第一篇:青岛科技大学聚合物加工原理知识总结(浓缩版)
第一章
聚合物加工原理涉及到材料的性质、加工工艺和机械设备之间的相互影响作用,必需了解、认识并掌握它们之间的协调关系
八大应用领域:生命科学与生物技术、信息科学与工程、材料科学与工程、新型能源科学、环境科学、海洋科学、宇航科学、安全科学
聚合物加工的科学内涵:重要性(材料转化为产品的关键)、科学性(为…提供理论依据)、工程性(注重工程实际)、综合性(涉及多学科,形成一门科学与工程紧密结合的学科)
聚合物的特殊性质:成型性好、比重小、耐腐蚀、耐磨损、电绝缘性好、保温性好、隔音性好、容易染色、透明性好、防辐射、耐高温、变形小、弹性好、防蛀性好 聚合物加工两个显著特性:科学性(涉及多种方法)、综合性或技术的集成性(依赖于多门学科知识的有机结合)
第二章
聚合物的成型加工要求:使聚合物熔融或软化,呈现流动性与可塑性;赋予制品一定形状;对某些聚合物,以某些单体或低分子化合物开始,按一定程序反应,制成所需材料或制品,尤其是热固性塑料。通过加工操作利用原材料的物理或化学变化,达到对物料改性的目的。
主要成型方法:挤出 注塑 压延 压缩模塑 热成型
加工新技术:气辅注射 微孔发泡 多层成型 多相成型 反应成型 低压成型
主要成型设备:
开放式炼胶机:开炼机用来制备塑炼胶、混炼胶、进行热炼、出型加工,它是使用最早的塑炼方法。其加工塑炼胶料质量好,收缩小,但生产效率低,劳动强度大、有污染。适宜于胶料变化多和耗胶量少的工厂。
密炼机:可进行塑炼、混炼(初炼、终炼)。与开炼机比,具有效率高、周期短、能力大、污染小等优点。
挤出机:在旋转着的螺杆轴向力作用下,通过位于口模端一特定形状的通道,获得该通道所具有的截面形状,其成型连续、稳定。
问题:制品不均匀,挤出不稳定,挤出有胀大,能量损耗。
原因:均匀性 熔体破裂(影响挤出速度稳定性)挤出物胀大特性 能量耗散性 注射成型机:间歇周期成型,成型周期短,效率高,熔料模具磨损小,能成批量地成型形状复杂,表面、图案与标记清晰,尺寸精度高的塑件。
主要问题:模腔充不满 过充(称为飞边)尺寸精度达不到 各部分物料不均匀成型后各部分收缩不均匀
影响因素:流道截面及模腔截面形状、料筒温度、注射压力及速度、保压时间、模具温度、塑件厚度
压延成型机:连续的薄膜及片材成型方法,加工能力大,生产速度快,产品质量稳定,但设备庞大,投资高,宽度受压延辊长限制。
主要问题:薄膜宽度及厚度的控制(难于控制),杂质的去除(不易去除)。影响因素:压延成型辊数目、排列方式,成型辊的温度、速度、过滤装置。
聚合物加工主要步骤:混合、混炼 成型 后加工 按形态转变加工操作两个过程:成型准备阶段 成型阶段
聚合物加工机械发展的推动因素:社会需求 相关学科知识交叉、渗透与融合 主要设计思想:借用(金属成型方法中借用)转化(橡塑设备相互转化)发展
第三章
材料的三种性质:材料内在性质 加工性质 产品性质
可加工性:可挤压性 可模塑性 可延展性(可拉伸性) 流动机理:链段相继跃迁
滞后效应:形变迟于外力的现象称为“滞后效应”或“弹性滞后”。 挤出时胀大,注射时收缩 巴拉斯效应(挤出胀大),措施:增加口模长度、提高口模温度 韦森堡效应(包轴现象):开炼及压延过程中存在反流
熔融破裂:高弹形变占的比例大,超过粘流形变时,产生熔体破裂。
流动类型:(1)层流与紊流(2)稳流与非稳流(3)等温流与非等温流(4)一维流、二维流及三维流(5)拉伸流、剪切流(6)拖曳流、压力流
第四章
牛顿流动:黏度不随剪切速率变化 应变具有不可逆性质,即有纯粘性流体特点dvd drdt
非牛顿流动:剪应力与剪切速率不成正比, 粘度取决于剪切作用
非牛顿性是粘性和弹性行为的综合,流动过程中包含着不可逆形变和可逆形变两种成分
ndvdKKKdrdt nn 影响聚合物流变行为(η)因素:1.聚合物熔体内的自由体积2.大分子长链之间的缠结 具体影响:温度、压力、剪切速率、结构组成、添加剂
张量物理定义:一点处不同方向面上具有不同矢量值的物理量。
张量不变量:应力主轴在空间的取向和主应力的大小是坐标变换时的不变量。
流变学基础方程:
连续性方程:封闭系统内的质量是一定的。
DVxVyVzDttxyz
DDt也称为密度的随体导数,其意思是指密度随着流体质点一起运动所产生的变化率。等式右边第一项表示密度随时间的变化,称为局部导数,它是由流动场的不稳定性引起的。其它三项表示密度随空间位置的变化,称为迁移导数,它是由流动场的不均匀性引起的。
动量守恒方程:系统的动量变化率等于该系统上的全部作用力。
左边第一项称为惯性力项,它反映单位时间、单位体积流体的动量的增量;
右边第一项是静压项,反映压力梯度对动量的影响;
右边第二项是粘性力项,反映应力变化对动量的影响;
右边第三项是重力项(或重力分量)反映重力对动量的影响。
能量守恒方程 DVpgDtCVDTpqTV:VDtTp
等式左边第一项是内能项,它表示单位时间内某点的温度变化 右边第一项为热传导热流量,反映热传导引起的空间温度变化。右边第二项为由于温度变化引起的压缩或膨胀作功 右边第三项为粘性耗散,表示粘性流体发热
流变状态方程 牛顿流体:
yzdVzyzdy
是剪切速率(也是速度梯度)dVzdy,yz非牛顿流体:
yzndVKzKyzdy nK为稠度,它表示当切变速率为1时,流体所受的剪切应力;
n 流动指数。第五章
增压的目的及途径:
目的:①定向流动 ②提高传热效率 ③使制品密实 ④排气 途径:①设备结构 ②聚合物熔体流变特性(粘度大) 增压的分类:
DVDt称为惯性项,产生的压力称为惯性增压,如:离心浇注、冷压的热挤出。
DVPgDtP 施加外力→产生压力(正机械位移),外(静)增压。如:注射过程的压力;全捏合异向回转双螺杆挤出机;齿轮泵挤出机。
粘性动增压→ 拖曳流。如:单螺杆挤出机、压延、辊式混炼机
g体积力增压如:压注模塑,没有流动或容器壁面不运动,与流体变形无关。
