查各段抽汽电动门严密性。

3、防止轴封供汽带水

3.1正常运行中应保持除氧器正常水位运行,防止满水导致轴封供汽带水进入汽封;

3.2运行中进行轴封供汽切换时应加强疏水,只有待所有管段彻底疏完水后方允许倒换轴封供汽;

3.3运行中低压轴封一般不需投用轴封减温水,如确需投运应及时开启疏水,防止因雾化不好使轴封供汽带水。

4、防止蒸汽带水造成水冲击

4.1汽机运行中蒸汽温度突然急剧下降50℃以上及运行规程中有明确规定的水中击现象应按事故规程处理;

4.2机组并网及升负荷时应注意汽包水位变化,尽量避免汽包水位较高时突然加负荷,以防止蒸汽带水;

4.3 机组启、停过程中要密切监视主、再热蒸汽温度变化,注意锅炉投用主、再热蒸汽减温水和调整汽包水位时,大幅提高给水泵转速,可能会造成蒸汽带水。

5、防止停机后汽轮机进水事故的预防措施:

5.1 汽轮机打闸后应将高加、低加进汽电动门、轴加进汽门、轴加进汽门、三抽至除氧器电动门关闭;停机后将凝结器补水门全部关严。5.2 停机后应将轴封供汽调节总门、轴封至除氧器隔离门、辅汽联箱至轴封隔离门、#2高加至除氧器疏水隔离门、门杆漏汽至除氧器隔离门关严;定期对相关阀门严密性进行检查。

5.3 停机后严密监视高、低加、除氧器和凝汽器水位,水位涨高时应检查水位上涨原因,并设法降低水位。

5.4 停机后应严密监视汽轮机缸温,发现上下缸温差不正常时应查明原因,采取运行能执行的必要隔离措施。

5.5 停机后应将高排逆止门前、后疏水隔离门打开,投入高排逆止门前后水位联锁;如水位上涨过快应查明原因并加强疏水,防止水倒灌进汽轮机高压缸。

6、防止锅炉水压试验时汽轮机进水事故的预防措施 6.1锅炉水压试验前的系统隔离:

6.1.1锅炉进行过热器水压试验前应进行以下检查: 6.1.1.1应关闭严密的阀门:

电动主汽门及其旁路门;电动主汽门前疏水电动门、手动门、排地沟门;新蒸汽至高温轴封供汽一、二次门;新蒸汽至夹层加热联箱手动门、电动门;高旁及减温水隔离门;高压自动主汽门、高压调门;高压缸前、后轴封供汽门、中压缸前轴封供汽门。定期对相关阀门严密性进行检查。

6.1.1.2应全开的阀门:

电动主汽门后疏水手动门、电动门;高排逆止门后疏水手动门、电动门;高排逆止门前疏水手动门、电动门;夹层加热联箱疏水门;五加热器进汽电动门;高压导汽管疏水一次门、二次门;高调速汽门室疏水一次门、二次门。

6.1.2锅炉进行再热器水压试验前,除按过热器水压试验要求进行检查外,还应进行以下检查: 6.1.2.1应关闭严密的阀门:

中压自动主汽门前疏水手动门、电动门、;中压自动主汽门、中压调速汽门;高排逆止门后疏水手动门、电动门。定期对相关阀门严密性进行检查。

6.1.2.2应全开的阀门:

中压导汽管疏水门;中压调门疏水门、高排逆止门前疏水电动门及其手动门。

6.2锅炉水压试验过程中的检查:

6.2.1锅炉汽包上满水后应检查电动主汽门后疏水门是否发热,如有水漏出,应再手紧电动主汽门及其旁路门,无效时报告值长、总指挥; 6.2.2锅炉起压后再次检查电动主汽门后疏水门是否有水漏出;检查电动主汽门后、夹层联箱、新蒸汽至轴封供汽门后压力表有无变化。6.2.3进行再热器水压试验时应在再热器上满水后检查中压导汽管疏水门是否发热,判断中压主汽门是否关闭严密;升压过程应按升压速率要求控制好高压给水旁路开度及给水泵转速,防止升压过快或超压。

进行水压试验时应严密监视高排逆止门前疏水 ,如无法控制汇报总指挥要求停止试验 6.2.4 无论过热器水压试验还是再热器水压试验,都应严密监视高、中压缸的缸温变化,发现异常时应及时处理和汇报。

7.3锅炉水压试验后的疏水操作:

7.3.1锅炉过热器水压试验后,全开电动主汽门前疏水门,开启过热器向空排气门。

7.3.2锅炉再热器水压试验后,全开中压主汽门前疏水门、高排逆止门后疏水门,开启再热器向空排气门。

第三篇:汽轮机典型事故处理

汽轮机典型事故与处理

1.机组发生故障时,运行人员应怎样进行工作? 机组发生故障时,运行人员应进行如下工作。

(1)根据仪表揞示和设备外部象征,判断事故发生的原因;

(2)迅速消除对人身和设备的危险,必要时立即解列发 生故障的设备,防止故障扩大;

(3)迅速查清故陣的地点、性质和损伤范围;

(4)保证所有未受损害的设备正常运行;

(5)消除故障的每一个阶段,尽可能迅速地报告值长、车间主任、以便及时采取进一步对策,防止事故蔓延;

(6)事故处理中不得进行交接班,接班人员应协助当班人员进行事故处理,只有在事故处理完毕或告一段落后,经交接班班长同意方可进行交接班;

(7)故障消除后,运行人员应将观察到的现象、故障发展的过程和时间,采取消除故障的措施正确地记录在记录本上;

(8)应及时写出书面报告,上报有关部门。

2.汽轮机事故停机一般分为哪三类?

汽轮机事故停机一般有:(1)破坏真空紧急停机。(2)不破坏真空故障停机。

(3)由值长根据现场具体情况决定的停机。其中第三类停机包括减负荷停机。

3.什么叫紧急停机、故陣停机,由值长根据现场具体情况决定的停机?

紧急停机:设备已经严重损坏或停机速度慢了会造成严重损坏的事故。操作上不考虑带负荷情况,不需汇报领导,可随即打闸,并破坏真空。

故障停机:不停机将危及机组设备安全,切断汽源后故障不会进一步扩大。操作上应先汇报有关领导,得到同意迅速降负荷停机,无需破坏真空。

由值长根据现场具体情况决定的停机:事故判断不太便,判断不太清楚,或某一系统或设备异常尚未达到不能减负荷停机的程度。操作上应控制降温、降负荷速度、汽缸温度下降到一定的温度再打闸。

4.区别三类事故停机的原則是什么?

区别三类事故停机的原则是:

(1)故障对设备的危害程度和要求的停机速度。(2)对设备故陣的判断是否方便清楚。

5.破坏真空紧急停机的条件是什么? 破坏真空紧急停机的条件是:

(1)汽轮机转速升至3360r/min,危急保安器不动作或调节保安系统故障,无法维持运行或继续运行危及设备安全时。

(2)机组发生强烈振动或设备内部有明显的金属摩擦声,轴封冒火花,叶片断裂。

(3)汽轮机水冲击。

(4)主蒸汽管、再热蒸汽管、髙压缸排汽管,给水的主要管道或阀门爆破。(5)轴向位移达极限值,推力瓦块温度急剧上升到95℃时。(6)轴承润滑油压降至极限值,起动辅助油泵无效。

(7)任一轴承回油温度上升至75℃或突升至70℃(包括 密封瓦,100MW机组密封瓦块温度超过105℃)。(8)任一轴承断油、冒烟。

(9)油系统大量漏油、油箱油位降到停机值时。

(10)油系统失火不能很快扑灭时。

(11)发电机、励磁机冒烟起火或内部氢气爆炸时。

(12)主蒸汽、再热蒸汽温度10min内升、降50℃以上(视情况可不破坏真空)。(13)高压缸差胀达极限值时。

6.故障停机的条件有哪些?

发生下列情况之一,应立即汇报班长、值长,联系电气、锅炉迅速减掉汽轮机负荷、电气解列,故庳停机。

(1)200MW机组真空降至73.33kPa,125MW机组和300MW机组真空降至63kPa,50MW和100MW机组真空降 至66.7kPa,负荷降至零仍无效时。(2)额定汽压时,主蒸汽温度升高到最大允许值,短时 间不能降低或超过最大允许值。

(3)主蒸汽温度、再热蒸汽温度过低。

(4)主蒸汽压力升高到最大允许值,不能立即恢复时。

(5)发电机断水超过30s(300MW机组为20s),断水保 护拒动作或发电机大量漏水时。

(6)厂用电源全部失去。

(7)主油泵故障不能维持正常工作时。

(8)氢冷系统大量漏氢,发电机内氢压无法维持时。

(9)髙、中、低压缸差胀达最大允许值,采取措施无效时。(10)凝结水管破裂,除氧器水位迅速下降,不能维持运时。(11)凝汽器铜管破裂,大量循环水漏入汽侧。.紧急停机如何操作? 紧急停机操作如下。

(1)揿紧急停机按钮或手动脱扣器,检查髙、中压自动 主汽门、调节汽门、各抽汽逆止门、高压缸排汽逆止门应关 闭,转速应下降,关闭电动主汽门。

(2)发出“注意”、“停机”信号。(3)起动交流润滑油系。

(4)关闭除氧器进水门,开凝结水再循环门,投人排汽缸喷水。开启给水泵再循环门,关闭中间抽头门。

(5)停用射水泵,开启真空破坏门,除与锅炉侧相通的疏水门外,开启汽轮机侧所有疏水门,解除旁路系统自动。

(6)调整轴封压力,必要时将轴封汽切换为备用汽源供给,给水走液动旁路。(7)倾听机组声音,记录惰走时间。

(8)转子静止,真空到零,停止向轴封送汽,投人盘车,测量转子弯曲值。(9)完成正常停机的其它各项操作。

(10)详细记录全过程及各主要:数据。8.蒸汽温度的最髙限额是根据什么制定的?

蒸汽温度的最高限额的依据是由主蒸汽管、电动主汽门、自动主汽门、调节汽门、联合汽门及调节级等金属材料来决定的。根据材料的蠕变极限和持久强度等性能决定的,当蒸 汽温度超过最高限额时,会使金属材料的蠕变速度急剧上升, 允许用应力大大下降。所以运行中不允许在蒸汽温度的上限运行。

9.新蒸汽的压力和温度同时下降时,为卄么按汽溫下降 进行处理?

新蒸汽压力降低将使汽耗增加,经济性降低,末级叶片易过负荷,应联系锅炉处理。单元制机组锅炉的处理方法包 括减负荷。

汽温下降时,汽耗要增加,经济性降低,除末级叶片易 过负荷外,其他压力级也可能过负荷,机组轴向推力增加,且 末级湿度增大易发生水滴冲蚀,汽揾突降是水冲击的预兆,所 以汽温降低比汽压降低危险。汽温、汽压同时降低时,如负 荷降低,则对设备安全不构成严重危胁,汽温降低规程明确 规定了要减负荷’所以汽温、汽压同时降低,按汽温降低处 理比较合理;若不减负荷,末级叶片过负荷的危险较大。汽 温降低处理中规定,负荷下降到一定的程度是以蒸汽过热度 为处理依据的,这时的主要危险是水冲击,汽压降低对设备 安全已不构成威胁,当然以汽温降低处理要求进行处理合理。

中小型母管制蒸汽系统的机组,汽温、汽压同时降低时,一 般规定以汽压下降的规定进行处理。大容量单元制机组的处 理则按汽温下降的规定进行处理,这一点在概念上不要混淆。

10.新蒸汽温庋突降有何危害?

蒸汽温度突降,可能是机组发生水冲击的预兆,而水冲 击会引起整个机组严重损坏。此外汽温突降还将引起机组部件温差增大,热应力增大,且降温产生的温差会使金属承受 拉应力,其允许值比压应力小得多。降温还会引起动静部件收缩不一,差胀向负值增大,甚至动静之间发生摩擦,严重时将导致设备损坏,因此在发生汽温突降时,除按规程规定 处理外,还应对机组运行情况进行监视与检査。

汽温突降往往不是两侧同时发生,所以还要特别注惫两侧温差。两侧汽温差超限应根据有关规定处理。

11.新蒸汽温度下降应如何处理?

新蒸汽压力为额定值,而汽温低于额定值10℃时,应联系锅炉恢复汽温,低于额定值20℃时,应限负荷运行,汽温 继续下降应按规程规定开启主蒸汽管及本体疏水门,同时汇 报值长,联系锅炉运行人员,保持温度降压减负荷。降压减 负荷过程中,过热度应不低于150℃,否则应故障停机,蒸汽 温度降低时,联系锅炉运行人员无效,可采用开旁路降压,必 要时投人汽缸冷却,确保高压差胀、缸胀、金属温差在合格范围,如汽温下降较快,如内下降50℃,应打闸停机。

12.新蒸汽温度升高应如何处理?

新蒸汽温度升髙应做如下处理:

(1)主蒸汽温度、再热蒸汽温度应在允许范围内变化,超 出时应联系锅炉运行人员降低温度。(2)主蒸汽温度或再热蒸汽温度升至最高允许值时,应报告值长、联系锅炉运行人员迅速采取措施。如规程规定的 时间内不能恢复,应故障停机。(3)汽温急剧升高到最高允许値以上,汇报值长,要求 立即打闸停机。(4)如主汽温10min込内上升50℃,应立即打闸停机。

13.主蒸汽压力、溫度同时下降时,应注意哪些问题?

主蒸汽压力、温度同时下降时,应注意如下问题:

(1)主蒸汽压力、温度同时下降时,应联系锅炉运行人 员要求恢复正常,并报告值长要求减负荷。

(2)汽温、汽压下降的过程中,应注意高压缸差胀、轴 向位移、轴承振动、推力瓦温度等数值,并应严格监视主汽 门、轴封、汽缸结合面是否冒白汽或溅出水滴,发现水冲击 时,应紧急停机。

(3)主蒸汽压力、温度同时下降,虽有150℃过热度,但 主蒸汽温度低于调节汽室上部温度50℃以上时汇报值长,要求故障停机。

14.主蒸汽温度、再热蒸汽溫度、两侧温差过大有何危害?

由于锅炉原因,使汽轮机高、中压缸两侧进汽温度产生偏差,如两侧汽温差过大,将使汽缸左、右两侧受热不均匀,会产生很大热应力,使部件损坏或缩短使用寿命,热膨胀亦不均匀,致使汽缸动静部分产生中心偏斜,造成动静间摩擦,机组振动,严重时将损坧设备。因此,当两侧汽温差太大时,应按规程规定进行处理,两侧汽搵差超过80℃时,应故障停机。

15.主蒸汽压力过高如何处理?

当发现主蒸汽压力超过允许值时,应联系锅炉运行人员 采取洚压措施,对汽轮机也可采取开启旁路,或用电动主闸 门节流降甩。如不能立即恢复,汽压继续上升到最大允许值,应汇报值长,故障停机。

16.负荷突变的一般原因有哪些?

负荷突变的一般原因如下:(1)发电机或电网故庳。(2)锅炉紧急停用。(参数大幅度下降)

(3)危急保安器飞锤动作。电动脱扣器动作,(4)调速油压低于最低允谇值3(5)误操作引起保护动作。

17.负荷突变的故障应如何判断?

负荷突变的故障应做如下判断:

(1)在发电机突然甩掉负荷后,如果负荷表指示在零位,蒸汽流量下降,锅炉安全门动作,转速上升后又下降,并稳 定在一定转速,说明调节系统可以控制转速,危急保安器没 有动作。

(2)在机组甩负荷后,如果转速不变,说明发电机末解 列。对于装有自动主汽门与发电机油开关联锁装置的机组只要发电机解列,主汽门即关闭’转速下降。

18.汽轮机一般有哪些方面原因容易造成甩负荷? 汽轮机有如下原因容易造成甩负荷。

(1)串轴保护动作。(2)离心调速器钢带断。(3)汽门误关引起甩负荷。(4)调节系统卡涩引起甩负荷。

(5)机组保护中的任一保护动作或误动作时。

19.调节系统发生卡涩现象时,为防止甩负荷,应采取哪些措施?

调节系统发生卡涩现象时,为防止甩负荷,应采取如下措施。(1)加强滤油,油净化装置应芷常投人。

(2)减负荷操作应由汽轮机运行人员在就地进行。

(3)每次减负荷到要求数值时,再将同步器向增负荷方向倒回接近该负荷下应有的同步器位置附近。

(4)请求调度将负荷大幅度交替增减若干次,以活动调节部套。

(5)必要时可将调节汽门全开,改为变压运行方式,并应定期活动调节汽门。

20.运行中甩去部分负荷,发电机未与电网解列的象征是什么?

运行中甩去部分负荷,发电机未与电网解列的象征如下:

(1)功率表指示突然大幅度降低,调节汽门关小,各监视段压力相应降低。(2)频率正常,主蒸汽压力升髙,旁路自动投入。

21.运行中甩去部分负荷,发电机未与电网解列应如何处理?

运行中甩去部分负荷,发电机未与电网解列应做如下处理:

(1)检査机组运行情况一切正常后和值长联系,要求迅 速增加本机负荷。(2)联系锅炉运行人员,在电网负荷允许的情况下,迅 速将本机负荷增加到原来所带负荷的70%以上。

(3)调整轴封压力,如除氧器压力太低,应将轴封汽源 切换为备用汽源供给。(4)当甩负荷时,给水泵流量低于允许值,应幵启再循 环门,负荷恢复后,根据给水流量上升情况关闭再循环门。

(5)注意旁路运行情况,当负荷上升后,联系锅炉运行人员,停用旁路。(6)检査除氧器、凝汽器及各加热器水位,进行必要的调整。(7)全面检查。

22.发电机甩负荷到”0“,汽轮机将有哪几种现象?

发电机甩负荷到“0”,汽轮机将有如下现象。

(1)汽轮机主汽门关闭,发电机未与电网解列,转速不变。

(2)发电机与电网解列,汽轮机调节系统正常,能维持空负荷运行,转速上升又下降到一定值。

(3)发电机与电网解列,汽轮机调节系统不能维待空负荷运行,危急保安器动作,转速上升后又下降。

(4)发电机与电网解列,汽轮机调节系统不能维持空负荷运行,危急保安器拒绝动作,造成汽轮机严重超速。

23.汽轮机主汽门关闭,发电机未与电网解列,事故象征 有哪些?

汽轮机主汽门关闭,发电机未与电网解列,事故象征如

(1)汽轮机转速不变,髙、中压主汽门,调节汽门,各抽汽逆止门关闭。(2)发电机负荷到零,各监视段压力到零,主蒸汽压力升高。(3)旁路自动投人或根据锅炉要求手动打幵。

24.汽轮机主汽门关闭,发电机未与电网解列,应如何处理?

汽轮机主汽门关闭,发电机未与电网解列,应做如下处理:

(1)手揿盘上发电机停机按钮,如有机电联络信号,应发出紧急停机信号。(2)开启高压油泵,(3)旁路系统应自动投人,如未投人可根据锅炉要求手动打开。

(4)调整凝汽器水位、轴封汽座力、给水压力、除氧器 压力及水位。若除氧器汽源不足,应切换备用汽源供轴封汽。

(5)完成故障停机的有关主要操作。

(6)迅速查清汽轮机跳闸原因,如属保护正确动作,则应将机组停下,待事故原因査明并清除后方可重新起动。如果査出属于保护误动作,经领导同意后再起动,在投保护前,应由热工人员查明原因,消除缺陷。

25.发电机与电网解列,汽轮机调节系统能维持空负荷 运行的事故象征有哪些?

发电机与电网解列,汽轮机调节系统能维持空负荷运行 的事故象征如下:(1)负荷到“0”,发电机解列,电超速保护动作,信号牌亮;抽汽逆止门关闭,信号牌亮。

(2)高、中压调节汽门关后又开启至空转位置,转速上升后又下降,稳定在一定数值。

(3)

一、二级旁路开启(减温水故障,不得投用旁路〉。(4)汽轮机运行声音突变,并变轻。

(5)二次油压低并发出报警信号。

26.发电机与电网解列,调节系统能维持空负荷运行的 亊故应如何处理?

发电机与电网解列,调节系统能维持空负荷运行的事故 应做如下处理:(1)判断事故原因,检查保护动作翻牌项目。

(2)确认汽轮机本体无故障,用同步器调整转速至 3000r/min。(3)关小凝结水至除氧器进水调整门,开启凝结水再循 环门,保证凝汽器水位,开徘汽缸喷水装置。

(4)轴封汽源不足应切换为备用汽源供给。

(5)检查旁路是否动作,若未动作,可根据事故状况及锅炉要求开启或停用旁路系统。

(6)开汽轮杌本体与各级抽汽疏水门,开主蒸汽管、再热蒸汽管冷、热段疏水门。

(7)手动关闭各级抽汽逆止门和各髙、低压加热器进汽电动门。

(8)检査轴向位移,髙压缸差胀、主蒸汽参数等数值和 推力瓦回油温度,测量机组振动。

(9)如机组各部正常,联系电气,迅速并列带负荷。

(10)机组甩负荷恢复过程中,主蒸汽温度应尽量提高,机组不宜在较低主蒸汽温度下运行,同时带负荷要快。

27.发电机与电网解列,汽轮机调节系统不能维持空负荷运行,危急保安器动作的象征有哪些?(1)负荷到“0”,主蒸汽压力升髙,蒸汽流量表指示接近零。

(2)机组声音突变;高、中压主汽门,调节汽门关闭,各抽汽逆止门关闭,并发出信号;转速升高后又下降,危急保 安器动作,危急保安器指示“遮断(3)旁路系统自动投入(因真空降低,保护动作跳机或减溫水故瘅,应立即停用旁路〉。

28.发电机与电网解列,汽轮机调节系统不能维持空负荷运行,危急保安器动作的亊故应如何处理?(1)起动髙压油泵。

(2)根据锅炉要求投入旁路系统。

(3)判断事故原因,确认汽轮机本体无故障,用起动阀挂闸,升速用同步器维持转速3000r/min(有的机组装有发电机油开关与解脱滑阀电磁解脱器联锁装置,即发电机油开关跳闸,联动自动主汽门关闭。这样的机组甩负荷后,即使危急保安器未动作,自动主汽门也关闭。操作上应断开联锁开 关,重新挂闸,保持3000r/min,等待并网。如果联锁开关不断开,解脱滑阀电磁解脱器在吸合状态,是不能挂闸的。

(4)联系电气,迅速并列带负荷,如短时间内不能恢复 应立即故障停机。

29.发电机与电网解列,汽轮机调节系统不能维持空负 荷运行,危急保安器拒绝动作,造成汽轮机严重超速的象征 有哪些?

(1)负荷到各监视段迁:力下降到空载数值,汽轮 机转速升高到以上,调节汽门关小到空载数值左右。

(2)主蒸汽压力升高,旁路自动投入运行。

(3)机组声音异常(转速升髙发出的声音八)(4)一次油压升高。

30.发电机与电网解列,汽轮机调节系统不能维持空负 荷运行,危急保安器拒绝动作’造成汽轮机严重超速亊故应如何处理?

(1)迅速手揿控制表盘上事故按钮或手打脱扣器,关闭髙、中压自动主汽门、调节汽门、各抽汽逆止门。(2)进行上述操作后,如转速仍不下降,应关闭三、四 段抽汽门和电动主汽门,并破坏真空,使转速下降。

(3)起动润滑油泵。

(4)完成故障停机的其他操作。

(5)查明并消除造成严重超速的原因后作超速试验,危急保安器动作转速合格后,机钽万能重新并网。

31.调节系统不能维持空负荷运行及甩负荷时引起危急 保安器动作有哪些原因?

调节汽门漏汽及调节系统不正常是调节系统不能维持空 负荷运行及甩负荷时引起危急保安器动作的主要原因。其中调节系统工作不正常原因较多,如同步器下限太髙致使调节 汽门关不严。另外当速度变动率过大,在负荷由满负荷甩至 零负荷时,转速上升超过危急保安器动作转速,此外调节系 统连杆卡涩、调节汽门卡住,调节系统迟缓率过大,在甩负荷时也会引起危急保安器动作。

32.活动自动主汽门时造成主汽门误关应如何处理?

如果高压自动关闭器活动装置不良,进行主汽门活动试验时,往往造成一侧主汽门全关,甩去部分负荷。此时应迅速退回该侧试验手轮到原来位置,手摇同步器,使调节汽门全关,这时自动主汽门前后压差消失,使自行开启,然后开大调节汽门,恢复原来工况(125MW机组应采用专用工具顶点或停机处理)。

33.锅炉熄火应如何处理?

发现锅沪熄火应立即联系电气降负荷至2MW左右。关闭给水泵中间抽头门,开启主,再热蒸汽管道疏水,注意检查开启旁路疏水;幵启给水泵及凝结水泵再循环门,保持除氧器及凝汽器水位;根据排汽温度投人后缸喷水;调整轴封 压力,必要时轴封汽切换为备用汽源供绐;检査差胀、轴向位移、机组振动的变化情况;特别要注意主、再热蒸汽温度 的变化,同时要考虑炉侧主、再热蒸汽温度的变化,当机、炉侧任一主、再热蒸汽温度10min内降低50℃,应立即打阑停机,起动高压调速油泵。锅炉点火成功,主、再热蒸汽温度 至少应与汽缸温度相同,有条件也应高于汽缸温度50℃,伹主、再热汽温不应超过额定值,方可恢复。确定旁路疏水疏 尽投人旁路系统。恢复过程中,应缓慢手摇起动阀,检査自 动主汽门及调节汽门开启情况,使转速缓慢均匀升到500r/min,作短暂停留,待主、再热蒸汽温度逐渐回升后,再平稳 升速至3000r/min。全面检査无掉常后,停高压油泵,联系电气迅速并列,逐渐带负荷,恢复原工况运行。

34.一台机组一段6KV厂用电源失电和二段都失电时 的处理原则有什么不同?

一段厂用电源失电,如处理正确,则可保持机组一半负荷左右,因此失电后应作以下处理:

(1)应首先检查有关备用辅机自动联锁正常,否则应手 动投人,断幵失电辅机开关。

(2)维持给水压力正常。(3)对于循环水开式循环系统的机组,还应通知邻机增 幵循环水泵及按规定调节循环水进出水门和循环水联通门。

(4)注意调节轴封汽及各油、水、风温度。

二段同时失电,机组巳无法维持运行,处理原则是:

(1)按不破坏真空故障停机,但不得向疑汽器排汽排水。

(2)应投用直流润滑油泵、直流密封油泵,维持轴承供油。(3)断幵失电辅机起动开关及自起动联锁开关。

(4)关闭循环水母管联通门。

(5)对于一些必须操作的电动门、调整门进行手动操作。

(6)不得开启本体及管道疏水门。

(7)排汽温度高于50℃时,不得送循环水。

(8)转子静止后,应手动定期盘动转子180度。

(9)用电恢复后,动力设备应遂台开启运行。

35.厂用电中断为何要打闸停机?

厂用电中断,所有的电动设备都停止运转,汽轮机的循 环水泵、凝结水泵、射水泵都将停止,真空将急剧下降,处理不及时,将引起低压缸排大气安全门动作。由于冷油器失去冷却水,润滑油温迅速升髙,水冷泵的停止又引起发电机 温度升髙,对双水内冷发电机的进水支座将因无水冷却和润 滑而产生漏水,对于氢冷发电机、氢气温度也将急剧上升,给 水泵的停止,又将引起锅炉断水。由于各种电气仪表无指示,失去监视和控制手段。可见,厂用电全停,汽轮机已无法维 持运行,必须立即起动直流润滑油泵,直流密封油泵,紧急停机。

36.厂用电失去时,为什么要规定至少一台原运行循环水泵在1min内不能解除联锁?

厂用电中断,有可能在短时间内恢复供电,循环水泵起 动开关放在起动位置,厂用电恢复时,循环水泵能自动开启供水,可缩短事故处理时间。考虑到其它辅机起动开关若都置起动位置,厂用电恢复时都同时起动,厂用电电流太大,厂 变压器及熔丝都吃不消,所以在厂用电失电后,其它辅机的起动开关都龙放断开位置。

37.厂用电部分中断的象征有哪些?

部分6KV或400KV厂用电中断,备用泵自投人,凝汽器 真空下降,负荷下降。

38.部分厂用电中断应如何处理?

部分厂用电中断应做如下处理:

(1)若备用设备自动投人成功,复置各开关,调整运行参数至正常,(2)若备用设备未自动投人,应手动启动(无备用设备,可将已跳闸设备强制合闸一次,若手动起动仍无效,降负荷 或降负荷至零停机,同时应联系电气,尽快恢复厂用电,然 后再进行起动)。

(3)若厂用电不能尽快恢复,超过1min后,解除跳闸泵联锁,复置停用开关,注意机组情况,各监视参数达停机极 限值时,按相应规定进行处理。(4)若需打闸停机,应起动直流润滑油泵及直流密封油泵。

39.厂用电全部中断的象征有哪些?

交流照明灯灭;事故照明灯亮;事故喇叭报警;运行设 备突然停止;电流表指示到“0”;备用设备不联动;主蒸汽压力、温度、凝汽器真空下降。

40.厂用电中断应如何处理?

厂用电中断应做如下处理:

(1)起动直流润滑油泵、直流密封油泵,立即打闸停机。

(2)联系电气,尽快恢复厂用电,若厂用电不能尽快恢复,超过1min后,解除跳闸泵联锁,复置停用开关。

(3)设法手动关闭有关调整门、电动门。

(4)排汽温度小于50℃时,投人凝汽器冷却水,若棑汽溫度超过50℃,需经领导同意,方可投入凝汽器冷却水(凝汽器投入冷却水后,方可开启本体及管道疏水)

(5)厂用电恢复后,根据机组所处状态进行重新起动。切记:动力设备应分别起动,严禁瞬间同时起动大容量辅机,机组恢复并网后,接带负荷速度不得大于10MW/min。

41.真空下降的原因有哪些?

真空下降的原因包括:

(1)循环水中断或水量突减,系统阀门误动作。(2)凝汽器水位并髙。

(3)轴封汽源不足或轴封汽源中断(水控逆止门误动作)。

(4)射水抽气器工作失常,射水泵故障或射水箱水位降 低,水温过高(超过30℃。

(5)真空系统管道部件及法兰结合面不严密,漏入空气。(6)排汽缸安全门薄膜损坏。(7)旁路系统误动。(8)稳压水箱水位过低。

42.哪些原因造成的真空下降需要增开射水泵?

如下原因造成的真空下降需要增开射水泵:

(1)真空系统漏空气,要增开射水泵并投用备用抽气器。

(2)备用射水泵逆止门关不严,出水门又关不紧,或射水泵出水母管泄漏,射水泵有缺陷,造成射水母管压力低时。

(3)射水抽气器喷嘴阻塞,需要提髙射水母管压力冲喷嘴时。

43.为什么真空降低到一定数值时要紧急停机?

真空降低到一定数值时要紧急停机的原因有:

(1)由于真空降低使轴向位移过大,造成推力轴承过负 荷而磨损。

(2)由于真空降低使叶片因蒸汽流量增大而造成过负荷(真空降低最后几级叶片反动度要增加兑

(3)真空降低使排汽缸温度升髙,汽缸中心线变化易引 起机组振动加大。(4)为了不使低压缸安全门动作,确保设备安全,故真 空降到一定数值时应紧急停机。

44.判明真空系统是否泄漏,应检查哪些地方?

判别真空系统是否泄漏应检查如下地方:(1)检査低压缸排汽安全门完整、无吸气。

(2)检査真空破坏门关闭,不泄漏。

(3)检査凝汽器汽侧放水门关闭,不泄漏。

(4)检查真空系统的水位计不破裂、泄漏。

(5)检査真空系统阀门的水封、管道、法兰或焊口有否 不严密处,尤其是膨胀箱或锅炉起动分离器至凝汽器的管道 及阀门。(6)检査真空状态的抽汽管道与汽缸连接的地方是否漏 空气,此处漏空气在负荷降低时真空下降,负荷升髙后真空稍有回升。

(7)检查处于负压状态下的低压加热器水位是否正常,放地沟门是否严密。(8)检查调速给水泵的重力回水是否导人凝汽器,如果回水量较小,水封袋封不住应将给水泵密封水重力回水倒至地沟。

45.真空下降应如何处理?

真空下降应做如下处理:

(1)发现真空下降,应校对排汽温度表及其它真空表,查明原因,采取对策,起动备用射水泵,投人射水抽气器,真 空下降至87Kpa(650mmHg)时,及时汇报,设法恢复真空。

(2)真空下洚至时,应发警报。如继续下降,每下降1.33Kpa(10mmHg)降负荷20MW。

(3)真空下降到停机值时,保护未动作,应进行故障停机。

(4)因真空降低而被迫故障停机时,不允许锅炉向凝汽 器排汽水。

46.汽轮机发生水沖击的原因有哪些?

汽轮机发生水冲击的原因有:

(1)锅炉满水或负荷突增,产生蒸汽带水。(2)锅炉燃烧不稳定或调整不当。(3)加热器满水,抽汽逆止门不严。(4)轴封进永。

(5)旁路减温水误动作。

(6)主蒸汽、再热蒸汽过热度低时,调节汽门大幅度来回晃动。

47.汽轮机发生水沖击时为什么要破坏真空紧急停机?

因为水冲击会损坏汽轮机叶片和淮力轴承。水的密度比蒸汽大得多,随蒸汽通过喷嘴时被蒸汽带至高速,但速度仍低于正常蒸汽速度,髙速的水以极大的冲击 力打击叶片背部,使叶片应力超限而损坏,水打击叶片背部 本身就造成轴向推力大嗝度升高。此外,水有较大的附着力,会使通流部分阻塞,使蒸汽不能连续向后移动,造成各级叶片前后压力差增大,并使各级叶片反动度猛增,产生巨大的 轴向推力,使推力轴承烧坏,并使汽轮机动静之间摩擦碰撞损坏机组。为防止机组严重损坏,汽轮机发生水冲击时,要果断的破坏真空紧急停机,48.汽轮机发生水沖击的象征有哪些?

汽轮机发生水冲击的象征包括:

(1)主、再热蒸汽温度10min内下降50℃或50℃以上。

(2)主汽门法兰处、汽缸结合面,调节汽门门杆,轴封处冒白汽或溅出水珠。(3)蒸汽管道有水击声和强烈振动。

(4)负荷下降,汽轮机声音变沉,机组振动增大。

(5)铀向位移增大,推力瓦温度升高,差胀减小或出现负差胀。

49.汽松机发生水沖击应如何处理?

汽轮机发生水冲击应做如下处理:

(1)起动润滑油泵,打闸停机。

(2)停射水泵,硤坏真空,给水走液动旁路,稍开主汽管向大气排汽门。除通锅炉以外疏水门外,全开所有疏水门。

(3)倾听机内声音,测量振动,记录惰走时间,盘车后测量转子弯曲数值,盘车电动机电流应在正常数值且稳定。(4)惰走时闻明显缩短或机内有异常声音,推力瓦温度升 高,轴向位移、差胀超限时,不经检查不允许机组重新起动。

50.为防止发生水冲击,在运行维护方面着重采取哪些措施?

为防止发生水冲击,在运行维护方面应着重采取如下措施:

(1)当主蒸汽温度和压力不稳定时,要特别注意监视,一旦汽温急剧下降到规定值,通常为直线下降50℃时,应按紧急停机处理。

(2)注意监视汽缸的金属温度变化和加热器,凝汽器水位,即使停机后也不能忽视。如果发觉有进水危险时,要立即查明原因,迅速切断可能进水的水源。(3)热态起动前,主蒸汽和再热蒸汽管要充分暖管,保 证疏水畅通。

(4)当高压加热器保护装置发生故障时,加热器不能投 入运行。运行中定期检查如热器水位调节装置及高水位报警,应保证经常处于良好状态。加热器管束破裂时,应迅速关闭 汽轮机抽汽管上的相应汽门及逆止门,停止发生故障的加热 器。

(5)在锅炉熄火后蒸汽参数得不到可靠保证的情况下,不应向汽轮机供汽]如因特殊需要(如快速冷却汽缸)应事先 制定可靠的技术措施。(6)对除氧器水位加强监觇,杜绝满水事故发生。

(7)滑参数停机时,汽温、汽压桉照规定的变化率逐渐降低,保持必要的过热度。

(8)定期检査再热蒸汽和I、Ⅱ级旁路的减温水门的严密性,如发现泄漏应及时检修处理。

(9)只要汽轮机在运转状态,各种保护就必须投人,不得退出。

(10)运行人员应该明确,在汽轮机低转速下进水,对设备的威胁更大。此时尤其要监督汽轮机进水的可能性。

51.汽轮发电机组撮动的原因有哪些?

汽轮机在运行中,机组发生搌动的原因是复杂的,是多方面的。归纳如下:(1)润滑油压下降,油量不足。

(2)润滑油温度过高或过低,油膜振荡。

(3)油中进水,袖质乳化。

(4)油中含有杂质,使轴瓦钨金磨损,或轴瓦间隙不合袼。(5)主蒸汽温度过高或过低:。

(6)起动时转子弯曲值较大,超过了原始数值。(7)运行中除氧器满水,使轴端受冷而弯曲。

(8)热态起动时,汽缸金属温差大,致使汽缸变彤。(9)汽轮机叶轮或隔板变形。

(10)汽轮机滑销系统卡涩,致使汽缸膨胀不出来。

(11)汽轮叽起动中,高、中压汽封处动睁摩擦并伴有火花。(12)汽轮发电机组中心不正。

(13)汽轮发电机组各轴瓦地脚螺丝松动。

(14)运行中叶片损坏或断落。

(15)励磁机工作失常。

(16)汽流引起激振。

52.汽轮机运行中怎样监督机组振动的变化?

汽轮机运行中监督机組拫动变化的方法有:

(1)正常运冇时,每一班侧量一次轴承三个方向的振动,并记入专用的记录簿中。(2)在运行中机组突然发生振动时,较为常见的原因是 转子平衡恶化和油膜振荡。

如汽缸有打击声(有时听不到),振动增大后很快消失或稳定在较以前高的振幅数值,这是掉叶片或转子部件损坏的 象征。如轴承振动增大较快,可能是气缸上下温差过大,或 主蒸汽温度过低引起水冲击,引起动静部分摩擦,使转子产 生热弯曲的象征,这时应立即停机。如轴承振动突然升高,并且轴瓦件有敲击声,可能是发生了油膜振荡。这时无须立即 停机,首先是减少有功或无功负荷。若振动仍不减少再停机。

53.在起动过程中,如何监督机组的振动?

在起动过程中,监督机组振动的方法有:

(1)没有振动表,汽轮机不应起动。

(2)下列各项中有任何一项不符合规定时,禁止冲动转子:大轴晃动度、上下汽缸溫差、相对胀差及蒸汽温度。

(3)检修后机组起动过程中,在中速暖机时,必须测量机组各个轴承的振动。以后每次起动时,在相同的转速下测量振动,做好记录、发现振动变化大时,应查明原因,延长暖机时间。

(4)在起动升速时,应迅速平稳的通过临界转速。中速以下,汽轮机的任一轴承若出现0.03mm以上的振动值,应立即打闸停机,找寻原因。

54.汽轮机振动有儿个方向? 一般哪个方向最大?

汽轮机振动方向分垂直、横向和轴向三种。造成振动的 原因是多方面的,但在运行甲集中反映的是轴的中心不正或平衡、油膜不疋常,使汽轮机在运行中产生拫动,故大多数是垂直振动较大,但在实际测量中,有时横向搌动也较大。

55.汽轮机膨账不均匀为卄么会引起振动?如何判断振 动是否由于膨胀不均匀造成的?

汽轮机膨胀不均匀,通常是由于汽缸膨胀受阻或加热不均匀造成的,这时将会引起轴承的位置和标高发生变化,从而导致转子中心发生变化。同时还会减弱轴承的支承刚度,改变轴承的载荷,有时还会引起动静部分摩擦,所以在汽轮机 膨胀不均匀时会引起机组振动。

这类振动的特征,通常表现为振动随着负荷或新蒸汽温度的升高而增大。但随着运行时间的延长(工况保持不变)。振动逐新减小,振动的频率和转速一致,波形呈正弦波。根据上述特点,即可判断振动是否由于膨胀不均匀造成的。

56.机组振动有哪些危害?

由于汽轮发电机组是高速回转设备,因而在正常运行时,通常有一定程度的振动’但是当机组发生过大的振动时存在 以下危害:

(1)直接造成机组事故:如机组振动过大,发生在机头部位,有可能引起危急保安器动作,而发生停机事故。(2)损坏机组零部件:如机组的轴瓦、轴承座的紧固螺钉及与机组连接的管道损坏。

(3)动静部分摩擦:汽轮机过大的振动造成袖封及隔板汽封磨损,严重时磨损造成转子弯曲,振动过大发生在发电 机部位,则使滑环与电刷受到磨损,造成发电机励磁机事故。

(4)损坏机组转子零部件:机组转子零部件松动或造成 基础松动及周围建筑物的损坏,由于振动过大的危害性很大,所以必须保证振动值在规 定的范围以内。

57.大型汽轮发电机组的振动现象通常具有哪些特点?