是由于熔体流动变形产生的压力,属动增压法; 与熔体流动(或变形)无关,属静增压。平行平板流动(动粘增压):利用平板的移动,通过粘性流体的拖曳流动,实现增压作用。 两种分析方法:简化为一维流动的近似方法、平面二维流动分析方法
Vx和Vz看作是相互独立的、彼此无关联的两个流动速度 假设其它条件同牛顿流体:①层流 ②等温、定常 ③壁面无滑移 ④非牛顿流体 ⑤忽略重力 ⑥全展流
牛顿流体在平行平板间的净流率等于拖曳流p与压力流d的线性叠加。
qqdH2dPaqdqd6Vbdz
a 称为截流比qpq=qd+qp
截流比 a:①代表挤出机的操作状态 ②反映了压力梯度的大小
非牛顿流体与牛顿流体的区别:
(1)对非牛顿流体,产量不能分解为独立的拖曳流和压力流(速度也是如此)产量,而牛顿流体可以分解为拖曳流和压力流
pz、ξ(2)在给定的拖曳速度下,产量是无因次压力梯度G和流变参数s、抖 0的函数。(3)牛顿流体产量最大。
非平行平板流动(动粘增压):
机理:(1)流体动压润滑机理(2)螺槽入口与出口容积不同,产出压缩比
应用:刀涂、辊涂、辊式混炼机、压延、双辊挤出、滑动轴承
建立方程与平行平板之间的不同之处在于边界条件的不同。H=H 列出二维雷诺方程,再简化为一维流动,结果:
*dP=0dz
P=f(H0、H1、L Vb、q h)压力的建立取决于:几何参数、物性参数,物料粘性参数 结论平行平板入口压力等于出口压力时, 没有增压; 非平行平板入口压力等于出口压力时, 有增压
最大压力出现在H2H010*PmaxP0,dp/dz=0处,6LVbH0H*
第六章
挤出机主要功能:固体输送、熔体输送、熔融、混合、压缩物料、排气。 过程:
1.加料(筒外固体输送)
塑料:物料多为粉状或粒状,容易形成架桥,主要考虑物料的内摩擦,设计料斗的锥角。橡胶:物料多为条状或片状,容易形成打滑、饥饿喂料或返胶,主要考虑物料的粘性作用,及喂料口的结构形式
2.输送(筒内固体输送)
① fb,fs → 温度、粗糙度、物料性质 ② 物料间的摩擦系数 → 相对速度 ③ 螺杆重要几何参数 3.螺杆的压缩及设计考虑
改变传热效率、增加熔融速率、增强排气作用 螺槽几何尺寸沿轴向变化 4.熔融(塑化)过程
塑料:压力升高、摩擦温度到熔点,形成熔膜→熔池→ 熔池加宽,固体床从宽到零 橡胶:压力升高→软化点,产生粘弹→粘流态→ 从外到内。5.混合实现
固体输送颗粒之间的混合程度取决于螺槽的充满程度。
理论上混合作用产生于熔体流动层流之间。混合使物料发生分散、分布混合,并产生热量混合。
6.排气实现
条件:要有气体排出的通道,(限定的长度)有一定压力。
影响牵引角θ的因素:牵引角θ影响挤出生产率,它取决于螺杆几何参数、摩擦系数及固体输送段的压力增加情况。
cosq=Ksinq+Msinq=
1+K2-M2-KM1+K2
∵θ=0,M=1 → Qs=0 ∴要使θ增加,使 K、M尽可能减小→f b增加,f s减小。
增大固体输送率关键是控制摩擦系数, 影响摩擦系数的因素有:(a)降低螺杆表面粗糙度,降低摩擦系数(b)提高机筒内表面的摩擦系数
(c)温度、压力及速度都对摩擦系数有影响。 熔料在螺槽中流动的四种类型: 正流(拖曳流、顺流):机筒的相对摩擦拖曳作用产生,有输送作用
横流(环流):机筒的相对摩擦拖曳作用产生,有横向混合作用 倒流(压力倒流):机筒壁、口模等阻力元件,有纵向混合作用
漏流:剪切、混合作用
第七章
混合的实现:搀和 研磨(碾压)撕裂 捏合 剪切 分散 按混合过程性质不同分为: 简单混合(分布混合): 不减小组分粒子本身大小
分散混合:
减小组分粒子本身尺寸
混合方法:(1)分布混合 密炼机:无规律;静态流体混合:有规律(2)层流混合 评定混合质量:分散度:组分粒子大小的度量
分布均匀度:组分在系统内散布均匀程度 具体指标:(1)总体均匀度
(2)分离尺度(分离标量)
分离强度(分离程度)
越小混合得越好 对于一混合物:量多的组分成为分散介质
量少的组分成为分散相 混合指数I: 分布方差σ2/测量方差s2
I=0时,说明s打,浓度偏差大,未经混合
I=1时,说明s≈σ,浓度偏差小,混合好
第二篇:聚合物加工原理习题
第四章
1、举例说明高聚物熔体粘弹性行为的表现。
聚合物流动过程最常见的弹性行为是端末效应和不稳定流动。端末效应包括入口效应和模口膨化效应(离模膨胀)即巴拉斯效应。不稳定流动即可由于熔体弹性回复的差异产生熔体破碎现象。
2、简述高聚物熔体流动的特点。由于高聚物大分子的长链结构和缠绕,聚合物熔体、溶液和悬浮体的流动行为远比低分子液体复杂。在宽广的剪切速率范围内,这类液体流动时剪切力和剪切速率不再成比例关系,液体的粘度也不是一个常此因而聚合物液体的流变行为不服从牛顿流动定律。即非牛顿型流动。
3、聚合物熔体在剪切流动过程中有哪些弹性表现形式?在塑料成型过程中可采取哪些措施以减少弹性表现对制品质量的不良影响? 聚合物熔体在加工过程中的弹性行为主要有入口效应、离模膨胀和熔体破裂。随熔体在口模内停留时间延长,弹性变形得到恢复,离模膨胀呈指数关系减小。故增长口模长度可减小离模膨胀。保证挤出速率在临界挤出速率以下,γc随挤塑温度的增加而变大,但与口模的表面粗糙度无关。因此,升高温度是挤塑成功的有效办法。入口收敛角α↑,γc↓,L/D↑, γc↑减小入口收敛角,增大长径比可增大临界挤出速率。
4、取向度对注塑制品的力学性能有何影响? 非晶聚合物取向后,沿应力作用方向取向的分子链大大提高了取向方向的力学强度,但垂直于取向方向的力学强度则因承受应力的是分子间的次价键而显著降低。团此拉伸取向的非品聚合物沿拉伸方向的拉伸强度,断裂伸长率和冲击强度均随取向度提高而增大。取向结晶聚合物的力学强度主要由连接晶片的伸直链段所贡献,其强度随伸直钱段增加而增大,晶片间伸直链段的存在还使结晶聚合物具有韧性和弹性。通常,随取向度提高,材料的密度和强度都相应提高,而伸长率则逐渐降低
5、聚合物在成型过程中为什么会发生取向?成型时取向产生的原因及形式有哪几种?取向对高分子材料制品的性能有何影响?