大型汽轮发电机组的振动现象通常具有如下特点:

(1)每个转子均具有自己的临界转速,轴系又有临界转速,机组的临界转速分布复杂。在升速过程中需越过很多个 临界转速和共振转速,以致在起动的过程中很难找到一个合 适的暖机转速。

(2)由于汽轮发电机组轴系及其连接系统的复杂性,转子质量不平衡造成的机组振动问题比较突出。

(3)油膜自激振荡和间隙振荡使汽轮发电机组容易出现不稳定的搌动现象。

58.机组振动应如何处理? 机组振动应做如下处理:

(1)汽轮机突然发生强烈振动或清楚听出机内有金属摩擦声音时,应立即打闸停机。

(2)汽轮机轴承振动超过正常值0.03mm以上,应设法消除,当发现汽轮机内部故障的象征或振动突然增加 0.05mm爪时,或缓慢增加至0.1mm时,应立即打闸停机。

(3)机组异常振动时,应检查下列各项:①蒸汽参数、真 空、差胀、轴向位移,汽缸金属温度是否变化;②润滑油压、油温、轴承温度是否正常。

(4)引起机组振动的原因较多,因此值班人员发现振动 增大时,要及时汇报,并对振动增大时的各种运行参数进行 记录,以便查明原因加以消除。

59.为加强对汽轮发电机组振动的监管,对运行人员有哪去要求?

为加强对汽轮发电机組振动的监管,对运行人员的要求如下:

(1)运行人员应学习和掌握有关机组振动的知识,明了起动、运行和事故处理中关于振动产生的原因,引起的后果及处理方法。运行人员还应熟悉汽轮发电机组轴系各个临界转速,并掌握在升速和降速过程中各临界转速下每个轴承的振动情况。

(2)测量每台汽轮发电机组的振动,最好要有一块专用的振动表。振动表应定期校验。每次测量振动时,应将表放在轴承的同一位置,以便于比较,在起动和运行中对振动要加强监督。

60.油膜振荡的象征特点有哪些?

典型的油膜振荡现象发生往汽轮发电机组起动升速过程书,转子的第一阶段临界转速越低,其支持轴承在工作转速 范围内发生油膜振荡的可能就愈大,油膜振荡的振幅比半速涡动要大得多,转子跳动非常剧烈,而且往往不是一个袖承和相邻轴承,而是整个机组的所有轴承都出现强烈振动,在 机组附近还可以听到”咚咚“的撞击声,油膜振荡一旦发生,转子始终保持着等于临界转速的涡动速度,而不再随转速的升髙而升高,这一现象称为油膜振荡的惯性效应。所以遇到油膜振荡发生时,不能像过临界转速那样,借提髙转速冲过去的办法来消除。

61.油膜振荡是怎样产生的?

油膜振荡是轴颈带动滑油速流动时,高速油流反过来激励轴颈,使其发生强烈振动的一种自激振动现象。

轴颈在轴承内旋转时,随着转速的升髙,在某一转速下,油膜力的变化产生一失稳分力,使轴颈不仅绕轴颈中心高速 旋转,而且轴颈中心本身迅将绕平衡点甩转或涡动。其涡动 频率为当时转速的一半。称为半速涡动。随着转速增加,涡动频率也不断增加,当转子的转速约等于或大于转子第一阶临界转速的两倍时,转子的涡动频率正好等于转子的第一阶 临界转速。由于此时半速涡动这一干扰力的频率正好等于轴颈的固有频率。便发生了和共振同样的现象,即轴颈的振幅急剧放大,此时即发生了油膜振荡。

62.为防止机组发生油膜振荡,可采取哪些措施?

为防止机组发生油膜振荡,可采取的措施如下:

(1)增加轴承的比压。可以增加轴承载荷,缩短轴瓦长度,以及调整轴瓦中心来实现。

(2)控制好润滑油温,降低润滑油的粘度。

(3)将轴瓦顶部间隙减小到等于或咯小干两侧间隙之和。(4)各顶轴油支管上加装逆止门。

63.什么是自激振动?自激振动有哪些特点?

自激振动又称为负阻尼振动,也就是说振动本身运动所 产生的阻尼非但不阻止运动,反而将进一歩加剧这种运动。这种振动与外界激励无关,完全是自己激励自己。故称为自激振动。

自激振动的主要特征是振动的频率与转子的转速不符,而与其临界转速基本一致。振动波形比较紊乱,并含有低频谐波。

64.试述摩擦自激振动的特点?

由动静部分摩擦所产生的振动有两种形式:一是摩擦涡动,另一是摩擦抖动。动静部分发生接触后,产生了接触摩擦力,使动静部分再次接触,增大了转子的涡动,形成了自激振动。

与其他自激振动相比,其生要的特点就是涡动的方向和转动方向相反。即振动的相位是沿着转动方向的反向移动的,振动的波形和频率与其它自激振动相同。

65.轴向位移增大的原因有哪些?

轴向位移增大的原因有:

(1)主蒸汽参数不合格,汽轮机通流部分过负荷。(2)静叶片严重结垢。(3)汽轮机进汽带水。(4)凝汽器真空降低。(5)推力轴承损坏.(6)汽轮机单缸进汽。

66.蒸汽带水为什么会使转子的轴向推力增加?

蒸汽对动叶片所作用的力,实际上可以分解成两个力,一 个是沿圆周方向的作用力Fu。一个是沿轴向的作用力Fi。Fu是真正推动转子转动的作用力,而轴向力Fi作用在动叶上只 产生轴向推力。这两个力的大小比例取决于蒸汽进人动叶片的进汽角ω1,ω1越小,则分解到圆周方向的力就越大,分解到轴向上的作用力就越少;ω1越大,则分解到圆周方向上的力就越小,分布到轴向上的作用力就:越大。而湿蒸汽进入动叶片的角度比过热蒸汽进人动叶片的角度大得多。所以说蒸汽带水会使转子的轴向推力增大。

67.轴向位移增大的象征有哪些?

轴向位移增大的象征如下:

(1)轴向位移表盘指示增大或信号装置报警。

(2)推力瓦块温度升髙。

(3)机组声音异常,振动增大。(4)差胀指示相应变化。

68.轴向位移增大应如何处理?

轴向位移增大应做如下处理:

(1)发现轴向位移增大,立即核对推力瓦块温度并参考差胀表。检查负荷、汽温、汽压、真益、振动等仪表的指示; 联系热工,检查轴向位移指示是否正确;确证轴向位移增大,联系电气运行人员减负荷,汇报班长、值长、维持轴向位移 不超过规定值。

(2)检査监视段压力、一级抽汽压力、高压缸排汽座力、不应高于规定值,超过时,联系电气运行人员降低负荷,汇报领导。(3)如轴向位移增大至规定值以上而采取措施无效,并 且机組有不正常的噪声和振动,应迅速破坏真空紧急停机。(4)若是发生水冲击引起轴向位移增大或推动轴承损坏,应立即破坏真空紧急停机。

(5)若是主蒸汽参数不合格引起轴向位移增大,应立即 要求锅炉调整,恢复正常参数。

(6)轴向位移迖停机极限值。轴向位移保护装置应动作,若不动作,应立即手动脱扣停机。

69.油压和油箱油位同时下降的一般原因有哪些?

压力油管(漏油进入油箱的除外)大量漏油。主要是压 力油管破裂,法兰处漏油,冷油器铜管破裂,油管道放油门误开等引起。

70.油压和油箱油位同时下降应如何处理?

油压和油箱油位同时下降应做如下处理:

(1)检查高压或低压油管是否破裂漏油,压力油管上的 放油门是否误开,如误开应立即关闭,冷油器铜管是否大量漏油。(2)冷油器铜管大量漏油,应立即将漏油冷油器隔绝并 通知检修人员捉漏检修。(3)压力油管破裂时,应互即将漏油(或喷油)与高温部件临时隔绝,严防发生火灾,并设法在运行中消除。

(4)通知检修加油,恢复油箱正常油位。(5)压力池管破裂大量喷油,危及设备安全或无法在运 行中消除时,汇报值长,进行故庳停机,有严重火灾危险时,应按油系统着火紧急停机的要求进行操作。

71.油压正常,油箱油位下降的原因有哪些?

油压正常,油箱油位下降的原因如下:

(1)油箝事故放油门、放水门或袖系统有关放油门、取 样门误开或泄漏、或净油器水抽工作失常,(2)压力油回油管道、管道接头、阀门漏油。

(3)轴承油档严重漏油。(4)冷油器管芯一般漏油。

72.油压正常,油箱油位下降应如何处理?

油压正常,油箱油位下降应做如下处理:(1)确定油箱油位指示正确。

(2)找出漏油点,消除漏油。(3)执行防火措施。

(4)联系检修加油,恢复油箱正常油位。

(5)如采取各种措施仍不能消除漏油,且油箱袖位下降较快,无法维持运行时,在油箱油位未降到最低停机值以前应汇报值长,起动交流油泵进行故降停机。油箱油位下降到 最低停机值以下,应破坏真空,紧急停机。

73.油压下降,油箱油位不变时应如何检查与处理?

油压下降,油箱油位不变时,应做如下检查与处理:

(1)检査主油泵工作是否正常,进口压力应不低于 0.08MPa,如主油泵工作失常,应汇报值长,必要时应紧急 停机。

(2)检査注油器工作是否正常,油箱或注油器进口是否 堵塞。

(3)检查油箱或机头内压力油管是否漏油,发现漏油应 汇报班长、值长,进行相应处理。

(4)检查备用袖泵逆止门是否漏油,如漏袖影响油压,应 关闭该油泵出油门,并解除其自起动开关,通知检修消除缺 陷。

(5)检查过压阀是否误动作,主油泵出口疏油门、油管 放油门是否误开,并恢复其正常状态。

(6)检查冷油器滤网压差,如超过0.06MPa,应切换备用冷油器,清洗滤网,无备用冷油器,需隔绝压差超限的滤 网清冼,润滑油压下降至0.05MPa应起动交流润滑油泵,下 降至0.04MPa应起动直流润滑油泵并打闸停机,否则应破坏真空紧急停机。调速油压降低可旋转刮片滤油器几圏,并注 意调节系统工作是否正常。润滑油压降低应注意轴承油流、油温等,发现异常情况应进行处理。

74.油箱油位升高的原因有哪些?

油箱油位升高的原因是油系统进水,使水进入油箱。油 系统进水可能是下列原因造成的:

(1)轴封汽压太高。

(2)轴封加热器真空低。〈

(3)停机后冷油器水压大于油压。

75.油箱油位升高应如何处理?

油箱油位升髙应做如下处理:

(1)发现油箱油位升高,应进行油箱底部放水。

(2)联系化学车间,化验油质。

(3)调小轴封汽量,提髙轴封加热器真空。

(4)停机后,停用润滑油泵前,应关闭冷油器进水门。

76.调速油系工作失常应如何处理?

调速油泵工作失常应做如下处理:

(1)汽轮机在起动过程中,转速在2500r/min以下时,调速袖泵发生故障,应立即起动润滑油泵停机。

(2)转速在2500r/min以上时,应立即起动润滑油泵,迅速提髙汽轮机转速至3000r/min。

(3)转速在2500r/.min以下,调速油泵发生故障,若起动交直流油泵也发生故降,应迅速破坏真空紧急停机。

77.油系统着火的原因有哪些?

油系统着火的原因如下:

(1)油系统漏袖,一旦漏油接触到高温热体,就要引起火灾。

(2)设备存在缺陷,安装、检修、维护又不够注意,造 成油管丝扣接头断裂或脱落’以及由于法兰紧力不够,法兰 质量不良或在运行中发生振动等,均会导致漏油。此时如果 附近有未保温或是保温不良的高温热体,便会引起油系统着火。

(3)由于外部原因将油管道击破,漏油喷到热体上,也会造成火灾。

78.油系统着火对润滑油系统运行有何规定?

油系统着火对润滑油系统运行葙如下规定:

(1)油系统着火紧急停机时,只允许使用润滑油泵进行停机,(2)如润滑油系统着火无法扑灭时,将交直流润滑油泵 自起动开关联锁解除后,可降低润滑油压运行,火势特别严重时,经值长同意后可停用润滑袖泵。

(3)油系统着火,火势严重需开启油箱事故放油门时,应 根据情况调节事故放油门,使转子停止前,润滑油不中断。

79.油系统着火应如何处理?

油系统着火应做如下处理:

(1)发现袖系统着火吋,要迅速采取措施灭火,通知消防队并报告领导。(2)在消防队未到之前,注意不使火势蔓延至回转部位及电缆处。(3)火势蔓延无法扑灭,威胁机组安全运行时,应破坏真空紧急停机。(4)根据情况(如主油箱着),开启事故放油门,在转子未静止之前,维持最低油位,通知电气排出发电机内氢气。

(5)油系统着火紧急停机时,禁止起动高压油泵。

80.油系统着火的顸防措施有哪些? 油系统着火的预防措施如下:

(1)在油系统布置上,应尽可能将油管装在蒸汽管道以 下。油管法兰要有隔离罩。汽轮机前箱下部要装有防爆油箱。

(2)最好将袖系统的液压部件,如油动机、滑阀等远离髙温区,并尽量装在热力设备的管道或阀门下边,至少要装在这些管道阀门的侧面。(3)靠近热管道或阀门附近的袖管接头、尽可能釆取焊 接来代替法兰或丝扣接头。法兰的密封垫采用夹有金属的软垫或耐油石棉垫,切勿采用塑料石棉垫。(4)仪表管尽量减少交叉,并不准与运转层的铁板相接 触,防止运行中振动磨损。对浸泡在污垢中的油压力表管、要经常检査,清除污垢,发现腐蚀的管子应及早更换。

(5)某些进口机组将压力油管放在无压力的回油管内,以及将油泵、冷油器和它们之间的相应管道放在主油箱内。这种办法值得推广。(6)对油系统附近的主蒸汽管道或其他高温汽水管道,在保温层外应加装铁皮,并特别注意保温完整。

(7)应使主油箱的事故放油门远离油箱,至少应有两个通道可以到达事故放油门。事故油箱放在厂房以外的较低位置。

(8)如发现油系统漏油时,必须查明漏油部位,漏油原因,及时消除,必要时停机处理。渗到地面或轴瓦上的油要随时擦净。(9)髙压油管道安装后,最好进行耐压试验。(10)汽缸保温层进油时,要及时更换。

(11)当调节系统大幅度摆动时,或者机组油管发生振动时,应及时检查油系统管道是否漏油。

(12)在调节系统中装有防火滑阀的机组,应将其投入。

(13)氢冷发电机空气侧回油到主油箱应封闭,以防止油箱内氢气积聚爆炸。

81.汽轮机动静部分产生摩擦的原因有哪些?

汽轮机动静部分摩擦,一般发生在机组起、停和工况变 动时。摩擦的主要原因是:汽缸与转子不均匀加热或冷却;起 动与运行方式不合理;保温质量不良及法兰嫘栓加热装置使 用不当等。动静部分在轴向和径向摩擦的原因,往往很难绝对分开,但仍然有所区别。在轴向方面,沿通流方向各级的 汽缸与转子的温差并非一致,因而热膨胀也不同,在起动、停机和变工况运行时,转子与汽缸膨胀差超过极限数值,使轴向闻隙消失,便造成动静部分磨损。在径向方面发生摩擦,主要是汽缸热变形和转子热弯曲的结果。当汽缸变形程度使径 向间隙消失的时候,便使汽封与转子发生摩擦,同时又不可避免地使转子弯曲,从而产生恶性循环。径向磨损一舷是转子和汽缸的偏磨。

另外,机组振动或汽封套变形都会引起径向摩擦,比如,有的机组紧急停机后真空没降到零,过早停止轴封供汽,冷空气进人汽缸,使高压前汽封套变为立椭圓,以致在盘车过 程中发现有严重摩擦声。在转子挠曲或汽缸严重变彤的情况 下强行盘车也会使动静部分产生摩擦。

82.发现通流部分发生摩擦应如何处理?

转子与汽缸的相对胀差表指示超过极限值或上下缸温差超过允许值,机组发生异常振动,这时即可确认动静部分发生摩擦,应立即破坏真空紧急停机。停机后,如果胀差及汽缸各部温差达到正常值,方可重新起动。起动时要注意监视 差胀和温差的变化,注惫监听缸内声音和监视机組的振动。

如果停机过程中转子惰走时间明显缩短,甚至盘车装置起动不起来,或者盘车装置运行时有明显的金属摩擦声,说明动静部分磨损严電,需要揭缸检修。

83.为防止通流部分摩擦,应釆取啷些措施?

为防止通流部分摩擦,应釆取如下措施:

(1)认真分析转子和汽缸的膨胀关系,选择合理的起动 方式。

(2)在起动、停机和变工况下,根据制造厂提供的胀差 允许值加强对胀差的监视。

(3)在正常运行„,由于某种原因造成锅炉熄火,应根 据蒸汽参数下降情况和差胀的变化,将机组负荷减到零。如 果空转时间超过15^1丨!1不能恢复,应停机。(4)根据制造厂提供的设计问腺和机组运行的实际需要,合理调整通流部分间隙。

(5)法兰加热总联箱进汽管的规袼要符合需要,以保证 充足的加热汽量。(6)严格控制上、下缸温差和转子的热弯曲,以防机组 振动过大等。(7)正确使用轴封供汽;肪止汽封套变形。

(8)调节级导流环必须安装牢固可靠,保证挂耳的焊接 质量。

84.推力瓦烧瓦的原因有哪些?

推力瓦烧瓦的原因主要是轴向推力太大,油量不足,油温过高使推力瓦的油膜破坏,导致烧瓦。下列几种情况均能 引起推力瓦烧瓦:(1)汽轮机发生水冲击或蒸汽温度下降时处理不当。(2)蒸汽品质不良,叶片结垢。

(3)机组突然甩负荷或中压缸汽门瞬间误关。

(4)油系统进入杂质,推力瓦油量不足,使推力瓦油膜破坏。

85.为什么推力轴承损坏,要破杯真空紧急停机?

推力轴承是固定汽轮机转子和汽缸的相对轴向位置,并 在运行中承受转子的油向推力,一般推力盘在推力轴承中的轴向间隙再加上推力瓦乌金厚度之和,小于汽轮机通流部分轴向动静之间的最小间隙。但有的机组中压缸负差胀限额未考虑乌金磨掉的后果,即乌金烧坏,汽轮机通流部分轴向动 静之间就可能发生摩擦碰撞而损坏设备,如不以最快速度停机,后果不堪设想,所以推力轴承损坏要破坏真空紧急停机。

86.推力瓦烧瓦的亊故象征有哪些?

主要表现在轴向位移增大,推力瓦温度及回油温度升高,推力瓦处的外部象征是推力瓦冒烟。为确证轴向位移指示值 的准确性,还应和胀差表对照,如果正向轴向位移指示增大 时,髙压缸胀差表指示减少,中、低压缸胀差表栺示增大。反之,高压缸胀差表指示增加,中,低压缸胀差指示减少。

87.轴承断油的原因有哪些?

轴承断油的原因有:

(1)运行中进行油系统切换时发生误操作,而对润滑油 压又未加强监视,使轴承断油,造成烧瓦。

(2)机组起动定速后,停调速油泵、未注意监视油压,由 于射油器进空气工作失常,使主油泵失压,润滑油压降低而又未联动,几个方面合在一起,使轴承断油,造成轴瓦烧瓦。

(3)油系统积存大量空气未及时排除,使轴瓦瞬间断油。

(4)汽轮发电机组在起动和停止过程中,髙、低压油泵同时故障。

(5)主油箱油位降到低极限以下,空气进人射油器,使 主油泵工作失常。(6)厂用电中断,直流油泵不能及时投入。

(7)安装或检修时,油系统存留棉纱等杂物,使油管堵。(8)轴瓦在检修中装反或运行中移位。

(9)机组强烈振动,会使轴瓦乌金研磨损坏。

88.个别轴承溫度升高和轴承温度普遍升高的原因有什么不同?

个别轴承温度升高的原因:

(1)负荷增加、轴承受力分配不均、个别轴承负荷重。

(2)进油不畅或回油不畅。

(3)轴承内进入杂物,乌金脱壳。(4)靠轴承侧的轴封汽过大或漏汽大。(5)轴承中有气体存在、油流不畅。(6)振动引起油膜玻坏、润滑不良。

轴承温度普遍升高:

(1)由于某些原因引起冷油器出油温度升髙。(2)油质恶化。

89.轴承烧瓦的亊故象征有哪些?

轴瓦乌金温度及回油温度急剧升高,一且油膜破坏,机组振动增大,轴瓦冒烟,应紧急停机。

90.为防止柚瓦烧瓦应耒取哪些技术措施? 为防止轴瓦烧瓦应釆取如下技术措沲:

(1)主油箱油位应维持正常,当油位下降时,应及时联系补油,油位下降到停机值时,应立即紧急停机。

(2)定期试验油箱油位低报警装置,每小时记录主油箱 就地油位计一次,新投用的冷袖器每半小时检查一次,就地油位计和集控室油位计指示准确。

(3)发现油箝油位下陴,应检査油系统外部是否漏油,发 电机是否进油,对冷油器进行捉漏,发现异常时,应立即关 闭密封油冷油器进、出水门。

(4)运行中发现油压不正常或逐渐下降时,应立即关闭密封油冷油器进、出水门。

(5)油箱内的滤油网小修时应清理干净,运行中当主油箱就地油位计两侧油位差达50mm时,应联系检修清冼。(6)各轴承的回油窗有水珠时,应采取措施加以消除,严禁有水珠运行。主油箱每星期放水一次,定期进行油质化验,间油窗透明度应很高,若模糊不清,应联系检修。

(7)运行中调整润滑油过压阀应由班长监护。

(8)运行中切换冷油器运行,隔离投用润滑袖滤网,应由班氏监护,监护人不得操作,确认空气放尽方可投用。

(9)切换冷油器时,先开启备用冷油器油门和水门,后关原来冷油器的水门和油门。

(10)润滑油滤网隔离时,应确认旁路门全部打开,然后再缓慢关闭滤网进、出口油门。投用润滑油滤网时,空气放 尽后,确认进、出口门全部打开,再缓慢关闭旁路门。

(11)切换冷油器,投人或停用润滑油滤网时,应和司机保持密切联系,司机应加强对油压、油温、油流的监视。

(12)原有三台冷油器并列运行,当准备停用其屮一台冷油器时,应确认其它两台冷油器进、出口油门和进、出口水门在开启位置。(13)冷油器加温时,其冷却水回水门应开启运行,运行中冷油器出水门应开足,用进水门或进水旁路门调整,控制油温。

(14)高甩油泵、低压交、直流润滑油泵,直流密封油泵定期试开良好,联锁正常投人,每次幵机前试低油压自起动良好,低油压保护动作良好。(15)汽轮机起动前必须起动高压油泵,确定所有轴承回油正常,才能冲动转子。转速为3000r/min时,缓慢关闭髙压油泵出口门,确认主油泵上油正常,才能停用高压油泵,髙压油泵停用后出口门应及时打开备用。

(16)任何情况下停机前。应起动低压润滑油泵或高压油泵(火灾除外)。(17)汽轮机轴瓦回油温升超过正常限额(温升一般不超过10~15℃,应加强监视,查明原因,当任一轴承冒烟或回油温度升至75℃或突升至70℃时,应紧急停机。

(18)轴向位移保护应正常投入,当轴向位移迖最高极限值,推力瓦块温度急剧上升到最高极限值时,应紧急停 机。

(19)避免在机组振动不合格的情况下长期运行。

(20)运行中调节汽室座力不得超过规定值,否则应降低负荷运行。(21)当运行中发生了可能引起轴瓦损坏的异常情况(例如:水冲击或瞬间断油)而停机时,应查明轴瓦没有损坏后,才能重新起动。

91.转子弯曲事故的象征有哪些?

转子弯曲事故多数发生在机组起动时,也有少数在滑停过程和停机后发生的。其象征表现为:汽轮机发生异常振动,轴承箱晃动,胀差正值增加,轴端汽封冒火花或形成火环;停 机后转子惰走时间明显缩短,严重时产生“剎车”现象,转 子刚静止时,往往投不上盘车。当盘车投入后,盘车电流较 正常值大,且周期性变化。用电流表测量时最为直观,其表针摆动范围远远超过正常值,尽管转子逐渐冷却,但转子晃 动值仍然固定在某一较高值,即确认转子产生永久弯曲。

91.造成转子弯曲事故有哪些原因?

转子弯曲事故有如下原因:

(1)热态起动前,转子晃动度超过规定值。(2)上下缸温差大(甚至大大超过规定范围)。(3)迸汽温度低。

(4)汽缸进冷汽、冷水。

(5)机组振动超过规定时没有采取立即打闸停机这一果断措施。

93.机组起动过程中防止转子弯曲的措施有哪些? 机组起动过程中防止转子弯曲的措施如下:

(1)大型机组系统复杂、庞大。起动前各级人员应严格 按照规程和操作卡做好检査工作,特别是对以下阀门应重点检查,使其处于正确的位置:①高压旁路减温水隔离门,调整门应关闭严密;②所有的汽轮机蒸汽管道,本体疏水门应全部开启;③通向锅炉的减温水门,给水泵的中间抽头门应关闭严密,等锅炉需要后再开启;④各水封袋注完水后应关闭注水门,防止水从轴封加热器倒至汽封。(2)起动机组前一定要连续盘车2h以上,不得间断,并测量转子弯曲值不大于原始值0.02mm。

(3)冲转过程中应严格监视机组各轴承振动,转速在1300r/min以下,轴承三个方向振动均不得趄过0.03mm,越临界转速时轴承三个方向振动均不得超过0.1mm。否则立即打闸停机,停机后测量大轴弯曲,并连续盘车4h以上,正常 后才能重新开机。若有中断,必须再加上10倍于中断盘车时间。

(4)转速达3000r/min后应关小电动主汽门后疏水门,防止疏水量太大影响本体疏水畅通。

(5)冲转前应对主蒸汽管道、再热蒸汽管道、各联箱充分暖管暖箱。

(6)投蒸汽加热装置后要精心调整,不允许汽缸法兰上下、左右温差交叉变化,各项温差规定应在允许范围内。

(7)当锅炉燃烧不稳定时,应严格监视主、再热蒸汽温度的变化,10min内主、再热蒸汽温度上升或下降50℃,应打闸停机。

(8)开机过程中应加强各水箱、加热器水位的监视,防止水或冷汽倒至汽缸。(9)低负荷时应调整好凝结水泵的出口压力不得超过规定值,防止低压加热器钢管破裂。(10)投髙压加热器前一定要做好各项保护试验,使高压如热器保护正常投人运行,否则不得投人髙压加热器。

(11)热态起动不得使用减温水,若中、低压缸差胀大,热态起动冲转前低压汽封司不送或少送汽。

94.热态起动时,防止转于弯曲应特别注意些什么?

热态起动除做好开机前有关防止转子弯曲措施之外,还应做好以下工作:

(1)热态起动前,负责起动的班组应了解上次停机的情况,布无异常,应注意哪些问题,并对每个操作人员并明,做 到每人心中有数。

(2)一定要先送轴封汽后抽真空,轴封汽用备用汽源供汽不得投入减温水,送轴封汽前关闭汽封叫、五

(六)段抽 汽门。(3)各管道、联箱更应充分的暖管、暖筘。(4)严格要苯冲转参数和旁路的开度(旁路要等凝汽器有一定的真空才能开启),主蒸汽温度一定要比高压内上缸温 度高50℃以上,并有80~100℃的过热度。冲转和带负荷过 程中也应加强主、再热蒸汽温度的监视,汽温不得反复升降。

(5)加强振动的监视。热态起动过程中,由于各部温差的原因,容易发生振动,这时更应严格监视,不得马虎,振 动超过规定应立即打闸停机,测量转子晃动不大于原始值0.02mm。

(6)幵机过程中,应加强各部分疏水。

(7)应尽量避开极热态起动(缸温400℃以上〉。

(8)热态起动前应对调节系统赶空气,因为调节系统内存有空气,有可能造成冲转过程中调节汽门大幅度移动,引 起锅炉参数不稳定,造成蒸汽带水。(9)极热态起动时最好不要做超速试验。

(10)热态起动时,只要操作跟得上,就应尽快带负荷至汽缸温度相对应的负荷水平。

95.停机过程中及停机后,防止转子发生弯西的措施有哪些?

停机后的隔离工作是一项非常重要的工作,因力此时的 汽缸湿度较高,绝对不允许冷汽或水进人汽缸,所以除做好 一般常规工作以外,应重点做好以下几点工作:

(1)关闭凝汽器补水截门。

(2)关闭给水泵的中间柚头门及商压旁路减温水水。

(3)关闭电动主汽门前,高压旁路门前疏水一、二次门,开启防腐门。

(4)关闭至除氧器的抽汽电动门、疏水门、轴封供汽母管前疏水门、四段抽汽(三段抽汽)母管至轴封汽进汽门、汽平衡至轴封供汽门、四段抽汽(三段抽汽)至四段抽汽(三 段抽汽)母管电动门、手动门、四段抽汽(三段抽汽)至四段抽汽(三段抽汽)母管旁路门,隔离门。

(5)关闭门杆漏汽至除氧器的隔离门。

(6)关闭新蒸汽至髙温汽封进汽总门及三个分门。关闭 轴封供汽各分门。(7)关闭汽缸、法兰加热联箱进汽总门及调整门。

(8)开启汽缸本体疏水门及再热蒸汽冷、热段,高压旁路后、低压旁路前的各疏水门、充分疏水。

(9)停机以后,司机应仍然经常检査汽轮机的隔离措施是否完备,检査汽缸温度是否突降。

96.锅炉水压试验时,为防止转子弯曲必须关闭和开冶哪些阀门?

做水压试验时要关闭及打开以下各阀门:(1)开启给水泵的屮间抽头门。

(2)通知锅炉手紧再热器减温水门。(3)关闭电动主汽门及旁路门。

(4)关严电动主汽门前疏水门,萵压旁路门前疏水门。(5)关严新蒸汽到汽缸、法兰、汽封的进汽一、二次门。

(6)关闭高压旁路门、减温水门。(7)关闭主蒸汽至汽封管道疏水门。(8)打开防腐门。

97.锅炉校安全门时,锅炉、汽轮杌方面应做好哪些工作?

锅炉校安全门时,除广做水^五试验时应关闭和幵启阀门 都要做好以外,还要通知锅炉运行人员关闭再热器疏水门或 过热器疏水门。随着锅炉水压或汽压的升高经常检查汽轮机本体及各条通锅炉的管道,确记隔离措施是否完善。

98.汽轮机超速的事故原因有哪些? 汽轮机超速事故原因有:

(1)汽轮机油的油质不良,使调节系统和保安系统拒绝动作,失去了保护作用。(2)未按规定的时间和条件,进行危急保安器忒验,以至危急保安器动作转速发生变化也不知道。而一旦发电机跳闸,转速可能升高到危急保安器动作转速以上。(3)因蒸汽品质不良,自动主汽门和调节汽门门杆结垢,即使危急保安器动作,也可能因汽门卡住关不下来,而引起超速。

(4)抽汽逆止门、高压缸排汽逆止门失灵,甩负荷后发 电机与电网解列,高压加热器疏水汽化或邻机抽汽进人汽轮机,同样会引起超速。

99.汽轮机超速事故的象狃有哪些?

汽轮机超速事故象征如下:

(1)汽轮机超速事故的机组负荷突然旭到零,机组发出不正常的声音。

(2)转速表或频率表指示值超过红线数字并继续上升。主油压迅速增加,采用离心式主油泵的机组,油压 上升得更明昆。(3)机组振动增大。

100.机组超速保护装置动作或打闸停机后,转速仍上升应如何处理?

汽轮叽超速保护装置动作或打闸停机后转速仍上升,应 迅速关闭电动主汽门,迅速关闭抽汽至除氧器、热两、燃油加热的供汽门。关闭各加热器的逬汽门,同时完成停机的其它操作。

101.防止汽轮机严重超速事故的措施有哪些?

防止汽轮机严重超速事故的措施有:

(1)坚恃机组按规定做汽轮机超速试验及喷油试验。

(2)机组充油装置正常,动作灵活无误,每次停机前,在 低负荷或解列后,用充油试验方法活动危急保安器。

(3)机组大修后,或危急保安器解体检修后以及停机一 个月后,应用提升转速的方法做超速试验。(4)机组冷态起动谣做危急保安器超速试验时,应先并网,低负荷(20~30MW)暖机2~3h,以提高转子温度。

(5)做危急保安器超速试验时,力求升速平稳,特別足 对下大型机组,超速滑阀操作时不易控制,往往造成调节汽门突开,且开度变化大,转速飞升幅度较大或轴向准力突增,—般用同步器升速,若同步器升不到动作转速,也必须先用 同步器升至3150r/min后,再用超速滑阀提升转速。

(6)超速限制滑阀试验周期应与超速试验周期相同,以鉴定该保护装置动作正确,确保机组甩负荷后,髙、中压油动机瞬间关闭,使机组维持空转运行。(7)热工的超速保护信号每次小修、大修后均要试验一 次,可静态试验也可动态试验,确保热工超速保护信号的动作定值正确。

(8)高、中压自动主汽门、调节汽门的动作是否正常,对防止机组严重超速密切相关,发现卡涩立即向领导汇报,及 时消除并按规定做括动试验。(9)每次停机或做危急保安器试验时,应派专人观察抽汽逆止门关闭动作情况,发现异常应检修处理后方可起动。

(10)每次开机或甩负荷后,应观察自动主汽门和调节汽 门严密程度,发现不严密,应汇报领导,消除缺陷后开机。

(11)蒸汽品质及汽轮机油质应定期化验,井出检验报告,品质不合格应采取相应措施。

(12)合理调整每台机组的轴封供汽压力,防止油中进水,设备有缺陷造成油中进水,应尽快消除。

(13)做超速试验时,调节汽门应平稳逐步开大,转速相应逐步升高至危急保安器动作转速,若调节汽门突然开至最大,应立即打闸停机,防止严重超速事故。(14)做超速试验时应选择适当参数,压力、温度应控制在规定范围,投入旁路系统,侍参数稳定后,方可做超速试验。

102.调节系统卡涩需伴机处理应如何操作?

调节系统卡涩铕停机处理,应做如下操作:

(1)联系锅炉降湿、降压,有关操作按滑参数停机要求进行。

(2)当汽压降低,负荷降至零时,手打危急保安器,关严电动主汽门后,通知电气拉开油幵关,注意汽轮机转速变化情况。(3)完成其他停机操作。

103.汽轮机单缸进汽有什么危害?应如何处理?

多缸汽轮机单缸进汽时,会引起轴向推力增大,导致推力轴承烧瓦,产生动静磨损应紧急停机。

104.机组并网时调节系统晃动怎样处理?

机组并网时调节系统晃动应做如下处理:

(1)适当降低凝汽器的真空(此法有一定的危险性,用时应慎重)。(2)起动调速油泵,稳定油压。

(3)降低主蒸汽压力。

(4)起动过程中,当转速达2850r/min时应稍作停留,再用同步器缓慢升至3000r/min。

(5)调节系统大幅度晃动时,应打闸停机后再重新起动 升速至3000r/min。

105.轴封供汽带水有哪些原因?

轴封供汽带水有如下原因:

(1)汽轮机起动前管道疏水未疏尽。(2)除氧器内发生汽水共腾。(3)除氧器满水。

(4)均压箱减温水门误幵。(5)水封袋注水总门未关。

(6)汽封加热器,轴封抽汽器泄漏。

106.轴封供汽带水对机组有何危害?应如何处理?

轴封供汽带水在机组运行中有可能使轴端汽封损坏,重者将使机组发生水冲击,危害机组安全运行。

处理轴封供汽带水事故时,根据不同的原因,采取相应 措施。如发现机组声音变沉,机组振动增大,轴向位移增大,差胀减小或出现负差胀,应立即破坏真空,打闸停机。打开轴封供汽系统及本体疏水门,疏水疏尽后,待各参数符合起动要求后,方可重新起动。

107.运行中叶片或围带脱落的一般象征有哪些?

运行中叶片或围带脱落的象征如下:

(1)单个叶片或围带飞脱时,可能发生碰击声或尖锐的声响,并伴随着机组振动突然加大,有时会很快消失。

(2)当调节级复环铆钉头被导环磨平,复环飞脱时,如果堵在下一级导叶上,则将引起调节汽室压力升髙。

(3)当低压缸末级叶片或围带飞脱时,可能打坏凝汽器铜管,致使凝结水硬度突增,凝汽器水位也急剧升高。

(4)由于末几级叶片不对称地断落,使转子不平衡,因而引起振动明显增大。

108.叶片或围带脱落应如何处理?

叶片或围裨脱落应做如下处理:

(1)汽轮机运行中发生叶片损坏或脱落,各种象征不一定同时出现,发现有可疑象征时,应逐级汇报,研究处理,当 象征明显时,应报告值长,破坏真空,紧急停机。

(2)因汽轮机末级叶片折断,打坏凝汽器铜管,凝结水硬度,电导率均急剧升高,此时应降低汽轮机负荷,对凝汽器逐台进行捉漏,并监视凝汽器真空。当真空下降时,应开启备用射水抽气器。

(3)水质恶化到不能维持运行时,应拫告值长,故障停机。

109.为防止叶片损坏,运行中应釆取哪些措施?

为防止叶片损坏,运行中应采取如下措施:

(1)电网应保持正常频率运行,避免频率偏高或偏低,以 防引起某几级叶片陷入共振区。

(2)蒸汽参数和各段抽汽压力、真空等超过制造厂规定的极限值,应限制机组出力。

(3)在机组大修中,应对通流部分损伤情况进行全面细 致地检查,这是防止运行中掉叶片的主要环节之一。为此,要由专人负责,做好叶片围带和拉金等部件的损伤记录,并做好叶片调频工作。

110.频率升高或降低,对汽轮机及电动机有什么影响?

高频率或低频率对汽轮机运行都是不利的,由于汽轮机 叶片频率一般都调整在正常频率运行时处于合格范围,如果 频率过高或过低,都有可能使某几级叶片陷入或接近共振区,造成应力显著增加而导致叶片疲劳断裂,还使汽轮机各级速度比离开最佳速度比,使汽轮机效率降低,低频率运行还易造成机组、推力轴承、叶片过负荷,同时主油泵出口油压相 应下降,严重时会使主汽门因油乐降低而自行关闭。对电动机的影响有:

髙频率:管道系统特性不变时,辅机出力增大,若原负 荷就很大,可能引起电动机过负荷。

低频率:需维挣原流量的辅机〈如凝结水泵、凝结水升 压泵〉,电动机电流会升高,若低频率的同时电压也低,电动机过负荷的可能性更大,且电动机容易发热。

111.频束变化时,应注意哪些问题?

频率变化时,应注意如下问题:

(1)当频率变化时,应加强对机组运行状况特别是机组振动、声音、轴向位移、推力瓦块温度的监视。

(2)当频率下降时,应注意一次油压及调速油压下降的情况,必要时起动高压油泵,注意机组不过负荷。

(3)当频率变化时,应加强监视辅机的运行情況。如因频率下降引起出力不足,电动机发热等情況,视霈要可起动备用辅机。

(4)当频率下降时,应加强检查发电机静子和转子的冷却水茧力、温度以及进、出风温度等运行情况,偏离正常值时应进行调节。

(5)频率上升时,应注意汽轮机转速上升情况,检査液压加速器是否动作,调节汽门是否关闭,并及时处理。

112.发电机静子冷却水箱、转子冷却水箱水位下降应如付处理?

发电机静子冷却水箱、转子冷却水箱水位下降应做如下 处理:

(1)立即开大转子冷却水箱补水调整门的旁路门或静子冷却水箱补水门,维持水箱水位正常,如果水源中断,应立即切换凝结水升压泵出口来的水源或联系化学值班员迅速恢复。

(2)如因水冷却器或管道泄漏引起,应迅速隔绝故障点,并设法处理,如因放水门误开引起水位下降,应将其关闭,如 补水调整门失灵,应用旁路门维持水位,并通知检修处理,联系化学人员检查阴离子预交换器是否误开。

113.发电机静于冷却水,转子冷却水系统压力低应如何处理?

发电机静子冷却水转子冷却水系统压力低,应做如下处理:

(1)检查静子冷却水泵、转子冷却水泵运行是否正常’必 要时可切换或增幵备用泵运行,维持压力正常。

(2)检查静子冷却水泵至餑于冷却水箱再循环门及联系化学检査阴离子交换器排放门,若误开,应立即关闭,若备 用泵逆止门泄漏,则应关闭备用泵出水门。(3)检查冷却水滤水器压差,若超过规定时,应切换冷却器运行,将压差超限的滤水器停下并清扫停用的水冷器滤 网。

(4)如压力下降系冷却器或管道泄漏引起,应密切生意冷却水箱水位,隔绝故障点,并设法处理。

(5)在进行上述各项处理的同时调节电机进水门,维持发电机内冷水压力、流量正常。

114.发电机令却水出水温高于正常值应如何处理?

发现发电机冷却水出水温度高于正常值时应立即检查发电机进水温度、压力、流量。

(1)如进水温度高,应检查冷却器冷却水系统是否正常。可增加冷却器的冷却水流量,必要时可清扫冷却器的水室,如 冷却器的冷却水侧失水可增开循环水泵,排尽空气。

(2)如进水压力低可根据转子冷却水系统,静子冷却水系统压力低的处理方法处理。

(3)如进水温度、压力都正常,可在不超过最大允许工作压力的条件下,提高发电机的进水压力,增加冷却水流量,以降低发电机的出水温逯。

(4)如发电机出水温度高于额定值,无法降低时,联系 电气值班员降低发电机的电流。

115.发电机静子绕组个别点温度升高应如何处理?

发电机静子绕组个别点温度比正常运行最高点髙5℃,应加强监视,并适当增加冷却水流量或降低负荷,若仍不能 使温度下降或继续有上升趋势以致达到限额时,根据电气规程规定处理,必要时停机处理。

116.发电机冷却水压力正常,流量突然减少应如何处理?