成型加工时,受到剪切和拉伸力的影响,高分子分子链发生取向。依受力方向分为:
1、流动取向:系指在熔融成型或浓缩成型中,高分子化合物的分子链、链段或其他添加剂,沿剪切流动的方向排列。次表层的取向度最高。
2、拉伸取向:系指高分子化合物的分子链、链段或结晶等受到拉伸力的作用沿受力方向排列。有单向拉伸和双向拉伸。
影响因素:
1、分子结构(结构简单,柔性的有利于取向)
2、低分子化合物(降低Tg/Tf有利于取向)
3、温度(升温有利取向)
4、拉伸比(增加有利取向)高分子材料经取向后,拉伸强度、弹性模量、冲击强度、透气性等增加,单轴拉伸后,取向方向(纵向)和垂直于取向方向(横向)强度不一样,纵向强度增加,横向减少,对于结晶性高分子,取向拉伸后结晶度增加,玻玻璃化温度增加。
6、入口压力降产生原因有哪些?(1)、物料从料筒进入口模时,熔体粘滞流动流线在入口处产生收敛所引起的能量损失;(2)、在入口处由于聚合物熔体产生弹性变形,因弹性能的储蓄所造成的能量消耗;(3)、熔体流经入口处时,由于剪切速率的剧烈增加而引起速度的激烈变化,为达到稳定的流速分布所造成的压力降。
7、聚合物的结晶度将如何影响注射制品的性能?对结晶度较高的材料,在注射工艺参数的选择中应该注意那些问题?
聚合物结晶度对制品性能影响包括:密度、力学性能、热性能及其他性能等。密度:结晶度高, 分子链排列有序而紧密, 分子间作用力强, 所以密度随结晶度的提高而增大。拉伸强度:结晶度高, 拉伸强度高。弹性模量:弹性模量随结晶度的增加而增大。冲击强度:冲击强度随结晶度的提高而减小。热性能:结晶度增加有利于提高软化温度和热变形温度。光泽度:结晶度提高会增加制品的致密性, 使制品表面光泽度提高, 但由于球晶的存在会引起光波的散射, 而使透明度降低。翘曲:结晶度提高会使体积变小, 收缩率加大。对结晶度较高的塑料设定工艺参数应注意:主要是模温的设定,当聚合物熔体温度高于熔融温度时(T > Tm), 大分子链的热运动显著增加, 当大于分子的内聚力时, 分子就难以形成有序排列而不易结晶;当温度过低时, 大分子链段的运动能很低, 甚至处于冻结状态, 也不容易结晶。所以结晶的温度范围是在T g 和Tm 之间。冷却速度: 冷却速度决定于熔体温度与模具温度的温差。冷却速度快, 结晶时间短, 结晶度低, 制品密度也会降低。注射压力:对于结晶性高聚物而言, 在注塑过程中, 可通过提高注塑压力和注射速率获得较高的结晶度, 当然, 提高的程度应以不发生熔体破裂为限。挤出成型
单螺杆挤出机的挤出系统和传动系统包括哪几个部分? 单螺杆挤出机由传动系统,挤出系统,加热和冷却系统,控制系统等几部分组成。挤出系统和传动系统主要包括传动装置、加料装置、机筒、螺杆、机头和口模等五部分 简述单螺杆挤出机的螺杆的几个功能段的作用.加料段:自物料入口向前延伸的一段称为加料段,在加料段中,物料依然是固体,主要作用是使物料受压,受热前移,螺槽一般等距等深。压缩段:压缩段是指螺杆中部的一段,物料在这一段中受热前移并压实熔化,同时也能排气,压缩段的螺槽体积逐渐减小。均化段:螺杆最后一段,均化段的作用是使熔体进一步塑化均匀,并使料流定量,定压由机头流道均匀挤出,这段螺槽截面是恒等的,但螺槽深度较浅。
什么是螺杆的压缩比,单螺杆挤出机的螺杆通过哪些形式获得压缩比? 螺杆加料段第一个螺槽的容积与均化段的最后一个螺槽的容积之比,它表示塑料通过螺杆的全过程被压缩的程度。
在螺杆的压缩段附加一条螺纹,这两条螺纹把原来一条螺纹形成的螺槽分成两个螺槽,一条螺槽与加料段螺槽相通,用来输送固态物料;另一条螺槽与均化段相通,用于液态物料的输送。这就避免了单螺纹螺杆固液共存于一个螺槽引起的温度波动。如何获得单螺杆挤出机最大的固体输送速率? 结构角度:1增加螺槽深度; 2降低物料与螺杆的摩擦系数; 3增加物料与料筒的摩擦系数; 4选择适当的螺旋角。工艺角度:1增加料筒温度(fb↑);②降低螺杆温度(fs↓)。简述双螺杆挤出机的主要工作特性。
a.强制输送作用 在同向旋转啮合的双螺杆挤出机中,两根螺杆相互啮合,啮合处一根螺杆的螺纹插入另一根螺杆的螺槽中,使其在物料输送过程中不会产生倒流或滞流。无论螺槽是否填满。输送速度基本保持不变,具有最大的强制输送性。
b.混合作用 由于两根螺杆相互啮合,物料在挤出过程中进行着比在单螺杆挤出机中更为复杂的运动,不断受到纵向横向的剪切混合,从而产生大量的热能,使物料加热更趋均匀,达到较高的塑化质量。c.自洁作用 反同旋转的双螺杆,在啮合处的螺纹和螺槽间存在速度差,相互擦离过程中,相互剥离粘附在螺杆上的物料,使螺杆得到自洁。同向旋转的双螺杆,在啮合处两根螺杆的运动方向相反,相对速度更大,因此能剥去各种积料,有更好的自洁作用。简述聚合物物料在单螺杆挤出机中的熔化过程。