发电机冷却水压力正常,流量突然减少应立即查明原因,如由于空气进人发电机转子,使转子流量减少,进水压力升 髙,则应将发电机解列后,降低转速放出空气,但应严密监 视机组振动,出现异常振动,应按异常振动处理办法处理。如 流量减少,是由于发电机静子绕组的水路有局部堵塞,则可根据静子绕组温度进行分析,此时可提高进水压力,并降低 机组负荷。如仍不能解决,则应减负荷停机处理。

117.发电机冷却水中断的原因有哪些?

发电机冷却水中断原因有:

(1)冷却水泵运行中跳闸,备用亲未自动起动。

(2)冷却水箱水位太低,引起发电机断水。(3)发电机冷却水系统切换操作错误。

(4)发电机冷却水系统操作时空气没有放尽。

118.发电杌冷却水中断应如何处理?

发电机断水时间不得超过30s,发现断水必须尽快恢复供水,如断水超过30s,保护未动作,应进行故障停机。投断水保护的发电机在断水跳闸后,应迅速査明原因,采取对策,恢复冷却水系统正常运行。无其它异常情況时尽快 恢复并列运行。

119.发电机冷却水电导率突然增大应如何处理?

当发现发电机冷却水电导率突然增大,应立即检查补充水质量是否良好,如补充水的水质不良,应切换至水质良好的水源供水。

120.发电机漏水应如何处理?

发电机漏水应做如下处理:

(1)发电机在运行中发现机壳内有水时,应立即査明积水原因。如果是轻微结垢所引起的,则应提髙发电机的进水和进风温度、使其高于机壳内空气的露点,但进水、进风温度不能超限。(2)发电机湿度仪指示突然上升而环境湿度未变化,或 发电机风温基本不变时,汽轮机侧与励磁机侧湿度发生明显差异(大于20%)、或出现空气冷却器结露现象,应立即汇报值长,并由值长组织如下检査、处理:①戴好防护器具,对发电机端部,冷、热风道、空气冷却器等做全面检查,如发 现发电机端部和热风道有明显滴水,则应立即故障停机;② 若非环境湿度高引起湿度仪报警,空气冷却器结露,为争取处理时间,防止影响静子绝缘,应将空气冷却器小室两侧大门打开,以降低机内湿度,并在其两旁做好安全措施。③如经检査发电机无滴水,而仅是个别空气冷却器“结露”滴水,则应将其隔绝,继续观察湿度楚否下降。(3)如果外界湿度不高,而空气冷却器突然数台“结 露”或先后出现“结露”现象(如隔绝一台滴水空气冷却器,则冷却水流量较大的一台又出现“结露”),应对“结露”空气冷却器逐台隔绝检漏:慢慢关闭出水分门(注意空气冷却 器不喷水,否则还应关闭进水分门)数分钟后空气冷却器仍滴水或结露,或关出水分门时喷水,说明是空气冷却器漏水,应隔绝漏水的空气冷却器,若漏水的空气冷却器全部隔绝后,湿度仍无明显好转,通过上述检查仍一时分不清何处漏水,则应申请停机。

(4)在减负荷停机过程中,应加强对发电机车面层的检查,一旦发现情况,如发现发电机内滴水或定子瑞部绕组内出现电晕,湿度继续上升至80%以上等情况,应立即故障停机。为保障人身安全,停机前对空气冷却器小室不做现场检査。(5)在外界环境湿度无变化时,如发电机湿度大幅度上升的同吋检漏仪报聱,应由电气确定检査报警的确是水滴引起,空气冷却器无明显泄漏现象,应作发电机漏水处理,申请停机检査。

(6)在湿度仪或检漏仪报警的同时,发电机静子或转子接地报警,在判明非报警装置误动作后,作故障停机处理。

(7)如湿度上升确因气候条件变化(如空气冷却器进水管同时结露)引起,则应适当提高空气冷却器风温,降低湿度,防止空气冷却器结露。

(8)在运行中电气值班人员如发现发电机转子绝缘逐步 下降而又查不出原因,则可能是由于复合管渗漏所致,应引起密切注意。此时如转子绝缘电阻值小于2kΩ,转子一点接地报经,则应申请停机处理。如此时机组出现欠磁或失磁现 象,立即故障停机,汽轮机值班员应配合进行故陣停机操作。

121.双水内冷友电机冷却水断水为何不能超过20s(12.5MW机组为30s)?

因为双水内冷发电机的冷却水直接通人静子、转子线棒内进行冷却,空气只冷却部分铁芯的发热量,一旦断水,发电机因线棒温度迅速升髙,易引起烧坏绝缘线棒等事故。尤 其是转子通风孔全被线棒填满,全靠发电机冷却水冷却。所以规定发电机冷却水断水不得超过20s(12.5MW机组为30s)。

122.汽水管道故障处理过程中的隔绝原则有哪些?

汽水管道故障处理过程中隔绝原则有:

(1)尽可能不使工作人员和设备遭受损害。(2)尽可能不停用其它运行设备。

(3)先关闭来汽、来水阀门,后关闭出汽、出水阀门。

(4)先关闭离故障点近的阀门,如无法接近隔绝点,再扩大隔绝范围,关闲离隔绝点远的阀门。待可以接近隔绝点时应迅速缩小隔绝范围。

(5)如管道破裂,漏出的汽水有可能导致保护装置误动作时,取得值长同意后,将有关热保护装置暂时停用。

123.高压高温汽水管道或阀门泄漏应如处理?

高压髙温汽水管道或阀门泄漏,应做如下处理:(1)应注意人身安全,查明泄漏部位时,应特别小心谨 慎,应使用合适的工具,如长柄鸡毛帚等,运行人员不得敲开保温层。

(2)高温高压汽水管道、阀门大量漏汽,响声特别大,运 行人员应根据声音大小和附近温度高低,保持一定的安全距离。(3)做好防止他人误人危险区的安全措施。

(4)按隔绝原则及早进行故障点的隔绝,无法隔绝时,请 示上级要求停机。

124.汽水管道破裂、水击、振动应如何处理?

汽水管道破裂、水击、振动应做如下处理:

(1)蒸汽管道或法兰、阀门破裂,机组无法维持运行时,应汇报值长进行故障停机,同时还应做到:①尽快隔绝故障点,并开启汽轮机房内的窗户放出蒸汽,庄意切勿乱跑,防止被汽流吹伤、烫伤;②采取必要的防火及防止电气设备受潮的临时安全措施;③幵启隔绝范围内的疏水门、放空气门、泄压放水。

(2)蒸汽或抽汽管道水冲杰-时,应开启有关疏水门,必 要时停用该蒸汽或抽汽管道及设备并检查原因,如已发展到 汽轮机水冲击,则应按照水冲击的规定处理。

(3)管道振动大时,应检査该管逭疏水是否正常,支吊 架是否完整良好,该管道通流量是否稳定。如管道振动威胁 与其相连接的设备安全运行时应汇报值长,适当减负荷以减 小诙管道通流量,必要时隔绝振动大的管道。

(4)给水管道破裂时,应迅速隔绝故障点,如故障点无法隔绝,且机组无法维持运行时,应进行故障停机。

(5)凝结水管道破裂时,应设法制止、减小凝结水的泄漏,或隔绝故障点,维持机组运行,如隔绝点无法隔绝,且机组无法维持运行时,应停机处理。

(6)循环水母管破裂时,设法制止或减小循环水的泄漏,关闭循环水母管连通门,尽量避免调度循环水泵,防止因压 力波动引起破裂处扩大。根据情况,汇报值长,决定是否申请停机,并注意泄漏是否发展及循环水母管压力、真空,油温、风温的变化。当凝汽器循环水门后管道破裂,汇报值长,视情况减负荷或紧急减负荷,将破裂侧凝汽器隔绝运行,并增大正常侧凝汽器循环水门开度,根据真空情况,调整负荷。

(7)主蒸汽、再热蒸汽、给水的主要管道或阀门爆破,应紧急停机。

125.发电机、励磁机着火及氢气爆炸的象征有哪些?

发电机、励磁机着火及氢气爆炸的象征有:(1)发电机周围发现明火。

(2)发电机静子铁芯、绕组温度急剧上升。(3)发电机巨响,有油烟喷出。

(4)发电机进、出风温突增,氢压增大。

126.发电机、励磁机着火及氢气爆炸的原因有哪些?

发电机、励磁机着火及氢气爆炸的原因有:

(1)发电机氢冷系统漏氢气并遇有明火。(2)机械部分碰撞及摩擦产生火花。

(3)氢气浓度低于标准。

(4)达到氢气自燃溫度。

127.发电机、励磁机着火及氮气爆炸应如何处理?

发电机、励磁机着火及氢气爆炸应做如下处理:

(1)发电机、励磁机内部着火及氢气爆炸时,司机应立 即破坏真空紧急停机。(2)关闭补氢气阀门,停止补氢气。(3)通知电气排氢气,置换002。

(4)及时调整密封油压至规定值。

128.发电机或励磁机冒烟着火,为什么要规定维持盘车运行?

发电机或励磁机着火,实际是发电机或励磁机的线棒绝 缘材料达到着火点后发生燃烧,因其绝缘材料均是一些发热 量很高的化合物质,燃烧时放出的热量很大,温度很髙,当发电机、励磁机冒烟着火时,将使转子受热不均匀。如此时转子在静止状态,必将发生发电机转子弯曲的恶性事故。此外,发电机转子的热量传给支承轴承,会导致轴瓦乌金溶化,咬煞而损坏。为避免发电机转子弯曲和损坏轴瓦,故要将转子维持在转动状态。

129.发电机氢压降低的象征有哪些?

发电机氢压降低的象征有:

(1)氢压下降,并发出氢压低信号。

(2)发电机铁芯,绕组温度升高。

(3)发电机出风温度升高。

130.发电机氩压降低的原因有哪些?

发电机氢压降低的原因有:(1)系统阀门误操作。

(2)氢系统阀门不严,引起氢气泄漏。(3)补氢气阀门门芯脱落。

(4)密封油压调整不当或差压阀、平衡阀跟踪失灵。

131.发电机氢压降低应如何处理?

发电机氢压降低应做如下处理:

(1)确定氢压降低,应立即补氢,维持正常氢压。

(2)如因泄漏,经补氢也不能维持额定压力时,应报告 值长降负荷,同时设法消除漏氢缺陷。

(3)如因供氢中断不能维持氢压时,可向发电机内补充 少量氮气,保持低压运行,等待供氢恢复,发电机内氢压绝 不能低到“0”。

(4)如系统阀门误操作,应恢复正常位置,然后视氢压 情况及时补氢。(5)及时调整密封油压至正常值。

132.发电机氢压升高的原因有哪些? 发电机氢压升高的原因有:(1)自动补氢装置失灵。

(2)自动补氢旁路门不严或误开。(3)氢气冷却器冷却水量减少或中断。

133.发电机氢压升高应如何处理?

发电机氢压升高应做如下处理:

(1)确认氢压高,应联系电气打开排氢气门,使氢压恢复正常。(2)如自动补氢装置失灵,砬关闭隔离阀,用旁路门调 节氢压,同时消除缺陷,若补氢旁路门误开,应立即关闭。

(3)若氢冷却器冷却水中断应及时设法恢复。

134.发电机密封油压低的象征有哪些?

发电机密封油甩低的象征有:(1)密封油压降低,发出报躲信号。

(2)若油压低于氢压太多时,造成氢压下降。

135.发电机密封油压低的原因有哪些?

发电机密封油压低的原因有:

(1)密封油箱油位低,或系统阀门误操作。(2)密封油泵跳闸或未开。

(3)备用密封油泵逆止门不严,或再循环门幵度过大。(4)滤网脏。

(5)密封瓦油档间隙太大。

136.密封油压降低应如何处理?

密封油压降低应做如下处理:

(1)密封油压降低,应迅速査明原因,调整并恢复正常值,如油压不能恢复正常值,应降低氢压、降低负荷运行。如油压降低到极限值,应立即报告值长停机。(2)若油系统故障,应立即汇报班长,并通知检修人员 及时处理,维持油压。

137.—投水泵及油泵的紧急停泵条件有哪些?

一般水泵及油泵的紧急停泵条件有:

(1)水泵继续运行明显危及设备,人身安全时。

(2)水泵或电动机发生强烈振动或清楚地听到金属碰击 声或摩擦声。(3)任何轴承、轴封冒烟或油温急剧升高趄过规定值。(4)水在泵内汽化,采取措施无效时。(5)水泵外壳破裂。

(6)电动机开关冒烟或起火。(7)电动机故障。

138.调速给氷泵紧急停泵的条件有哪些?

调速给水泵紧急停泵的条件有:(1)电机或水泵突然发生强烈振动或金属碰击声与摩擦声,转子轴向窜动剧烈。(2)任何一道轴承冒烟,轴承温度急剧升高,超过规定值。(3)水泵外壳破裂。

(4)水泵内汽化,泵内有噪声。

(5)电流增加,转速下降,并有不正常的声音及发热。

(6)给水泵油系统着火,不能很快扑灭,严重威胁运行时。

(7)偶合器内冒烟着火或发生强烈振动和有金属撞击声或工作油回油温度超过105℃。

(8)润滑油压下降至0.05MPa以下,各轴承油流减少,油温升髙,虽起动辅助油泵也无效时。(9)轴封冷却水压差<0.05MPa,且调节汽门后压力降 至1.22MPa,轴封冒烟时。(10)轴向位移超过2.5mm。

(11)电动机或开关冒烟时。

139.调速給水泵故障诤泵时,切换操作应注意哪些问题?

调速给水泵故障停泵时,切换操作应注意如下问题:

(1)起动备用给水泵,解除故障泵的油泵联锁,开启故 障给水泵的辅助油泵,油压正常,停用故障泵。

(2)检査投人运行给水泵的运行情况。

(3)检査故障泵有无倒转现象,记录惰走时间。

(4)完成停泵的其他操作,根据故障情况,进行必要的安全隔离措施,立即报告班长。

140.调速給水泵自动跳闹的象征有哪些? 调速给水泵自动跳闸象征有:

(1)电流表指示到零,报警铃响。

(2)备用泵自启动。

(3)闪光报警,发讯跳闸泵绿灯闪光。

(4)给水流量、压力瞬间下降。

141.调速给水泵自动跳闸应如何处理?

调速给水泵自动跳闸应做如下处理:

(1)立即起动跳闸泵的辅助油泵,复置备用给水泵及眺 闸泵的开关。调整密封水水压,解除跳闸泵联锁,将运行泵 联锁打在工作位置,检查运行给水泵电流、出口压力、流量正常,注意跳闹泵不得倒转。

(2)如备用泵不能自起动时,应立即手动开启备用泵。

(3)若无备用泵,跳附泵无明显故障,保护未翻牌,就地宏观无问题,可试开一次,无效后,报告班长,把负荷降至一台泵运行对应的负荷。

(4)迅速检查跳闸泵有无明显蓖大故障,根据不同原因,通知有关人员处理。(5)作好详细记录。保护误动或人为的误操怍跳闸,也应在处理完毕后,立即报告班长,作好记录。

142.给水母管压力降低应如何处理?

给水母管压力降低应做如下处理:

(1)检查给水泵运行是否正常,并核对转速和电流及勺管位置,检査电动出口门和再循环门开度。

(2)检查给水管道系统有无破裂和大量漏水。

(3)联系锅炉调节给水流量,若勺管位置开至最大,给 水压力仍下降,影响锅炉给水流量时,应迅速起动备用泵,并及时联系有关检修班组处理。(4)影响锅炉正常运行时,应汇报有关人员降负荷运行。

143.调速给水泵汽蚀的象征有哪些?

调速给水泵汽蚀的象征如下:

(1)如磁性滤网堵塞造成给水泵人口汽化时,滤网前后压差增大。(2)给水流量小且变化。

(3)给水泵电流、出水压力急剧下降并变化。(4)泵内有不正常噪声。

144.调速给水泵汽蚀应如何处理?

调速给水泵汽蚀应做如下处理:

(1)给水泵轻微汽蚀,应立即查找原因,迅速消除。

(2)汽蚀严重,应立即起动备用泵,停用产生汽蚀的给 水泵。(3)开启绐水泵再循环门。

145.给水泵平衡盘磨损的象征有哪些?

给水泵平衡盘磨损的象征有:(1)电流增大并变化。

(2)平衡盘扭力比进门压力大到以上和轴向位 移增大,(3)严重时,泵内发出金属瘅撩声,密封装置处冒烟或冒火。

146.给氷泵平衡盘磨损应如何处理? 给水泵平衡盘磨损应做如下处理:

(1)立即起动备用给水泵,停运故障泵。

(2)如无备用泵,应联系电气降负荷,报告班长、值长。

147.给水泵轴承油压下降应如何处理?

给水泵轴承油压下降应做如下处理:

(1)给水泵轴承油压下降到0.09MPa,应立即起动辅助油泵。(2)检查油箱油位情况,油系统是否漏油。

(3)若辅助油泵运行后,油压仍不正常,应起动备用给水泵,停下故障给水泵。(4)轴承油压降至0.05MPa,应紧急停泵。

148.给水泵轴承温度升高应如何处理?

给水泵轴承温度升高应做如下处理:

(1)任何一道轴承温度升高到65℃采取措施后不能降低,应切换给水泵运行。(2)任何一道轴承温度升高至70℃以上,应立即切换备 用泵运行。

(3)工作油排油温度高到65℃,经调整勺管开度,并开 大工作冷油器进水门、出水门、冋水总门仍无效时,应切换备用泵运行,超过65℃应紧急停泵。

149.认调速給水泵油箱油位降低应如何处理?

调速给水泵油箱油位降低应做如下处理:

(1)检查油箱实际油位是否正常,以判断油位计是否指示正确。(2)油箱油位下降5~10mm,立即检查油系统外部有无漏油,排污门是否误开,对工作冷油器进行捉漏,并加油至正常油位。

(3)油箱油位突然下降至最低油位线以下立即切换备用 泵运行。

150.调速给水泵油箱油位升高应如何处理?

调速给水泵油箱油位升高应做如下处理:

(1)检査油箱实际油位是否幵髙。

(2)检查给水泵轴端密封是否大量渍水、密封水回水门开度是否止常,重力回水漏斗是否堵塞。

(3)原因不明时,切换备用给水泵运行,停故漳泵、关闭工作油冷油器、润搰油冷油器、冷却水的进、出口水门,确定冷油器是否泄漏,为防止油质乳化.停轴助油泵,使水沉淀后放水。

(4)凝汽器无真空时,其压力回水应倒至地沟,停机后,凝汽器灌水查漏时,应关闭压力回水,重力回水至凝汽器的回水门。

(5)打丌油箱排污门放水,联系化学人员化验油质,油质不合格,应联系检修换油,并作其他相应处理。

151.循环水泵出口蝶阀打不开的原因有哪些?

循环水泵出口蝶阀打不幵的原因有:

(1)出口蝶阀电动机电源及热工电源未送。

(2)出口蝶阀电动机及热工保护故障。

(3)系统大量漏油,油箱油位太低。

(4)电磁阀内漏或电磁阀旁路门误幵。(5)电动油泵故隞,手动泵故障。(6)机械卡涩。

152.循环水泵出口碟阀打不开应如何处理?

循环水泵起动后,出门蝶阀打不开,应迅速查明原因,做相应处理,必要时停泵,并联系检修。

153.循鈈水泵出口蝶间下落有哪些原因?

循环水泵出口蝶阀下落原因有:

(1)油系统漏油、油箱油位低。

(2)电磁阀内漏或旁跆门误开。

(3)出口蝶阀关到75%电动机不联动。

(4)电磁阀宜流24V电源屮断。

154.循钚水泵出口蝶阀下落应如何处理?

发现循环水泵出口蝶阀下落,即进行全面检查,作相应处理,如因电磁阀失灵或内漏造成,即关闭电磁阀前隔离门或手摇幵启出口蝶阀,并联系检修。

155.故障停用循环水泵的条件有哪些?

故障停用循环水泵的条件有:

(1)轴承温度急剧升高达80℃,无法降低。

(2)轴承油位急剧下降,加油无效或冷油器破裂,油中带水。

156.故障停用循坏水泵应如何操作?

故障停用循环水泵应做如下操作:

(1)解除联动开关,起动备用泵。

(2)停用故障泵,注意惰走时间。如倒转,关闭出口门或进口门。(3)无备用泵或备用泵起动不上,应请示上级后停用故障泵。(4)检查备用泵起动后的运行情况。

157.循环水泵跳闸的象征有哪些?

循环水泵跳闸的象征有:(1)电流表指示到“0”,绿灯闪光,红灯熄,事故喇叭。(2)电动机转速下降。

(3)水泵出水压力下降。

(4)备用泵应联动。

158.循环水泵跳闸应如何处理?

循环水泵跳闸应做如下处理:

(1)合上联动泵操作幵关,拉跳闸泵开关。(2)切換联动开关。

(3)迅速检査跳闸泵是否倒转,发现倒转立即关闭出口门。(4)检査联动泵运行情况。

(5)备用泵未联动应迅速起动备用泵。

(6)无备用泵或备用泵联动后又跳闸,应立即报告班长、值长。(7)联系电气人员检查跳闸原因。

(8)真空下降,应根据真空下降的规定处理。

159.循环水泵打空的象征有哪些?

循环水泵打空的象征有:

(1)电流表大幅度变化。

(2)出水压力下降或变化。

(3)泵内声音异常,出水管振动。

160.循环水泵打空应如何处理?

循环水泵打空应做如下处理:

(1)按紧急停泵处理。

(2)检查进水阀及滤网前后水位差,必要时清理滤网。

(3)检査其他泵运行情况。

(4)根据真空情况决定是否降负荷。

161.怎样判断电动机一相断路运行?

怎样判断电动机一相断路运行方法如下:

(1)若电动机及所拖动的设备原来在静止状态,则转动不起来,若电动机所拖动的设备原来在运行状态,则转速下 降。(2)两相运行时,电动机有不正常声音。

(3)若电流表接在断路的一相上,则电流指示到“0”,否则电流应大幅度上升。(4)电动机外壳温度明显上升。

(5)被拖动的辅机流量、报力下降。

162.除氧器压力升高应如何处理?

除氧器压力升高应做如下处理:

(1)检查凝结水至除氧器自动补水调整门是否失灵,如 失灵应倒为手动调整,或开启补水旁路门增加进水量。

(2)检査进汽调整门开度是否正常,必要时可改手动调整。(3)检查各高压加热器水位是否正常,以防止高压抽汽 从髙压加热器疏水管直接进人除氧器。

(4)当除氧器压力高达安全门动作值,安全门应动作,否则应立即开启电动排汽门,关闭除氧器进汽门,切除髙压加 热器汽侧。

163.除氧器压力降低应如何处理?

除氧器压力降低应做如下处理:

(1)若是由补水量过大,引起除氧器压力降低,此时应减少补水量。(2)若是进汽调整门自动调节失灵,应改手动调整。(3)如供汽压力太低,可井用母管汽源。

(4)若各低压加热器疑结水旁路门不严或误开,应设法关闭,提高凝结水温度。(5)若低压加热器汽侧停用,应投用低报加热器汽侧。

(6)若除氧器电动排汽门误幵,应检查关闭。

164.除氧器水位升高应如何处理?

除氧器水位升髙应做如下处理:

(1)检査核对水位计指乐是否正确。

(2)查看补水量是否过大,控制除氧器补水。

(3)根据检查发现的原因,采取相应措施,需要时可开放水门,降低除氧器水位。

165.除氡器水位降低应如何处理?

除氧器水位降低应做如下处理:

(1)检查核对水位计指示是否正确。

(2)若稳压水箱水位过低,补水量过少,应联系化学,增 开除盐水泵,提髙除盐水母管压力,增大补水量,保持正常 水位。

(3)检查除氧器放水门是否误幵,疏水泵至除氧器进水门是否误幵,如误开应关闭。

(4)通知锅炉运行人员,检査给水系统是否泄漏,或有关阀门误开,省煤器管、水冷壁管、再热器管、过热器管是否爆破。(5)水位降至1500mm,开启疏水泵紧急补水(注意轴封供汽压力)。

166.给水含氣量不合格应如何处理?

给水含氧量不合格应做如下处理:

(1)若除氧器逬汽量不足,给水温度未达到饱和温度,应增加进汽量。(2)若补水不均匀,给水箱水位波动引起加热不均,应均匀补水。

(3)若除氧器进水温度低,凝结水含氧量不合格,应提高进水温度和采取措施使凝结水含氧量合格。

(4)若除氣器排汽阀门开度过小,应调整开度。

(5)若给水泵取样不当或取样管漏气,应改正取样方式。(6)若除氧器凝结水雾化不好,应联系检修。

167.除氧器降压、降温消除缺陷应如何处理?

除氧器降压、降温消除缺陷应做如下处理:

(1)联系电气降负荷(不同型号的机组所降负荷不同)。

(2)停用高压加热器,关闭高压加热器至除氧器疏水门,若高压如热器进汽门不严,用水控电磁阀关闭相应抽汽逆止门。打开逆止门后疏水门。

(3)眹系锅炉运行人员停用连续排污扩容器,关闭连续排污扩容器至除氧器的隔离门,检査除氧器再沸腾门应关闭。

(4)与邻机并用四段抽汽(或三段抽汽)母管。(5)轴封汽由除氧器汽平衡管切换至母管供给。

(6)联系电气运行人员逐渐降低机组负荷,主蒸汽温度力求维持在较高水平。(7)逐渐关闭除氧器进汽调整门和四

(三)段抽汽至四

(三)段抽汽母管隔离门及四

(三)段抽汽电动门。

(8)除氧器珏力降至0.29~0.34MPa时,温度降至140~146℃左右,停#4低压加热器。

(9)除氧器压力降至0.19~0.24MPa时,温度125~130℃时,停用#3低压加热器。

(10)除氧器压力降至0.1MPa,温度115~120℃时,可 适当开启#2低压加热器凝结水旁路门,使低压加热器出口温度控制在80℃左右。

(11)停用低压加热器疏水泵,低压如热器疏水疏至多级口形管人凝汽器。(12)除氧器内压力降至“0”,温度降至95℃以下时,即可通知检修消除缺陷。(13)低压加热器应逐级依次停用,除氧器压力不可降低太快,否则引起除氧器内汽水共腾。

(14)控制除氧器内的温降不超过1℃/min。

168.除氧器消除缺陷后的恢复应如何操作?

除氧器消除缺陷后的恢复操作如下:

(1)关闭#2低压加热器凝结水旁路门。

(2)开启#

3、#4低压加热器进汽电动门,疏水逐级自流。

(3)开启低压加热器疏水泵,关闭#2低压加热器至多级口形管疏水门。

(4)开启四

(三)段抽汽电动门及四

(三)段抽汽至四(三)段级抽汽母管隔离门。

(5)通知汽轮机运行人员开启除氧器进汽调整门。(6)投用高压加热器,关闭排地沟疏水门。

(7)联系电气及锅炉运行人员,逐渐增至原负荷。

(8)除氧器压力至0.39MPa以上,给水箱温度在150 ℃以上,切换轴封汽源,由汽平衡管供汽。

(9)联系锅炉运行人员,投用连续排污扩容器,开启连续排污扩容器至除氧器隔离门。

169.运行中怎样判断高压加热器内部水侧泄漏?

判断髙压加热器内部水侧泄漏,可由以下几方面进行分 析判断:

(1)与相同负荷比较,运行工况有下列变化: ①水位升高或疏水调整门开度增加(严重时两者同时出现);②疏水温度下降;③严重时,给水泵流量增加,相应高 压加热器内部压力升髙。(2)倾听高压加热器内部有泄漏声。从以上几种现象可以清楚地确定髙压加热器内部水侧泄 漏,高压加热器内部水侧泄漏,应停用该列高压加热器,以 免冲坏周围的管子等内部设备。

170.高压加热器紧急停用的条件有哪些?

高压加热器紧急停用的条件有:

(1)汽水管道及阀门爆破,危及人身及设备安全时。

(2)任一加热器水位升高,经处理无效时,或任一电接点水位计,石英玻璃管水位计满水,保护不动作。

(3)任一高压加热器电接点水位计和石英玻璃管水位计同时失灵,无法监视水位时。

(4)明显听到高压加热器内部有爆炸声,高扭加热器水位急剧上升。

171.高压加热器紧急停用应如何搡作?

高压加热器紧急停用操作如下:

(1)关闭有关高压加热器进汽门及逆止,并就地检查在关闭位置,(2)将高压加热器保护打至“手动”位置。开启高压加热器旁路电动门。关闭高压加热器进出口电动门,必要时手摇电动门直至关严。(3)开启髙压加热器危急疏水电动门。

(4)关闭髙压加热器至除氧器疏水门,待髙压加热器内部压力泄至0.49MPa以下时,幵启高压加热器汽侧放水门。

(5)其他操作按正常停高压加热器操作。

172.高压加热器水位升高的原因有哪些?

高压加热器水位升高的原因有:(1)钢管胀口松弛泄漏。

(2)髙压加热器钢管折断或破裂。

(3)疏水自动调整门失灵,门芯卡涩戍脱落。

(4)电接点水位计失灵误显示。

173.高压加热器水位升高应如何处理?

髙甩加热器水位升高应做如下处理:(1)核对电接点水位计与石英玻璃管水位计。

(2)手动开大疏水调整门,査明水位升高原因。

(3)髙压加热器水位高至山300mm报警时,自动疏水调整门应自动开足,值班人员应严密监视髙压加热器运行情况。

(4)高压加热器水位高至500mm,关闭高压加热器进汽电动门。

(5)高压加热器水位升高至700mm时,高压加热器保护应动作,自动开启高压加热器危急疏水电动门,给水走液动旁路。关闭至除氧器疏水电动门,有关抽汽逆止门,自动切除高压加热器。如保护失灵,应按高压加热器紧急停用处理。(6)开启有关抽汽逆止门后疏水门。(7)完成停用高压加热器的其他操作。

174.为防止锅炉断水,高压加热器起、停应注意哪些问题?

髙压加热器进、出水门从结构上来讲,进口阀与旁路阀位于同一壳体内,且公用一只阀芯,二者合并一起称之为联成阀。出口阀实际上是一个逆止阀,靠给水压力将门芯顶开或压下,因此投用高压加热器时,先开出水电动门,后开进 水电动门,确认进、出口电动门开启时,再关闭其旁路电动门。停用髙压加热器时,确认旁路电动门全开后,先关进水门,后关出水门。

175.凝结水硬廑增大应如何处理?

凝结水硬度增大应做如下处理:

(1)开机时凝结水硬度大,应加强放水。(2)关闭备用射水抽气器的空气门。

(3)检查并手摸机组所有负压放水门关闭严密。

(4)将停用中的中继泵冷却水门关闭,将凝结水至中继泵的密封水门开大。(5)确认凝汽器铜管轻微泄漏,应立即通知加锯末,停用胶球清洗装置。(6)凝结水硬度较大,应立即就地取样(取样筒应放水冲洗三次以上),送化学车间检验,以确定哪台凝汽器铜管漏,以便分析隔离。

176.机组运行和维护中,防寒防冻的措施有哪些?

机组运行和维护中,防害防冻措施有:

(1)机组正常运行中,当汽温降至零下31℃以下时,各 400V备用动力设备,应间隔2h启动一次,正常后仍停下备用。

(2)疏水箱祌水门调整开度,既保持有水流动,又不能溢流太大或水位太低。(3)汽轮机房的门、窗应关闭严密。

(4)机组小修时,各水箱(如除氧器水箱、射水箱、水冷箱、凝汽器及各加热器)均应放水,各泵体也应放水,无放水门的请检修人员拆除一侧盘根放水。(5)机组临修,短时间内需开机而不准放水的,能运行的设备(如循环水泵,工业水泵、水冷泵等)尽量保持一台运行,保证系统内有水流动,本体管道疏水应全开。如锅炉有压力,则通锅炉的疏水应等压力泄到零后开启。

(6)凝汽器灌水查漏应尽量避免夜间进行,灌水、查漏、放水应连续进行,以免冻裂铜管及管板。

(7)机组仪表管或其他管道、阀门冻结,需化冻时仍应执行工作票制度。(8)各级值班人员应加强巡回检查,对因防冻而变更运行方式,操作情况应记人运行日志。

第四篇:汽轮机典型事故及预防

汽轮机典型事故及预防

第一节汽轮机事故处理原则和一般分析方法

电力工业的安全生产,对国民经济和人民生活关系极为密切,发电设备的事故,不但对本企业造成严重的损失,而且直接影响工农业生产。随着单机容量的不断增大,大型机组的安全运行,对电力系统具有举足轻重的影响。近年来大型机组严重的设备损坏事故时有发生。因此大力开展汽轮发电机组的反事故演习,仍然是一项非常迫切的任务。

汽轮机设备损坏,是电力系统五大恶性事故(即全厂停电、大面积停电,主要设备损坏、火灾、人身死亡)之一。汽轮机设备一旦发生重大损坏事故,就需相当长的检修时间才能恢复发电。能否避免严重的设备损坏事故以及减轻设备损坏的严重程度,则和设备检修技术、运行技术以及运行人员对事故判断和处理方法正确与否有直接的关系。运行人员一定要把安全放在首位,要有高度的责任心,在值班期间应按规定的时间和项目进行认真的巡回检查,及时地发现问题并有效地解决,做到以防为主。运行人员还应加强运行分析工作,防患于未然。一些事故在发生前已有明显的征兆,如能及时地发现和处理,就可以避免或大大减少损失,如果因缺乏运行分析而不能及时发现,就会酿成严重的设备损坏事故。运行人员要求熟练地掌握设备的结构和性能,熟悉系统和有关事故处理规定,经常做好事故预想,一旦发生设备故障,能够迅速准确地判断和处理。在处理事故时,应注意以下几项原则。

(1)在事故发生时切忌主观、片面,应根据有关表计指示、信号以及机组对外部征兆进行综合分析,并尽可能及时地向班长、值长汇报,以便统一指挥。如果班长、值长不在事故现场,应根据运行规程有关规定,及时进行处理。如已达到紧急故障停机条件,可不请示领导,立即破坏真空紧急停机。在紧急情况下,如不能果断地处理而逐级请示,就会廷误时间,造成事故扩大。一般地说,在电网容量较大的情况下,个别机组停运不会对电网造成很大的危害。相反,若主设备特别是高压大容量汽轮发电机组严重损坏,长期不能修复,对整个电力系统稳定运和的影响是严重的,所以要力求设备的安全,在紧急情况下要果断地按照规程规定打闸停机,切不可存在侥幸心理,拖延处理时间,造成事故扩大。

(2)在事故处理中要坚守岗位,沉着冷静,抓住重点进行操作处理,不要急躁慌乱,顾此失彼,以致误操作而扩大事故。

(3)机组发生故障时,值班人员必须首先解除对人身和设备安全有威胁的系统,同时应注意保持维护非事故设备的安全运行,并加强对公用系统的监视和调整,根据电网频率,是当地增加非事故机组的出力,尽量保持系统运行稳定。在事故处理结束后,应抓紧时间立即进行深入细致的调查,以便正确确定事故发生的原因,制定有关防范技术措施,防止再次发生类似事故,并确定事故责任。在电厂中,事故调查工作的特点是时间紧迫,在事故发生后,为了满足工农业用电的急需,减少事故所造成的损失,往往要组织抢修,尽早地恢复事故设备的工作能力。这样就在求在很短的时间内完成大量的调查研究工作,进行细致的客观的分析,避免得出可能错误的结论。

然而事故的真正原因往往不能轻而易举地作出准确的判断,这是因为一方面造成某本个设备或零部件的损坏可能由多种原因造成,如汽轮机的异常振动,往往需要进行大量的试验研究工作才能最后确定事故的原因;另一方面由于发生事故引起的二次性设备损坏,使因果关系混淆,例如叶片组的围带拉金断落会引起叶片的断裂,叶片的断裂也会引起围带的飞脱。尤其是在事故发生后判断错误,廷误了时间,造成事故扩大以致造成设备的严重损坏时,要确定引起事故的真正原因,就更加困难。而对于制定有效的防范类似事故发生措施来说,正确地确定事故的原因是非常重要的。

下面仅从技术角度,讨论一下汽轮机事故的一般分析方法和程序,供事故分析时参考。

(1)在事故发生后,根据运行班长、值长的报告的现场记录以及现场可以看到的事故范围,判断确定事故的性质、需要进一步检查的项目和调查组织范围,并由现场条件作出初步的结论。

(2)抓紧时间向有关人员了解情况,主要向当事人以及能够提供有价值情况的其他人员了解、收集有关事故的各种资料。

在消除了事故后,立即向有关人员了解有关事故发生、发展经过的感性材料,而不急于了解事故发生的原因、后果以及各种推测和见解。重点地调查确定如下各项内容:

1)事故象征最早发生的时间; 2)事故特征和发展变化过程; 3)各种现象变化之间的时间间隔; 4)事故当时所采取的措施。

事故发生和处理以后,当班的值班人员和其他有关人员应立即分别写出事故的原始情况以及处理的经过。

(3)事故发生后,对事故现场和设备损坏情况,应立即组织调查记录,必要时拍下照片或绘出草图。需要紧急恢复运行或进行抢修者,必须经安全监察部门或有关领导同意。未经调查和记录的事故现场,不得任意变动。

(4)收集有关运行资料,如操作记录簿,运行日记,运行记录报表,记录或仪表的记录纸带或曲线图,以及汽、水、油的分析化验资料等。这些资料应包括事故发生前的一段时间,事故发生的当时和事故处理期间的全过程。

通过分析这些资料,确定事故发生的时间和事故扩大的先后顺序,一般比运行人员提供的情况更可靠。

(5)根据以上的情况和资料,进行综合分析,最后确定最初的事故征兆出现的时间和性质,以及有事故发生、发展、变化处理的时间先后顺序,当运行人员提供的情况和记录仪表反映的情况不一致时,应以仪表记录资料为准。根据记录纸带一般可以确定出主汽阀动作、汽轮机负荷突变、进汽中断、新蒸汽压力、温度以及真空变化情况,并根据这些记录资料,对照检查事故的时间顺序。

(6)以设备的零部件进行解体检查,注意检查解体后破损部件的初始形象、相互位置,作好记录,以便再对破损部件情况检查。设备检查应围绕以下目的和要求进行:

1)初步确定破坏程度和造成损坏的技术上的原因。这是分析事故最关键的一环,往往

也是最困难的一项工作。

2)确定设备损坏的次序和互相影响的因果关系。3)破损部件对其他部件带来的影响和可能存在的问题。4)查明整个机组损坏的程度和修复项目。

在解体检查时,应注意断裂表面的性质,是疲劳断裂还是机械损伤,有无塑性变形,断口是否磨损和侵蚀,各紧固部件之间是否发生位移,汽缸是否存在积水和水刷的痕迹。注意保护好断口,以便以后做进一步的微观分析检查。

通过检查编制出设备损坏情况一览表,并附上必要的照片和草图,标明事故部件和断口的相对位置。

(7)根据需要对破损零部件进行强度检验、材料试验、断口微观分析检查并提出书面报止日。

(8)由上述检查试验所得到的资料,经过综合分析,最后确定事故的原因。如果不能得到事故的肯定原因,则应全面地考虑引起事故的各种可能性,然后再将那些与事故经过的特征相矛盾的设想原因淘汰。为了最后确定事故原因,有时还需要检查汽轮机运行的历史情况、检修记录以及安装记录,所以平时做好准确的记录和注意整理历史资料是非常重要的。

有些事故要在修复的过程中或修复后的试验检查中才能最终确定真正的原因,所以在分析各种原因时,一定要考虑到客观上的可能性,以免贻误检查和修复的时机,拖长事故的分析时间。

(9)在拟定汽轮机修复措施时,要注意零部件可能存在的内伤以及可能引起的后果,对于不能确保安全的零部件,最好更换备品。如果缺乏必要的备件,必须重新使用残缺的部件时(如叶片、轴承以及传动零部件),应制定安全监督措施,并作好计划限期更换。

(10)根据事故的原因,分析事故的教训,制定出防止类似事件的技术措施。最后按规定写出事故调查报告,报告内容一般应包括: 1)汽轮机设备和损坏部件的技术特性。

2)按照事故发生、发展、处理的时间顺序写出事故经过。3)设备损坏事故和有关检查试验情况。

4)对事故原因和发展过程的分析意见,包括对运行人员事故处理的评价。5)事故原因的最后结论。如果事故原因暂不能完全肯定,应根据可能的推断以及进一步试验分析的意见,确定出事故责任人。6)事故后的修复情况和修复后的设备运行情况。

7)通过类似事故分析得到的教训,包括对防止类似事件的安全措施,对现有规程以及对设备运行维护的评价。第二节 常见事故

一、轮机真空下降 汽轮机运行中,凝汽器真空下降,将导致排汽压力升高,可用焓减小,同时机组出力降低;排汽缸及轴承座受热膨胀,轴承负荷分配发生变化,机组产生振动;凝汽器铜管受热膨胀产生松弛、变形,甚至断裂;若保持负荷不变,将使轴向推力增大以及叶片过负荷,排汽的容积流量减少,末级要产生脱流及旋流;同时还会在叶片的某一部位产生较大的激振力,有可能损伤叶片。因此机组在运行中发现真空下降时必须采取如下措施:

1)发现真空下降时首先要对照表计。如果真空表指示下降,排汽室温度升高,即可确认为真空下降。在工况不变时,随着真空降低,负荷相应地减小。

2)确认真空下降后应迅速检查原因,根据真空下降原因采取相应的处理措施。

3)应启动备用射水轴气器或辅助空气抽气器。”