由固体输送区送入的物料,在进入熔化区后,即在前进的过程中同加热的料筒表面接触,熔化即从这里开始,且在熔化时于料筒壁留下一层熔体膜,若熔体膜的厚度超过螺翅与料筒间隙,就会被旋转的螺翅刮落,并将其强制积存在螺翅的前侧,形成熔体池,而在螺翅的后侧则为固体床,这样,在沿螺槽向前移动的过程中,固体床的宽度就会逐渐减少,直至全部消失,即完全熔化,熔体膜形成后的固体熔化是在熔体膜和固体床的界面发生的,所需热量一部分来自料筒的加热器,另一部分则来自于螺杆和料筒对熔体的剪切作用。简述聚合物熔体在挤出机均化段的流动形式。熔体在均化段的流动包括四种形式:正流、逆流、漏流和横流。正流,亦称拖曳流动:由于螺杆旋转时螺棱的推挤作用引起物料沿螺槽方向(z方向)向机头的流动,这是均化段熔体的主流。逆流,亦称压力流动:由于机头口模、过滤网等对料流的阻碍作用使料流沿螺槽反向的流动。横流:螺棱的推挤作用和阻挡作用造成的物料在落槽内的往复流动,仅限于在每个落槽内的环流。漏流:物料在螺杆和料筒的间隙沿着螺杆的轴向往料斗方向的流动,它也是由于机头和口模对物料的阻力所产生的反向流动。
什么叫螺杆的长径比?螺杆长径比的增加对物料的加工有何好处?
螺杆有效工作长度与直径之比。n一定时,L/D增加,物料在螺杆中运行时间延长,有利于物料塑化与混合,使升温过程变缓;可使均化段长度增加,可减少逆流和漏流,有利提高生产能力。简述管材挤出的工艺过程及管材挤出的定径方法。
挤出工艺:物料经挤出机塑化、机头口模成型后,经定型装置冷却定型、冷却水槽冷却、牵引、切割,得到管材制品。
定内径:定径套装于挤出的塑料管内,即从机头挤出的管子内壁与定径套的外壁相接触,在定径套内通冷却水,将管子冷却定型。由于定径套的冷却水管是从管芯处插入的,故这种定型法只有直角式机头或偏移式机头的挤出才能使用。定外径:使挤出管子的外壁与定径套内壁相接触而起定型作用。内压法:向管内通入压缩空气的内压法真空法:在管子外壁抽真空法
以尼龙棒材的挤出成型为例,说明挤出成型的工艺过程,并讨论原料和设备结构的选择,工艺条件的控制中应注意的问题。
①原料的选择:尼龙的熔融温度范围窄,黏度偏低,须特别注意选择高黏度的尼龙作为挤出棒材的原料,以保证成型的稳定性;②原料干燥:尼龙极易吸水,挤出前必须充分干燥,否则,会导致尼龙在加工过程中出现降解;③挤出成型:是棒材制造的主要过程,挤出成型中应注意两点,一是挤出速度要慢,否则影响定型;二是温度控制波动范围要小,否则容易造成黏度的较大波动,从而影响挤出稳定性; ④制品的定型与冷却:定型部分要长一些,采用缓慢冷却,若使用急冷,很容易造成棒体内部缩孔;⑤牵伸和后处理:牵引要均匀,牵引切割后的棒材要进行调湿处理,以防止使用过程中的尺寸变化。注射成型
注塑机有几种类型,包括哪些组成部分。
按传动方式:机械式注塑机,液压式注塑机,机械液压式注塑机按操纵方式:手动注塑机、半自动注塑机、全自动注塑机按塑化方式:柱塞式注塑机、预塑式注塑机、橡胶注塑机包括以下:注射装置、合模装置、液压电气控制系统 嵌件预热有何意义。
为了装配和使用强度的要求,理解塑件内常常嵌入金属嵌件。注射前,金属嵌件先放进模具内的预定位段,而后经注射成型才能和塑料成为一个整体。由于塑料与金属的热性能差异很大,两者收缩率不同,因此,有嵌件的塑料制品,在嵌件周围易出现裂纹或制品强度较低。设计制品时应加入制件周围塑料的厚度,同时对金属嵌件进行预热也是必要的。因为嵌件预热可以减小塑料熔体与嵌件的温差,使嵌件周围的塑料熔体冷却比较慢,收缩比较均匀,产生一定的熔料收缩作用,以防止嵌件周围产生较大的内应力。
注射机常用喷嘴类型?从加工塑料性能和成型制品特点来考虑,如何选择喷嘴?
1、通用式喷嘴:是最普遍的形式,这种喷嘴结构简单,制造方便,无加热装置,注射压力损失小,常用于PE、PS、PVC及纤维等注射成型。
2、延伸式喷嘴:是通用是彭罪的改进型,结构也较简单,制造方便,有加热装置,注射压力姜较小,适用于PMMA、POM、PSF、PC等高粘度树脂
3、弹簧针阀式喷嘴:是一种自锁式喷嘴,结构较复杂,制造困难,流程较短,注射压力损失较大,较适用于PA、PET等熔体粘度较低的塑料注射。
试问一旦在注射成型过程中(使用螺杆式注射机)发现未熔的颗粒料,将如何调整工艺参数以获得理想的制品?
注射成型过程中发现未熔的颗粒料,其主要原因是塑化不良。调整工艺参数:可适当提高塑化背压,适当提高料筒温度,延长物料在料筒中停留时间,提高螺杆转速等。随着螺杆转速的增加,橡胶注射成型的硫化时间为何呈现“U”形变化?