4)在处理过程中,若真空继续下降,应按规程规定降负荷,防止排汽室温度超限,防止低压缸大气安全门动作。

汽轮机真空下降分为急剧下降和缓慢下降两种情况。

(一)真空急剧下降的原因和处理 1.循环水中断 循环水中断的故障可以从循环泵的工作情况判断出。若循环泵电机电流和水泵出口压力到零,即可确认为循环泵跳闸,此时应立即启动备用循环泵。若强合跳闸泵,应检查泵是否倒转;若倒转,严禁强合,以免电机过载和断轴。如无备用泵,则应迅速将负荷降到零,打闸停机。循环水泵出口压力、电机电流摆动,通常是循环水泵吸入口水位过低、网滤堵塞等所致,此时应尽快采取措施,提高水位或清降杂物。如果循环水泵出口压力、电机电流大幅度降低,则可能是循环水泵本身故障引起。如果循环泵在运行中出口误关,或备用泵出口门误门,造成循环水倒流,也会造成真空急剧下降。

2.射水抽气器工作失常 如果发现射水泵出口压力,电机电流同时到零,说明射水泵跳闸;如射水泵压力.电流下降,说明泵本身故障或水池水位过低。发生以上情况时,均应启动备用射水磁和射水抽气器,水位过低时应补水至正常水位。3.凝汽器满水 凝汽器在短时间内满水,一般是凝汽器铜管泄漏严重,大量循环水进入汽侧或凝结水泵故障所致。处理方法是立即开大水位调节阀并启动备用凝结水泵。必要时可将凝结水排入地沟,直到水位恢复正常。铜管泄漏还表现为凝结水硬度增加。这时应停止泄漏的凝汽器,严重时则要停机。如果凝结水泵故障,可以从出口压力和电流来判断。

4.轴封供汽中断 如果轴封供汽压力到零或出现微负压,说明轴封供汽中断,其原因可能是轴封压力调整节器失灵,调节阀阀芯脱落或汽封系统进水。此时应开启轴封调节器的旁路阀门,检查除氧器是否满水(轴封供汽来自除氧器时)。如果满水,迅速降低其水位,倒换轴封的备用汽源。

(二)真空缓慢下降的原因和处理 因为真空系统庞大,影响真空的因素较多,所以真空缓慢下降时,寻找原因比较困难,重点可以检查以下各项,并进行处理。1.循环水量不足 循环水量不足表现在同一负荷下,凝汽器循环水进出口温差增大,其原因可能是凝汽器进入杂物而堵塞。对于装有胶球清洗装置的一机组,应进行反冲洗。对于凝汽器出口管有虹吸的机组,应检查虹吸是否破坏,其现象是:凝汽器出口侧真空到零,同时凝汽器入口压力增加。出现上述情况时,应使用循环水系统的辅助抽气器,恢复出口处的真空,必要时可增加进入凝汽器的循环水量。凝汽器出人口温差增加,还可能是由于循环水出口管积存空气或者是铜管结垢严重。此时应开启出口管放空气阀,排除空气或投入胶球清洗装置进行清洗,必要时在停机后用高压水进行冲洗。

2.凝汽器水位升高 导致凝汽器水位升高的原因可能是凝结水泵入口汽化或者凝汽器铜管破裂漏入循环水等。凝结水泵入口汽化可以通过凝结水泵电流的减小来判断,当确认是由于此原因造成凝汽器水位升高时,应检查水泵入口侧兰盘根是否不严,漏入空气。凝汽器铜管破裂可通过检验凝结水硬度加以判断。

3.射水抽气器工作水温升高 工作水温升高,使抽气室压力升高,降低了抽气器的效率。当发现水温升高时,应开启工业水补水,降低工作水温度。

4.真空系统漏人空气真空系统是否漏入空气,可通过严密性试验来检查。此外,空气漏入真空系统,还表现为凝结水过冷度增加,并且凝汽器端差增大。

二、汽轮机超速 汽轮发电机组是在高速下工作的精密配合的机械设备,汽

轮机作为原动机,具有强大的动力矩,在运行中调节系统一旦失灵。就可能使汽轮机转速急剧升高,转子零件的应力将达到不允许的数值,可能使叶片甩脱、轴承损坏、转子断裂,甚至整个机组报废。因此,汽轮机超速是对人身安全和设备危害极大的恶性事故。为了防止汽轮机超速,在设计时考虑了多道保护措施,但汽轮机超速事故仍不能完全避免,其主要原因如下。

调节系统有缺陷

1)调速汽门不能正常关闭或关闭不严;

2)调节系统迟缓率过大或调节部件卡涩;

3)调节系统动态特性不良;

4)调节系统整定不当,如同步器调整范围、配汽机构膨胀间隙不符合要求等。

(2)汽轮机超速保护系统故障

1)危急遮断器不动作或动作转速过高;

2)危急遮断器滑阀卡涩;

3)自动主汽门和调整汽门卡涩;

4)抽汽止回阀失灵,发电机跳闸后高加疏水汽化或邻机抽汽进入汽轮机。

(3)运行操作调整不当

1)油质管理不善,油中有杂质,酸价过高,汽封漏汽过大,油中进水,引起调速和保护部套卡涩;

2)运行中同步器调整超过了调整范围或调整范围过大;

3)蒸汽品质不良,造成主汽门、调整汽门结垢;

4)超速试验操作不当,转速飞升过快; 避免超速的发生,重在预防,为此应采取如下措施:(1)对调节保安系统的一般要求

1)各超速保护装置均应完好并正常投入;

2)在正常参数下调节系统应能维持汽轮机在额定转速下运行;

3)在额定参数下,机组甩去额定负荷后,调节系统应能将机组转速维持在危急保安器动作转速以下:

4)调节系统的速度变动率应不大于5%,迟缓率应小于O.2%(大机组);

5)自动主汽门、再热主汽门及调节汽门应能迅速关闭严密、无卡涩;

6)调节保安系统的定期试验装置应完好可靠。

(2)调节保安系统定期试验

1)调节保安系统定期试验是检查调节保安系统是否处于良好状态,在异常情况下是否能迅速准确动作,防止机组严重超速的主要手段之一。有关定期试验要按规定进和行。

2)新安装机组或大修后、或危急保安器解体或调整后、或停机一个月后再交启动时、或机组甩负荷试验前,应提升转速进行危急保安器动作试验。提升转速试验时,应满足制造厂对转子温度的要求。

3)机组每运行2000h后应进行危急保安器充油试验。部分200MW机组在高压缸胀差超过+3mm时进行危急保安器充油试验,可能出现危急保安器杠杆脱不开,而造成机组跳闸。4)每天进行一次自动主汽门活动试验。带固定负荷的机组,每天或至少每周进行一次负荷较大范围的变动,以活动调速汽门。装有中压调整汽门定期活动装置的机组,每天或至少每周进行一次中压调速汽门活动试验。5)每月进行一次抽汽止回阀关闭试验,当某一抽汽止回阀存在缺陷时,禁止汽轮机使用该段抽汽运行。6)大修前后应进行汽门严密性试验。7)机组安装后应与制造厂联系,取得同意后进行甩负荷试验。试验前应先进行节系统静态试验、危急保安器动作试验、汽门严密性试验、抽汽止回阀试验,并在各项试验合格后才能进行。(3)防止汽门卡涩的措施 1)汽轮机严重超速事故大多数是由于汽门卡涩等原因不能及时严密关闭而引起的。防止汽门卡涩,保证其能迅速严密关闭,是防止严重超速事故的关键。2)高、中压自动主汽门错油门下部节流旋塞应拧紧冲捻固定。3)调节汽门凸轮间隙及调节汽门框架与球形垫之间间隙应调整适当,以保证在热态时调速汽门能关闭严密,关可在热态停机后检查凸轮是否有一定间隙来核对冷态凸轮间隙是否适当。4)大修中应检查门杆弯曲和测量阀杆与套简间隙,不符合标准的应进行更换或处理。5)检修中检查门杆与阀杆套是否存在氧化皮。对较厚的氧化皮应设法清除,氧化皮厚的部位可用适当放大间隙的办法来防止卡涩。6)检修中应测量主汽门及各调节汽门预启阀行程,并检查是否卡涩。如有卡涩,必顺解体检查处理。解体时应彻底除去氧化皮,阀蝶与阀座接触部分的垢迹及氧化皮也应认真清理,并且用红丹油作接触检查。7)蒸汽品质应符合要求,防止门杆结垢卡涩。8)阀座松动、抬起、导致门杆跳动,甚至运行中门杆断裂。(4)对油系统的要求 1)调速部套油系统管道中的铸造型砂等杂物应彻底清理干净。2)机组安装时油系统的施II艺与油循环要求应符合(84)基火字第145号文《汽轮发电机油系统施II艺暂行规定》的要求。3)润滑油中可添加防锈剂,检修时调节部套可在防锈母液中浸泡24h,以提高防锈效果。4)为防止大量水进入油系统,应采用不易倒伏的汽封型式。汽封间隙应调整适当,汽封系统设计及管道配置合理,汽封压力自动调节正常投入。5)前箱、轴承箱负压不宜过高,以防止灰尘及水、汽进入油系统。一般前箱、轴承箱负压以12~20mm水柱为宜(或轴承室油档无油及油烟喷出即可)。

地板

发表于 2007-4-30 20:16 | 只看该作者

三、汽轮机水冲击 水或冷蒸汽进入汽轮机,可能造成设备严重损坏。水冲击将造成叶片的损伤、动静部分碰磨、汽缸裂纹或产生永久变形,推力轴承损坏等。对此,设计和运行部门必须高度重视。关于汽轮机进水事故,应以预防为主,若运行中一旦发生,必须采取迅速果断的措施进行处理。下面根据水或冷汽的来源分别进行讨论。1.来自锅炉及主蒸汽系统 由于误操作或自动调整装置失灵,锅炉蒸汽温度或汽包水位失去控制,有可能使水或冷蒸汽从锅炉经主蒸汽管道进入汽轮机。严重时会使汽轮机发生水冲击。汽轮机进水时,必须迅速破坏真空,紧急停机,并开启汽轮机本体和主蒸汽管道上的疏水门,进行疏水。凡因水冲击引起停机时,应正确记录转子惰走时间及惰走时真空变化。在惰走过程中仔细倾听汽轮机内部声音,检查窜轴表指示及推力瓦块和同油温度。对于中间再热机组,因主蒸汽温度下降发生水击时,由高压缸进水,就使得负轴向推力增大,所以要重点监视非工作瓦块金属温度。在滑参数启动和停机过程中,由于某种原因调速汽门突然关小,造成汽压升高,则可能使蒸汽管积水。在滑参数停机时,如果降温速度太快而汽压没有相应降低,使蒸汽的过热度很低,就可能在管道内产生凝结水,到一定程度,积水就可能进入汽轮机。2.来自再热蒸汽系统 再热蒸汽系统中通常设有减温水装置,用以调节再热蒸汽温度。水有可能从再热蒸汽冷段反流到高压缸或积存在冷段管内,其现象是:冷段止回阀法兰冒白汽,高压外缸下缸金属温度降低。发生上述现象时,应立即通知锅炉人员将减温水门关闭。1给旁路减温水未关严,会造成同上述情况一样的后果。对再热蒸汽热段,如果疏水管径太小,启动时疏水不畅,也会造成汽轮机进水。3.来自抽汽系统 水或冷蒸汽从抽汽管道进入汽轮机,多数是加热器管子泄漏或加热器系统故障引起。其现象是:某台加热器水位升高,加热器汽侧压力高于抽汽压力,壳体或管道有水冲击声,抽汽止回阀门杆冒白汽或溅水滴,胀差向正值发展。发现上述情况时,首先开大加热器疏水调节阀。如果确认加热器泄漏,立即将其停止。另外,若除氧器漏水,水可能从抽汽、门杆漏汽倒入汽缸。4.来自轴封系统 汽轮机启动时,如果汽封系统暖管不充分,疏水将被带人汽封内。事故情况下,当切换备用汽源时,轴封也有进水的可能。在正常运行中,轴封供汽来自除氧器的机组,若除氧器满水时,轴封就要带水,轴封加热器满水也有可能使水倒入轴封。发现轴封进水时,应立即开启轴封供汽管道的疏水阀,适当控制进汽量,检查除氧器水位、轴封抽汽器水位、轴封抽风机运行情况,分别进行处理。5.来自凝汽器 凝汽器灌水而进入汽轮机的事故曾多次发生。在汽轮机正常运行时,凝汽器水位是受到重视的,而且水位升高会严重影响真空,所以在汽轮机正常运行时,凝汽器水位一般不会灌人汽缸。但在停机以后,往往忽视以凝汽器水位的监视。如果进入凝汽器的补水阀关闭不严,就会使水灌入汽缸,造成水击。6.来自汽轮机本身疏水系统 从疏水系统向汽缸返水,多数是设计方面的原因造成的。如果不同压力的疏水接到一个联箱上,而且泄压管的尺寸又偏小,这样压力大的漏水,就有可能从压力低的管道进入汽缸。这时的事故现象,首先表现为上、下缸温差增大,继而使汽缸变形,动静部分发生碰磨。汽轮机进水进冷蒸汽的可能性是多方面的,根据不同机组的热力系统,还会有其他水源进入汽轮机的可能性,所以运行人员要根据具体情况进行分析。为了预防发生水冲击,在运行维护方面着重采取以下措施: 1)当主蒸汽温度和压力不稳定时,要特别注意监视,一旦汽温急剧下降到规定值,通常为直线下降50℃时,应按紧急停机处理。2)注意监视汽缸的金属温度变化和加热器、凝汽器水位,即使停机后也不能忽视。如果发觉有进水危险时,应立即查明原因,迅速切断可能进水的水源。3)热态启动前,主蒸汽和再热蒸汽要充分暖管、保证疏水畅通。4)当高压加热器保护装置发生故障时,加热器不以投入运行。运行中定期检查加热器水位调节装置及高水位报警装置,应保证经常处于良好状态。加热器管束破裂时,应迅速关闭抽汽管上相应的进汽门及止回阀。5)在锅炉熄火后蒸汽参数得不到保证的情况下,不应向汽轮机供汽。6)对除氧器水位加强监督,杜绝事故发生。7)滑参数停机时,汽温、汽压按着规定的变化率逐渐降低,保持必要的过热度。8)定期检查再热蒸汽和I、Ⅱ级旁路的减温水阀的严密性,如发现泄漏应及时检修处理。9)只要汽轮机在运转状态,各种保护就必须投入,不准退出。10)运行人员应该明确,汽轮机在低转速下进水,对设备的威胁更大,此时尤其要注意监督汽轮机进水的可以能性。

四、轴承损坏 轴承损坏事故,主要针对汽轮发电机组的推力轴承和支持轴承而言。现分述如下。(一)推力轴承烧损的原因及处理原则 如果仅仅是推力轴承烧损,则常常是和轴向位移事故联系在一起的。当正向或负向推力超过推力瓦承载能力时,或推力瓦油膜破坏时,都将发生推力瓦烧损事故。造成推力瓦烧损的原因一般有以几个方面: 1)汽轮机发生水击或蒸汽温度下降处理不当。2)由于蒸汽品质不良,叶片结垢。3)机组突然甩负荷或中压缸汽门瞬间误关。4)油系统进入杂质,使推力瓦油膜破坏。推力瓦烧损的事故主要表现为轴向位移增大,推力瓦乌金温度及回油温度升高,外部象征是推力瓦冒烟。当发现轴向位移逐渐增加时,应迅速减负荷使之恢复正常,特别注意检查推力瓦块金属温度和回油温度,并经常检查汽轮机运行情况和倾听机组有无异音,测量振动。(二)支持轴承烧损的原因及处理 支持轴承烧损的原因主要是润滑油压降低,轴承断油,个别是情况也有电流击穿油膜,油质不良或油温过高,使油膜破坏。轴承断油的原因如下: 1)运行中进行油系统切换时发生误操作,而对润滑油压未加强监视,使轴承断油,造成烧瓦。2)机组定速后,停调整速油泵时未注意监视油压,射油器因进空气而工作失常,使主油泵失压,润滑油压降低而又未联动,几个因素合在一起,使轴承断油,造成群瓦烧损。3)油系统积存在大量空气未及时排除,使轴瓦瞬间断油。4)汽轮发电机组在启动和停止过程中、高、低压油泵同时故障。5)主油箱油位降到零以下时,空气进入射油器,使油泵工作失常。6)厂用电中断,直流油泵不能及时投入,如保险熔断,直流电源或油泵故障等。7)安装或检修时,油系统存留棉球等杂物,使油管堵塞。8)轴瓦在检修中装反,运行中移位。9)机组强烈振动,轴瓦乌金研磨损坏。轴瓦烧损的事故现象是:轴瓦乌金温度及回油温度急剧升高,一旦油膜破坏,机组振动增大,轴瓦冒烟。此时应立即手打危急保安器,解列发电机。为减轻轴瓦损坏程度,遇到下列是情况之一时,也应立即打闸停机: 1)任一轴承回油温度超过75℃或突然连续升高超过70℃。2)轴瓦乌金温度超过90℃。3)润滑油压下降到O.04Mpa,启动交、直流油泵无效。为防止轴瓦烧损,应采取如下技术措施: 1)为保证油泵和联动装置的可靠性,润滑油泵的电源必须可靠,调速油泵和交流润油泵的电源由两段厂用电分供,以防两台油泵同时失去电源。机组运行中,高压油泵、交流油泵、直流油泵和低油压保护装置应定期进行试验,保证可靠好用。在每次机组启动前,要进行油压联动试验。在正常停机前要先试验交、直流油泵,确认其良了后,再进和停机。直流润滑油泵和直流密封油泵故障应及时修复。直流润滑油泵电源保险丝,在许可的情况尽量选用较高等级。机组大、小修后,均应进行直流油泵的带负荷启动试验。调速油泵和润滑油泵工作失常时,按下述原则处理:在汽轮机启动过程中,调速油泵发生故障时,应迅速启动交流润滑油泵,停止故障油泵,并停止汽轮机的启动。打闸停机过程中,交流润滑油泵发生故障时,应迅速启动直流油泵,继续停机。停机时发现交、直流润滑油泵都故障时,应保持主机在正常下继续空负荷运行,直到一台油泵修复为止,此时故障泵应设法迅速立即修复。2)为防止油系统切换时发生误操作,冷油器油侧进、出油门应有明显的禁止操作的警告牌。在进行油系统操作时,如串联与并联运行方式的切换,投入备用冷油器或滤油器等必须按事先填好的操作票逐项进行,并注意将容器内的空气排净。操作时由汽轮机运行负责人监护,操作人与司机密切配合,注意监视油压、油温、油流。机组启动前向系统供油时,应首先启动交流润滑油泵,缓慢开出口门,通过充油门排除调速系统积存的空气,然后再启动调速油泵。在启动盘车前,要确认油压、油温、油流正常。3)机组启动定速后,停用调速油泵时,要缓慢地关闭出口门,设专人监视主油泵出口油压和润滑油压的变化。发现油压降低时,立即通知操作人员开启油泵出口门,查明原因,采取相应措施。4)安装或检修时,对有可能发生位移的瓦胎,应加止动装置。切实防止轴瓦位置装错油孔不对,加堵板不拆或有棉纱布等杂物留在油系统内。5)汽轮机轴承应装有防止轴电流的装置,保证轴瓦乌金温度及润滑油系统内各油温测点指示准确。

五、通流部分动静磨损 中间再热式汽轮机,参数高、容量大、汽缸数目多,又有内外缸之分,因此汽缸和转子的膨胀关系比较复杂。汽轮机通流部分的磨损,一般发生在机组启、停和工况变化时,产生磨损的主要原因是:汽缸与转子不均匀加热和冷却;启动与运行方式不合理;保温质量不良及法兰螺栓加热装置使用不当等。动静部分在轴向和径向磨损的原因,往往很难绝对分开,但仍然有所区别。在轴向方面,沿通流方向各级的汽缸与转子的温差并非一致,因而热膨胀也不同。在启动、停机和变工况运行时,转子与汽缸膨胀差超过极限数值,使轴向间隙消失,便造成动静部分磨损,在消失的时候,便产生汽封与转子摩擦,同时又不可避免地使转子弯曲,从而产生恶性循环。另外,机组振动大和汽封套变形都会引起径向摩擦。通流部分磨损事故的征象和处理如下:转子与汽缸的相对胀差表指示超过极值或上下缸温差超过允许值,机组发生异常振动,这时即可确认为动静部分发生碰磨,应立即破坏真空紧急停机。停机后,如果胀差及汽缸各部温差达到正常值,方可重新启动。启动时要注意监视胀差和温度的变化,注意听音和监视机组的振动。如果停机过程转子惰走时间明显缩短,甚至盘车启动不起来,或得盘车装置运行时有明显的金属摩擦声,说明动静部分磨损严重,要揭缸检修。为了防止通流部人磨损,应采取如下措施: 1)认真分析转子和汽缸的膨胀关系。2)在启动、停机和变工况下,加强对胀差的监视。3)在正常运行中,由于某种原因造成锅炉熄火,应根据蒸汽参数下降情况和胀差的变化,将机组负荷减到零。4)合理调整通流部分间隙。5)防止上下缸温差过大和转子热弯曲,以防振动过大等。6)正确使用汽封供汽、防止汽封套变形。7)调整节级导流环必须牢固可靠,保证挂耳的焊接质量。

六、汽轮机叶片损坏 汽轮机发生的事故中,由于叶片的损坏而导致的事故占主要部分。所谓叶片事故,通常指叶片的断裂,拉金和围带断裂,铆头断裂以及叶轮损坏等。叶片在运行中的损坏是各式各样的,引起叶片损坏的原因也是多方面的,本节介绍常见叶片事故发生时的征象、原因及预防措施。(一)叶片断落的征象 汽轮机在运行中发生叶片断落一般有下列现象: 1)汽轮机内部或凝汽器内有突然的响声,此时在汽轮机平台底层常可清楚地听到。2)机组发生强烈振动或振动明显增大,这是由于叶片断落而引起转子平衡破坏或转与落叶片发生碰撞摩擦所致。但有时叶片的断落发生在转子的中间级,发生动静部分摩擦时,机组就不一定会发生强烈振动或振动明显增大,这在容量较大机组的高、中压转子上有时会遇到。3)当叶片损坏较多而且较严重时,由于通流部分尺寸改变,蒸汽流量、调速汽阀开度监视级压力等与功率的关系部将发生变化。4)若叶片落入凝汽器,则会交凝汽器的铜管打坏,使循环水漏入凝结水中,从而表现为凝结水硬度和导电度突增。5)若机组抽汽部位叶片断落,则叶片可能进入抽汽管道,使抽汽止回阀卡涩,或进加入热器使管子损坏,导致水位升高。6)停机过程中,听到机内有金属摩擦声,惰走时间减少。7)在停机蔌升速过程中越过临界转速时,机组振动有明显的增大或变化。(二)叶片损坏的原因 叶片损坏的原因很多,但不外乎下列三个方面: 1.叶片本身的原因 1)振动特性不合格。由于叶片频率不合格,运行时产生共振而损坏者,在汽轮机叶片事故中为数不少。如果扰动力很大,甚至运行几个小时后即能发生事故。这个时间的长短,还和振动特性、材料性能以及叶片结构、制造加工质量等有关。2)设计不当。叶片设计应力过高或栅结构不合理,以及振动强调特性不合格等,均会导致叶片损坏。个别机组叶片甚薄,若铆钉应力较大,则铆装围带时容易产生裂纹。叶片铆头和围带汤裂事故发生的情况也不在少数。3)材质不良或错用材料。材料机械性能差,金属组织有缺陷或有夹渣、裂纹等,叶片经过长期运行后材料疲劳性能及衰减性能变差,或因腐蚀冲刷机械性能降低,这些都导致叶片损坏。4)加工工艺不良。加工工艺不严格,例如表面粗糙度不好,留有加工刀痕,扭转叶片的接刀处不当,围带铆钉孔或拉金孔处无倒角或倒角不够或尺寸不准确等,能引起应力集中,从而导致叶片损坏。有时低压级叶片为了防止水蚀而采用防护措施,当此措施的工艺不良时能使叶片损坏。国内由于焊接拉金或围带安装工艺不良引起的叶片事故较多,应引起重视。2.运行方面的原因 1)偏离额定频率运行。汽轮机叶片的振动特性都是按运行频率为50HZ设计的,因此电网频率降低时,可能使机组叶片的共振安全率变化而落入共振动状态下运行,使叶片加速坏和断裂。2)过负荷运行。一般机组过负荷运行时各级叶片应力增大,特别是最后几级叶片,叶片应力随蒸汽流量的增大而成正比增大外,还随该几级焓隆的增加而增大。因此机组过荷运行时,应进行详细的热力和强度核算。3)汽温过低。新蒸汽温度降低时,带来两种危害:一是最后几级叶片处湿度过大,叶片受冲蚀,截而减小,应力集中,从而引起叶片的损坏;二是当汽温降低而出力不降低时,流量热必增加,从而引起叶片的过负荷,这同何况能引起叶片损坏。4)蒸汽品质不良。蒸汽品质不良会使叶片结垢,造成叶片损坏。叶片结垢使通道减小,造成级焓降增加,叶片应力增大。另外结垢也容易引起叶片腐蚀,使强度降低。5)真空过高或过低。真空过高时,可能使末级叶片过负荷和湿度增大,加速叶片的水蚀,容易引起叶片的损坏。另外,真空过低仍维持最大出力不变时,也可能使最后几级过负荷而引起叶片损坏。6)水冲击。运行时汽轮机进水的可能性很多,特别是近代大容量再热机组,由于汽水系统相应复杂,汽轮机进水的可能性更有所增加,蒸汽与水一起进入汽轮机,产生水击和汽缸等部件不规则冷却和变形,造成动静部件碰磨,使叶片受到严重损坏。7)机组振动过大。8)起动、停机与增减负荷时操作不当,如改变速度太快,胀差过大等,使动静部分发生摩擦,导致叶片损坏。9)停机后主汽阀关闭不严而未开启疏水阀,有可能使蒸汽漏入机内,引起叶片腐蚀等。3.检修方面的原因 属于检修不当的主要原因有:动静间隙不合标准,隔板安装不当,起吊搬运过程中碰伤损坏叶片,或机内和管道内留有杂物等。新安装机组管道冲洗不干净,通流部分零件安装不牢固,运行时有型砂异物或零件松脱等,有可能打坏叶片。检修中对叶片拉金、围带等的修理要特别注意,过去曾因拉金和叶片银焊时发生过热而叶片断裂的事故为数不少,而且对这种事故的原因一般较难分析。此外,调节系统不能维持空负荷运行,危急保安器失灵,以及抽汽系统止回阀失灵,汽轮机甩负荷时发生超速,或超速试验时发生异常情况等,均能使机组严重超速而引起叶片损坏。(三)叶片事故原因的分析 引起叶片事故的原因,常常是很复杂的,而且是多方面的,但是其中必有一种因素起主要作用。分析叶片事故时应当抓住主要因素,并从以下几个方面进行考虑: 1)检查叶片损坏情况。事故发生后,应首先检查事故的范围和情况,并作好记录,然后检查断落位置及断面特征,初步分析事故的原因。2)分析运行及检修资料。检查叶片事故发生前的运行工况有无异常,如运行参数是否正常,有无超载超速及低频率运行,有无叶片结垢、腐蚀、水刷等情况。查看检修资料,检查动静间隙是否符合标准,有无重大改进和改造等,对运行和检修资料进行全面细致的分析。3)测定叶片的振动特性。根据历次振动特性试验记录进行分析,必要时进行振动特性试验,对照运行频率进行分析。叶片的振动特性数据主要为A0、B0、A1型振动频率、轮系振动频率以及Zn附近±20%的高频数据,并将历次数据进行分析比较。4)分析损坏叶片的断面性质。对叶片损坏的断面进行仔细的分析,往往能帮助我们找出叶片损坏的原因,因此这项工作很重要。5)金属材料检验分析。对叶片材料进行金相检查和材质分析,如有可能,应进行疲劳性能和衰减性能试验。6)强度核算。复核叶片几何尺寸,进行热力和强度核算,检查应力是否过大,设计制造上是否有问题。7)与同类机组进行比较。(四)防止叶片断裂事故的措施 汽轮机运行事故中,因叶片损坏而造成事故的比重很大。随着单机容量的增大,运行系统的操作更加复杂,因此叶片损坏事故并未减少。特别是大容量机组,发生水击而损坏叶片的事故更是常见。防止叶片损坏事故极为重要,除制造厂在设计和制造方面应更合理,更完善以外,运行部门还应从运行和检修等方面着手,共同采取措施,防止叶片断裂和损坏事故的发生。(1)在运行管理,特别是电网频率的管理方面,应采取以下措施: 1)电网应保持在定额频率和正常允许变动范围内稳定运行。根据叶片损坏事故的分析统计,电网频率偏离正常值是造成叶片断裂的主要原因,因此对频率的管理极为重要。2)避免机组过负荷运行,特别是防止既是低频率运行又是过负荷运行。对于机组的提高出力运行,必须事先对机组进行热力计算和对主要部件进行强度核算,并确认强度允许后才可,否则是不允许的。3)加强运行中的监视。机组起停和正常运行时,必须加强对各运行参数(例如汽压、汽温、出力、真空等)的监视,运行中不允许这些参数剧烈波动。严格执行规章制度,起停必须合理,防止动静部件在运行中发生摩擦。近年来,大容量机组不断增加,由于运行和起停操作复杂,这些机组发生水击而损坏叶片的情况为数不少。另外,由于大机组末几级使用长叶片,水蚀也是一个威胁。4)加强汽水品质监督,防上叶片结垢、腐蚀。5)经常倾听机内声音,检查振动情况的变化,分析各级汽压数值和凝结水水质情况若出现断叶征象,如通流部分发生可疑响声,机组出现异常振动,在负荷不变或相对减小情况下中间级汽压升高或凝结水硬度升高,导电度突然增大等,应及时处理,避免事故扩大。6)停机后加强对主汽阀严密性的检查,防止汽水漏入汽缸。停机时间较长的机组,包括为消除缺陷安排的工期较长的停机,应认真做好保养工作,防止通流部分锈蚀损坏。(2)在检修管理方面应采取如下措施: 1)每台汽轮机的主要级叶片,应建立完整的技术档案。2)新装机组,投运前必须对叶片的振动特性进行全面测定。对不调频叶片,要检验频率分散率;对调频叶片,除分散率外,尚需鉴定其共振安全率。对调频叶片,若发现叶片落人共振状态,应尽快采取措施,按实际情况进行必要的调整。3)检修中认真仔细地对各级叶片及其拉金、围带等进行检查。发现有缺陷或怀疑缺陷有时,应进行处理并设法加以消除。对具有阻尼拉金的叶片,要特别细心检查,必须保持阻尼拉金的完好。在检查过程中,如果怀疑叶片或叶根有裂纹,则要进行必要的探伤。目前,采用超声波探伤,不仅能检查叶片和叶轮等部件的表面有无裂纹存在,而且能对叶根在轮槽内部的部位进行探伤,检查叶根有无裂纹。4)严格保证叶片检修工艺质量。检修中除换新叶片的工艺质量必须良好以外,其他一般拉金银焊工艺、型线变化处的圆角或倒角等均应保证工艺质量良好。调换或重装叶片,应严格执行检修工艺质量标准。注意叶片铆钉头处及拉金孔处的倒角及加工粗糙度。叶根应修刮,使接触紧密,封口片应有足够的紧力。新装叶片的单片和成组频率,分散率应合格(即<8%),围带铆接应保证质量良好。5)喷嘴叶片如发现有弯曲变形,应设法校正,通流部分应清理干净,防止遗留杂物,紧固件应加松保险,以防振动脱落。6)起吊搬运时防止将叶片碰损。喷砂清洗时砂粒要细。叶片和叶轮上不准用尖硬工具修刮,更严格禁止电焊。叶片酸洗时不应将叶片冲刷过度,清洗后应将酸液清洗干净,防止腐蚀。避免用单个叶片或叶片组来盘动转子,以免将叶片弄弯。7)当发现叶片有时明显的热处理工艺不当而遗留下过大的残余应力时,应进行高温回火处理。8)发现叶片断落、裂纹和各种损伤变形,要认真分析研究,找出原因,采取措施。对损坏的叶片,行用肉眼检查有无加工不良、冲刷、腐蚀、机械损伤、扭曲变形、松动位移等异常迹象。对断落、裂纹叶片要保留实物,保护断面。仔细检查分析断口位置、形状、断面特征、受力状态等,并对照原始频率数据,作必要的测试鉴定。在叶片换装、拆卸过程中,要对叶片的制造、安装质量作出鉴定。为进一步分析损伤原因,应对断面和裂纹作出金相、硬度检验,必要时进行材料分析和机械性能试验,以确定裂纹和材质状况。对同级无外观损伤的叶片进行探伤检验,并根据损伤叶片的原因分析总结,采取相应的处理措施,防止重复发生。对受机械损作或摩擦损伤的叶片、除认真排除原因外,对可能造成应力集中的裂纹和缺口应进行整修,以防止缺陷扩大。对弯扭变形叶片的加热整形要慎重,须按材质严格控制加热温度,防止超温淬硬,必要时进行回火处理,消除残余应力和淬硬组织。对异常水刷或腐蚀造成的叶片损伤应查明原因,采取措施,消除不利因素。叶片的焊补和焊热闹必须持慎重态度,应按不同材质制定专门焊接工艺方案,通过小型试验成功后再采用。采取以上措施将能帮助我们把叶片的断事故控制在最小程度,从而提高汽轮机运行的安全性和经济性。

第五篇:一起因轴振大导致小汽轮机跳闸事故的分析与处理

一起因轴振大导致小汽轮机跳闸事故的分析与处理

摘要:随着现代火力发电机组容量的不断增加,汽动给水泵已逐渐代替电动给水泵,成为主给水泵,承担着向锅炉连续提供具有足够压力、流量和相当温度的水的重任。而小汽轮机(以下简称小机)作为汽动给水泵的驱动设备,其能否安全可靠地运行,直接关系到锅炉设备及整个发电机组的安全运行。茂名臻能热电有限公司#7机组A小机在冲转时,因轴承振动超过极限值,导致A小机在两次冲转过程中均发生跳闸事故。该文针对此次跳闸事件进行分析,并提出相应处理及整改措施。

关键词:小汽轮机 冲转 轴承振动 跳闸

中图分类号:TM73 文献标识码:A 文章编号:1674-098X(2015)02(b)-0064-02

设备概况

茂名臻能热电有限公司#7机组汽轮机为东方汽轮机厂引进日立技术生产制造的超临界压力、一次中间再热、冲动式、单轴、三缸四排汽、双背压、抽汽凝汽式汽轮机,型号为:CC600/523-24.2/4.2/1.0/566/566,最大连续出力为662MW,额定出力为600 MW。其中给水泵组系统包括两台50%容量的汽动给水泵及其驱动小汽轮机;汽动给水泵前置泵及其驱动电机;30%容量的电动给水泵。汽动给水泵组中小汽轮机的设计参数如表1。事件经过

2014年6月5日3时39分57秒,#7机组跳机,经检查是电气方面的原因引起的,处理好故障后,重新开机。

12时44分22秒,开始冲转A小机,设置升速率150r/min,冲到800 r/min时,停留5min,接着再次设置升速率150 r/min,设置目标转速1800 r/min。

12时57分47秒,转速为1316 r/min时,A小机跳闸,跳闸首出为“A小机轴振大停机”。查得A小机前轴振动X向为184 μm,超出极限值175 μm。

全面检查DCS参数及就地无异常后,13时03分23秒重新开始冲转A小机,升速率300 r/min,目标转速1800 r/min。

13时07分35秒,转速为1454r/min时,A小机再次跳闸,跳闸首出依然是“A小机轴振大停机”。查得A小机前轴振动X向为181μm。

两次冲转过程A小机转速和轴振趋势如图1。事件原因分析

(1)对润滑油油压、油温检查,A小机润滑油母管油压0.374 Mpa一直不变,油温在45 ℃左右,油质正常,因此判断润滑油不是影响轴振大的因素。

(2)冲转前,A小机汽缸上半温度220 ℃,汽缸下半温度190 ℃,绝对膨胀值为3.5 mm。上下缸温度均在热态启动参数范围内,膨胀值也正常,因此无须中低速暖机,所以排除暖机不充分的因素。

(3)查DCS记录,冲转前及冲转后在偏心仪退出前偏心值一直在42 μm左右,属正常值,说明轴振大不是由于大轴过度弯曲造成的。

(4)冲转前已经对A小机高低压进汽管道进行充分疏水暖管,冲转后A小机低压主汽门前蒸汽温度一直维持270 ℃左右,A小机调节级后蒸汽温度235 ℃左右,蒸汽压力1.0 Mpa,蒸汽温度和压力都没有大幅度波动,蒸汽过热度达55 ℃以上,因此判断A小机轴振大是由于发生水冲击的可能性较小。

(5)对轴承进行检查,发现各轴瓦温度在45~48 ℃之间,且就地用听针听各轴承位置声音比较清脆、规律,无太多的嘈杂声,所以分析因轴承损坏导致轴振大的可能性也较小。

(6)排汽温度过高会导致汽缸变形,使转子偏离中心线,造成动静摩擦,也是诱发轴振大的一个因素。经查,A小机排汽温度一直在42 ℃上下,就地检查汽缸外形及排汽管并无变形,与汽缸相连接的部件也没有发生蠕变现象,所以排除排汽温度高对A小机轴振大的影响。

(7)最后在就地反复检查,发现就地新装设的小机排汽缸减温水手动门开度很大,几乎全开。由于小机在设计时没有减温水管设计,为了防止小机冲转时因蒸汽量少导致排汽温度过高,后来在排汽缸加装了排汽缸减温水管及一个手动门。减温水喷头装设的位置较高,分析是因为减温水手动门开度过大,导致过量的减温水未经雾化直接喷射在小机转子叶片上,使转子受力不均,最后导致小机轴振大停机。处理及整改

(1)分析出是减温水手动门开度过大后,即派人先把门全关,重新开始冲转A小机,待排汽温度升高到80 ℃以上时,才稍开一点减温水手动门。经处理,A小机在冲转至前两次跳闸转速(1316 r/min、1454 r/min)时,轴振最大值处分别为10.7 μm、13.7 μm,振动明显比前两次小,最后A小机于17时21分48秒成功冲转至3100 r/min(正常运行时最低转速),检查排汽温度为45.4℃,在正常范围内。关小减温水手动门前后A小机轴振最大处数值比较如表2。

(2)打开减温水手动门时,发现只要稍开一点(大概1/20圈),排汽温度就很快从80多摄氏度降到40多摄氏度,因此分析是减温水管径过大,导致即使手动门在很小开度就会有较大量的水进入排汽缸,因此决定在减温水手动门后加装节流孔板,这样就能更好更容易地控制减温水量,具体整改如图2。结语

通过此次事故的处理及对排汽缸减温水管的整改,在以后几次的启动冲转过程中,A小机再也没有发生过因轴振大而跳闸的事故,保证了#7机组的顺利启动及安全运行。

参考文献

[1] 华东六省一市电机工程(电力)学会.汽轮机设备及其系统[M].北京:中国电力出版社,2006.[2] 王国清.汽轮机设备运行技术问答[M].北京:中国电力出版社,2003.[3] Q/MZN-103.501-2012,600MW机组集控运行规程主机部分.[4] Q/MZN-103.502-2012,600 MW机集控运行规程辅机及公用系统.

下载关于防止汽轮机大轴弯曲事故的学习交流材料(合集五篇)word格式文档
下载关于防止汽轮机大轴弯曲事故的学习交流材料(合集五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    防止汽轮机超速的防范措施(优秀范文五篇)

    防止汽轮机超速的防范措施 一、 机组停运时的防范措施 1、汽轮发电机组启停是电厂的重大操作,任何时间组织启、停机组操作时,各级管理人员(各专业工程师、发电维护部长及助理、......

    防止烫伤事故措施

    防止烫伤事故措施 1.电工、电(气)焊人员均属于特种作业人员,必须经专业技能培训,取得《特种作业操作证》。电工作业、焊接与热切割作业、除灰(焦)人员、热力作业人员必须经专业技......

    防止差错事故制度

    防止差错事故制度 一、 防止接错患者 1、到病房接患者时,凭手术患者接送单查对科室、床号、患者姓名、住院号、手术名称、手术部位及手术时间。 2、患者接到手术室后送到指定......

    如何防止踩踏事故培训(合集)

    总结大会现场人员密集,如果发生突发事件,疏散困难,容易发生人员拥挤踩踏事故,后果严重,所有演员和观众一定要遵守现场纪律,不慌不乱,为保证安全,各部门必须做好以下几点: 1)总结大会前......

    汽轮机运行所遇事故总结

    事故分析 全厂停电 事故经过 外网“盘铝线”故障,由于在外网故障的时候不允许自动跳“105开关”,导致#1汽轮发电机组不能孤网运行,而被电网拖垮,全厂停电。 事故处理 立即检查事......

    学校如何防止发生拥挤踩踏事故学习资料

    学校如何防止发生拥挤踩踏事故学习资料 各位同学、老师们: 大家好!大家从新闻里边可能知道昨天早晨,湖北襄阳老河口市秦集小学发生一起因拥挤引起的踩踏事件,导致11名学生受伤,4......

    防止电气误操作事故措施大全

    防止电气误操作事故措施 为了进一步加强黑泉水库水力发电厂安全生产工作,严格落实各项安全生产规章制度,根据国家电网公司《二十五项反违章措施》内容要求和黑泉水库水力发电......

    变电站防止暴风雪事故预案

    乌海变电站强降雪降温天气 安全事故应急救援预案 乌海变电站 乌海变电站强降雪降温天气 安全事故应急救援预案 为了做好强降雪降温天气的应对,防止电力设施、设备履冰、雪闪......