随着螺杆转速的提高,机筒内的胶料受到剪切、塑化和均化的效果提高,可获得较高的注射温度,缩短注射时间和硫化时间。螺杆转速过高时,螺杆表面橡胶分子链发生拉伸取向,形成多层取向状态,产生一种收缩力,起到一种钳制作用,使胶料成团抱着螺杆一起转动,产生较严重的“包轴现象”,不能使胶料很好地受到剪切作用,故胶温反而下降,注射温度降低,硫化时间延长。注塑制件后处理主要有哪些方法,各有什么意义。
随着螺杆转速的提高,机筒内的胶料受到剪切、塑化和均化的效果提高,可获得较高的注射温度,缩短注射时间和硫化时间。螺杆转速过高时,螺杆表面橡胶分子链发生拉伸取向,形成多层取向状态,产生一种收缩力,起到一种钳制作用,使胶料成团抱着螺杆一起转动,产生比较严的“包轴现象”,不能使胶料很好的剪切作用,故胶温反而下降,注射温度降低,硫化时间延长。
注塑制件后处理主要有哪些方法,各有什么意义
热处理,调湿处理,热处理的实质:使强迫冻结的分子链得到松他,凝固的大分子链段转向无规位置,从而消除这一部分的内应力。提高结晶度,稳定结晶结构,从而提高结晶塑料制品的弹性模量和硬度,降低断裂伸长率。调湿处理是为了在较短的时间内稳定的尺寸。同时还可以加快达吸湿平衡,从而改善制件的柔曲性和韧性,使它的冲击强度和拉伸强度均有提高。结晶性塑料和非晶塑料在注塑工艺上有何不同。塑化阶段,结晶性塑料的塑化需要更长的时间冷却阶段,结晶性塑料的冷却要严格控制,冷却的快慢直接影响塑件物性 某塑胶公司有如下原料: 聚乙烯A(熔体流动指数为7g/10min);聚乙烯B(熔体流动指数为 0.3g/10min);聚苯乙烯;聚碳酸酯;尼龙66。
–(1)拟生产Φ50cm、高300cm的垃圾桶,可选用什么成型方法,选择上述什么原料(要简述选择的理由)?为了降低生产成本,打算在聚合物中加入30%碳酸钙填料,请问在加入填料后,成型工艺可能做那些调整?
– 选择聚乙烯A,相对B而言,熔体流动指数较高,加工较容易。聚苯乙烯太脆,会被强酸强碱腐蚀,不抗油脂,不适合做垃圾桶,PC和尼龙66原材料费较高,也不适合做垃圾桶。大型垃圾桶可以用挤吹中空塑料成型。– 加入填料后,材料的黏度会有所提高,所以挤出过程中应该提高温度,以降低材料黏度,即降低加工难度。在吹塑时,气体压力不宜过大,避免基体和填料间的应力开裂。拟生产手机外壳,该公司有的工程师认为采用聚苯乙烯较好,而有的工程师认为采用聚碳酸酯较好,你认为选用那种聚合物合适,谈谈理由。若选用聚碳酸酯,在成型过程中应注意那些问题?
– 选用PC较好。聚苯乙烯的化学稳定性比较差,作为手机外壳可以被多种有机溶剂溶解,会被强酸强碱腐蚀,不抗油脂,并且在受到紫外光照射后易变色。质地硬而脆,抗冲击性能较差,作为手机外壳不耐摔,易破裂。
– 聚碳酸酯无色透明,耐热,抗冲击,阻燃,在普通使用温度内都有良好的机械性能。但其耐磨性差,一些用于易磨损用途的聚碳酸酯器件需要对表面进行特殊处理。
– PC遇水容易水解,产生断键、分子量下降和物理强度降低等现象。所以应该严格控制PC中的水分,避免产品出现气泡银纹等,通常在PC加工前需用热风干燥机干燥3-5小时。中空吹塑成型
简述注塑吹塑工艺过程。聚酯透明瓶的成型为例,聚酯的特点是易吸潮,结晶速度慢,为了得到尺寸精度高,透明性好的聚酯透明瓶,一般采用两步法进行注射吹塑成型。第一阶段为型坯的制造(注射法),第二阶段为坯件的吹塑成型。第一阶段型坯的制造(注射法)主要有三个步骤,首先是注射成型前的准备,对聚酯型坯的成型前准备主要是物料的干燥,一般要对聚酯切片在120℃下干燥6-12小时;其次是借助注射机和型坯成型模具进行注射成型;最后是后处理,型坯的后处理仅限于修边,不可进行热处理。第二阶段型坯的吹塑分四个步骤,第一是对型坯加热到Tg以上,进入橡胶态;第二是入模,即把加热好的型坯迅速移入模具中;第三是吹塑成型,即在已加热的型坯吹入压缩空气,型坯即胀大脱离金属管贴于模壁上成型;第四是冷却脱模。
简述挤出吹塑工艺过程。①管坯直接由挤出机挤出,并垂挂在安装于机头正下方的预先分开的型腔中;
②当下垂的型坯达到规定长度后立即合模,并靠模具的切口将管坯切断; ③从模具分型面上的小孔送入压缩空气,使型坯吹胀紧贴模壁而成型; ④保持充气压力使制品在型腔中冷却定型后开模脱出制品。
以尼龙6制备的汽车油杯的成型为例,说明挤出吹塑的工艺过程,并分析原料的选择和成型各阶段的工艺条件控制中应注意的问题。
– 汽车油杯的成型过程包括原料的选择和干燥,挤出型坯,闭模,吹塑,冷却脱模等几个过程。由于尼龙粘度相对较低型坯易下垂,原料的选择应特别注意选择高粘尼龙作为基础原料;同时,由于尼龙粘度对温度敏感性大,挤出吹塑过程应特别注意温度控制。热成型的定义。
热成型是一种以热塑性塑料板材和片材为成型对象的二次成型技术,其法一般是先将板材裁切成一定形状和尺寸的坯件,再将坯件在一定温度下加热到弹塑性状态,然后施加压力使坯件弯曲与延伸,在达到预定的型样后使其冷却定型,经过适当的修整,即成为制品。热成型过程中对坯件施加的压力,在大多数情况下是靠真空和引进压缩空气在坯件两面形成气压差,有时也借助于机械压力或液压力。
要制作一直径达2米、高5米、厚15毫米的大型聚乙烯圆筒,可以采用哪些方法?
– 对于这种大尺寸的圆筒,很难采用挤出法生产,可以采用热成型法生产。如可以用机械 加压法生产两、三块弧形板,通过热熔连接成一个完整筒体。也可以采用加热后卷绕的办法直接卷绕成型。其他成型工艺
铸塑成型有哪几种方式?
铸塑技术包括静态铸塑、嵌铸、离心浇铸以及流延铸塑、搪塑和滚塑等。请分别写出以下制品最多可以用哪些成型加工方法来生产:
– 线缆包覆层:挤出成型– 沙滩鞋底:压延成型、注射成型 – 橡胶的胎面:压出成型、模型硫化
– 小型儿童玩具:热成型、注射成型、挤出成型、搪塑成型 – 尼龙薄膜:压延成型、挤出成型、吹塑成型 – 矿泉水瓶:注射成型、挤出成型 – 塑料水桶:注射成型 – 医用标本:嵌铸成型
简述PTFE成型加工方法原理并说明如何调节其制品性能? – 原理:PTFE 室温下冷压成型坯后再烧结,经冷却后得到制品。(可用图示说明)– 措施:控制冷却速度,调整结晶程度来调节其制品性能。
下列哪些参数与挤出机的产量无关? D A.螺杆直径 B.螺杆长度 C.螺杆转速 D.切粒机转速 当双螺杆挤出机机头压力过高时应该调整 B A.喂料量 B。螺杆转速 C。机筒温度 D。螺杆组合 挤出机的测温装置热电偶的作用是 A A.测量温度 B。控制温度 C.加热 D。冷却 挤出过程中料条表面粗糙是因为 D A.塑料水分太大 B。熔体温度太高 C。挤出速度太低 D。挤出速率太高 挤出过程中料条带有黑点是因为 AB A.挤出温度太高 B.机头口模处有不干净的地方 C。挤出温度太低 D。原料太脏 物料塑化时的热量来源为 AB A.料筒传热 B。物料内部摩擦 C。物料反应热 D。环境热量 挤出成型的控制系统不包括 D A.电气传动系统 B。温度控制 C。压力控制 D。喂料控制 双螺杆有清除机筒、螺杆表面物料的能力,这种能力称为 A A.自洁 B。自转 C。扫堂 D。振动 塑料熔体指数越大,其流动就越容易,所以挤出量随塑料熔体指数的增加而 B A.降低 B。增加 C。无影响 D。以上都错
结晶会提高制品的许多重要性能,也会使(D)性能下降。A.密度 B。拉伸强度 C。刚度 D。透明
在加工过程中影响熔体的热稳定性及制品的耐化学试剂性和渗透性等的聚合物结构是 A A.聚合物分子中的单个原子与官能团 B。分子量 C。分子柔性 D。分子间键合 在中空吹塑成型过程中,可确定型坯成型难易程度的聚合物结构是 B A.分子柔性 B。分子量 C。结晶与取向 D。分子间键合 不管是哪类添加剂,在选用时应注意 ABCD A.相容性 B。协同性 C。功能性 D。经济性 外润滑剂加入分子中是为了 ABD A.降低塑化熔料温度 B。减少熔料与设备表面的摩擦力 C.减少熔料间的摩擦 D。阻止熔料粘在设备金属表面上 在吹塑制品过程中,若型坯的壁厚膨胀太大会造成 D A.过多的飞边 B。制品上出现褶皱 C。制品壁会太薄 D。原料的浪费 在挤出成型中会产生熔体破裂现象的因素有 D A.挤出速率 B。熔体温度 C。机头结构 D。以上都是 通过()可消除挤出过程中出现的熔体破裂现象。AD A.提高机头温度 B。降低机头温度 C。提高挤出速度 D。降低挤出速度 在中空吹塑成型制品中,影响制品收缩率的因素有 ABCD A.塑料的种类 B。型坯的熔体温度 C。制品的壁厚 D。模具的温度 吹塑容器的底部为(),可以很好的补偿收缩率。
A.凹形 B。凸形 C。平形 D。以上三种均可
第三篇:化工原理教学大纲 - 青岛科技大学
课程编号:0101101
化 工 原 理Ⅰ
Principles of Chemical Engineering
总学时:48 总学分:3 课程性质:技术基础课
开设学期及周学时分配:第4学期,每周3学时
适用专业及层次:化学工程与工艺、轻化工程、生物工程、生物技术、制药工程、药物制剂专业本科
相关课程:高等数学、物理化学、分离工程、传递过程原理等
教材:夏青、陈常贵编著,化工原理(上册),天津大学出版社,2005年 推荐参考书:
[1] 谭天恩、丁惠华等编著,化工原理,化学工业出版社,2000年 [2] 赵汝溥、管国锋编著,化工原理,化学工业出版社,1999年 [3] 陈敏恒、丛德滋等编著,化工原理,化学工业出版社,2001年 [4] 赵文、王晓红等编著,化工原理,石油大学出版社,2001年
一、课程目的与要求
本门课程的目的是为学生今后学习相关的专业课程打好工程技术理论基础,并使他们受到必要的基本工程技能训练。
本门课程的任务是使学生初步掌握化工过程的基本原理,以三种传递原理为主线,以物料衡算、能量衡算、平衡关系、传递速率等基本概念为理论依据,使学生掌握典型单元操作通用的学习方法和分析问题的思路,培养理论联系实际的观点,进行典型单元操作设备的设计、操作及选型的计算,并进行基本实验技能和设计能力的训练,以增强学生解决工程实际问题的能力。
化工原理属于工程学科,要求通过本门课程的学习,培养学生工程技术观点及独立分析和解决实际工程问题的能力。
二、课程主要内容及学时分配 0绪论(1学时)
化工单元操作的历史梗概;本课程的性质及物料衡算与热量衡算等化工原理研究方法。1流体流动(15学时)1.1 流体的物理性质
1.2 流体静力学方程式(2学时)
密度、压力、流体静力学基本方程式、静力学方程的应用(液柱压差计、液封、液 1 面测量)。
1.3 流体流动基本方程(3学时)
流量与流速、定态流动与非定态流动、连续性方程、柏努利方程、柏努利方程的应用。
1.4 流体流动现象(2学时)
牛顿粘性定律、粘度、非牛顿型流体、流动型态和雷诺准数、管内层流与湍流的比较、边界层概念。
1.5 管内流动阻力损失(4学时)
阻力计算通式、圆形直管内层流流动阻力损失、因次分析法、圆形直管内湍流流动损失、非圆形管内流动阻力、局部阻力。1.6 管路计算(2学时)
管路计算的类型和基本方法(设计型和操作型)、试差法、复杂管路计算(分支、并联)。
1.7 流量测量(2学时)
测速管、孔板流量计、转子流量计。流体输送机械(7学时)2.1 离心泵(5学时)
离心泵工作原理及主要构件、基本方程式、主要性能参数、特性曲线、安装高度、工作点及流量调节、组合操作、类型与选用。2.2 其他类型泵(1学时)
往复泵、计量泵、隔膜泵、齿轮泵、旋涡泵。2.3 气体输送机械(1学时)
离心式通风机、鼓风机、压缩机、旋转鼓风机、往复压缩机、真空泵。非均相物系的分离和固体流态化(5学时)3.1颗粒及颗粒床层的特性(1学时)
颗粒、颗粒床层的特性、流体通过床层的压降 3.2 沉降分离(2学时)
重力沉降、离心沉降 3.3 过滤(1学时)
过滤基本概念、基本方程式、恒压过滤、恒速过滤及过滤设备 3.4 固体流态化(1学时)
流态化的基本概念、流化床的主要特征及操作特性 4 传热(16学时)4.1 概述
4.2 热传导(2学时)
付立叶定律、导热系数、平壁和圆筒壁的定态热传导。4.3 对流传热(4学时)
对流传热分析、传热边界层、对流传热系数的影响因数、因此分析在对流传热中的应用、流体作强制对流和自然对流时的对流传热系数、蒸汽冷凝和液体沸腾时的对流传热系数。
4.4 传热过程计算(4学时)
总传热速率方程、热量衡算、总传热系数、平均温度差、传热面积、传热单元数法。4.5 对流传热系数关联式(2学时)
影响对流传热系数的因素、流体有相变、无相变时的对流传热系数 4.6 辐射传热(2学时)
基本概念、物体的辐射能力、物体间的辐射传热、对流和辐射的联合传热。4.7 换热器(2学时)
换热器类型、换热器传热过程的强化途径、列管换热器的设计和选用。5 蒸发(4学时)5.1 蒸发设备(1学时)
蒸发器结构、辅助设备及选型 5.2 单效蒸发(2学时)
溶液沸点和温度差损失、单效蒸发计算、蒸发器的生产能力和生产强度 5.3 多效蒸发(1学时)
多效蒸发的操作流程、计算、与单效蒸发的比较及提高经济性的手段 三 教学重点与难点 1 流体流动 本章重点:
(1)静力学基本方程的意义及应用
(2)连续性方程、柏努力方程的物理意义、适用条件、应用柏努力方程解题的要点和注意事项。
(3)雷诺准数的意义及流动型态的判断
(4)管路系统总能量损失的测量及计算(包括相关数据的获得)本章难点:
柏努力方程的应用,运用静力学方程解题时等压面的选取为本章难点。2 流体输送机械 本章重点:(1)离心泵的基本结构、工作原理及离心泵特性曲线的应用
(2)掌握离心泵汽蚀现象的定义和安装高度的计算,了解操作特性、安装及选型。本章难点:
离心泵基本方程式的推导 3 非均相物系的分离和固体流态化 本章重点:
(1)沉降分离(包括重力沉降和离心沉降)的原理、过程计算和相关典型设备的选型。(2)过滤操作的原理,恒压过滤的计算、过滤常数的测定。(3)固体流态化的基本概念、流化床的主要特征及操作特性。本章难点:
如何将理论上讨论的颗粒与流体间相对运动问题,运用于实现非均相物系分离、固体流态化技术及固体颗粒的气力输送等工业过程。4 传热 本章重点:
(1)单层、多层平壁热传导速率方程,单层、多层圆筒壁热传导速率方程及其应用。(2)换热器的能量衡算,总传热速率方程和总传热系数的计算,用平均温度差法进行传热计算。
(3)对流传热系数的影响因素及因次分析法。本章难点:
对于传热单元数法的理解和运用;换热器的设计计算 5 蒸发 本章重点:
掌握单效蒸发中关于溶液的沸点和温度差及生产能力和生产强度的计算。本章难点: 本章无难点 四 主要教学方法
(1)在讲授每一章、每一节时,先用框图、表格、自行总结和提炼的几句话等形式简明扼要地向学生讲清本章、本节、本次课的主要内容,知识体系,教学思路、知识的前后联系,以及重点、难点、注意事项等,让学生在学习具体内容前先有一个整体上轮廓式的了解,做到心中有数,听课有针对性。
(2)关键是突出重点、破解难点。把重点和难点讲清、讲透。
(3)每讲完一节、一章后引导学生及时进行归纳总结、搞清知识点之间的联系,搞清理论在实际生产中的应用,注重理论联系实际,起到举一反
三、触类旁通的作用。(4)坚持以课堂教学为主,同时结合采用投影、实物模型、电化教学、多媒体CAI课件等 教学手段进行辅助教学,以不断提高教学效果。五 典型作业练习第一章 流体流动
1. 如图所示,在两个压强不同的密闭容器A,B内充满了密度
为 的液体,两容器的上部与下部分别连接两支规格相同 的液体。试 的U行管水银压差计,连接管内充满密度为
回答:
(1)pM和pN的关系;
(2)判断1-2,2-3,3-4及5-6,6-7,7-8等对应截面上 的压强是否相等;
(3)两压差计读数R与H的关系。
2. 本题附图所示为一输水系统,高位槽的水面维持恒定,水分别从BC与BD两支管排出,高位槽液面与两支管出口间的距离为11m。AB管段内径为38mm、长为58m;BC支管的内径为32mm、长为12.5m;BD支管的内径为26mm、长为14m,各段长均包括管件及阀门全开时的当量长度。AB与BC管段的摩擦系数均可取为0.03。试计算:(1)当BD支管的阀门关闭时,BC支管的最大排水量为若干,m3/h?(2)当所有的阀门全开时,两支管的排水量各为若干,m3/h?BD支管的管壁粗糙度可取为0.15mm,水的密度为1000kg/m3,粘度为0.001Pa·s。
第一章 流体输送机械
1. 用4B15型的离心泵将常压、20℃的清水送往A、B两槽,其流量均为25m/h,主管段长50m,管内径为100mm,OA与OB段管长均为40m,管内径均为60mm(以上各管段长度包括局部阻力的当量长度,OB段的阀门除外)。假设所有管段内的流动皆进入阻力平方区,且摩擦系数λ=0.02。分支点处局部阻力可忽略。试求:
(1)泵的压头与有效功率;
(2)支路OB中阀门的局部阻力系数ζ;
(3)若吸入管线长(包括局部阻力当量长度)为4m,泵的允许吸上真空度为5m,试确定泵的安装高度。
3第二章 机械分离及固体流态化
1. 在0.04m的过滤面积上以1×10m/s的速率进行恒速过滤试验。测得过滤100s时,过滤压力为3×10Pa;过滤600s时,过滤压力为9×10Pa。滤饼为不可压缩。今欲用框内尺寸为635×635×60mm的板框过滤机处理同一料浆,所用滤布与试验时的相同。过滤开始时,以与试验相同的滤液流速进行恒速过滤,在过滤压力达到6×10Pa时改为恒压操作。每获得1m滤液所生成的滤饼体积为0.02m。试求框内充满滤饼所需的时间。第三章 传热
1.有一套管换热器,长为6m内管内径为38mm。环隙间用110℃的饱和水蒸气加热管内湍流的空气(Re>104)。空气由25℃被加热到60℃。若将内管改为f25×2.5mm,而长度仍为6m,试计算能否完成传热任务。若欲维持气体出口温度,定性分析可采取的措施(计算时可作合理简化)。
2.有一单程列管式换热器,内装有f25×2.5mm的钢管300根,管长为2m。要求将质量流量为8000kg/h的常压空气于管程由20℃加热到85℃,选用108℃的饱和蒸气在壳方冷凝加热。若蒸气的冷凝传热膜系数为1×104W/m2·K,忽略管壁及两侧污垢热阻和热损失。已知空气在平均温度下的物性常数为Cp =1kJ/kg·K,l=2.85×10-2W/m·K,m=1.98×10-5Pa·s,Pr=0.7。试求:(1)空气在管内的对流传热系数;
(2)换热器的总传热系数(以管子外表面为基准);(3)通过计算说明该换热器能否满足需要;(4)计算说明管壁温度接近哪一侧的流体温度。
3.有一列管换热器由f25×2.5mm的120 根钢管组成。110℃的饱和水蒸气在壳方冷凝以加热在管内作湍流流动的某液体,且冷凝水在饱和温度下排出。已知液体平均比热为4.187 kJ/kg·℃,由15℃加热到90℃。管内对流传热系数为ai=800W/m2·℃,蒸气冷凝的对流传热系数ao=1.1×104W/m2·℃,忽略污垢热阻、壁阻和热损失,每小时收集冷凝水2100kg,在饱和温度下蒸气冷凝潜热g=2232kJ/kg,试求:(1)每小时可处理的液体量;(2)管程单程时的列管有效长度;
(3)其它条件均保持不变,将120根钢管改为两管程,列管有效长度为多少。第四章 蒸发(无计算要求)六 课程考核方式
本课程的理论课采用期末闭卷笔试的方式考核。
-43 6
第四篇:青岛科技大学橡胶工艺原理讲稿[范文模版]
青岛科技大学橡胶工艺原理讲稿(5)青岛科技大学, 橡胶, 讲稿, 工艺, 原理
§3-6炭黑对橡胶的补强机理
炭黑补强作用使橡胶的力学性能提高,同时也使橡胶在粘弹变形中由粘性作用而产生的损耗因素提高。例如tanδ、生热、损耗模量、应力软化效应提高。因应力软化效应能够比较形象地说明大分子滑动补强机理,因此将两者结合一起讨论。一.应力软化效应
(一)应力软化效应的含义
硫化胶试片在一定的试验条件下拉伸至给定的伸长比λ1时,去掉应力,恢复。第二次拉伸至同样的λ1时所需应力比第一次低,如图3-18所示,第二次拉伸的应力-应变曲线在第一次的下面。若将第二次拉伸比增大超过第一次拉伸比λ1时,则第二次拉伸曲线在λ1处急骤上撇与第一次曲线衔接。若将第二次拉伸应力去掉,恢复。第三次拉伸,则第三次的应力应变曲线又会在第二次曲线下面。随次数增加,下降减少,大约4~5次后达到平衡。上述现象叫应力软化效应,也称为Mullins效应。应力软化效应用拉伸至给定应变所造成的应变能下降百分率ΔW表示。(3-10)
式中 W1 —第一次拉伸至给定应变时所需要的应变能;
W2 —第一次拉伸恢复后,第二次(或更多次数)再拉伸至同样应变时所需的应变能。
(二)应力软化效应的影响因素
应力软化效应代表一种粘性的损耗因素,所以凡是影响粘弹行为的因素对它均有影响。填料及其性质对应力软化效应有决定性作用。1.填充的影响
2.填料品种对应力软化效应的影响 3.炭黑品种对应力软化效应的影响
总的趋势是补强性高的炭黑应力软化效应比较高,反之亦然。
(三)应力软化的恢复
应力软化有恢复性,但在室温下停放几天,损失的应力恢复很少,而在100℃×24h真空中能恢复大部分损失的应力。因为炭黑的吸附是动态的,在恢复条件下,橡胶大分子会在炭黑表面重新分布,断的分子链可被新链代替。剩下的不能恢复的部分称为永久性应力软化作用。
二.炭黑的补强机理
近半个世纪以来,人们对炭黑补强机理曾进行了广泛的探讨。各个作者提出的机理虽然能说明一定的问题,但有局限性。随着时间进展,橡胶补强机理也在不断地深化和完善。橡胶大分子滑动学说的炭黑补强机理是一个比较完善的理论。现将各种论点简述如下。
(一)容积效应
(二)弱键和强键学说
(三)Bueche的炭黑粒子与橡胶链的有限伸长学说
(四)壳层模型理论
核磁共振研究已证实,在炭黑表面有一层由两种运动状态橡胶大分子构成的吸附层。在紧邻着炭黑表面的大约0.5nm(相当于大分子直径)的内层,呈玻璃态;离开炭黑表面大约0.5~5.0nm范围内的橡胶有点运动性,呈亚玻璃态,这层叫外层。这两层构成了炭黑表面上的双壳层。关于双壳层的厚度Δγc,报道不一,不过基本上是上述范围。这个双壳的界面层内中的结合能必定从里向外连续下降,即炭黑表面对大分子运动性的束缚不断下降,最后到橡胶分子不受束缚的自由状态。
图3-22 炭黑填充的硫化胶的非均质模型
A相—进行微布朗运动的橡胶分子链;B相—交联团相;C相—被填料束缚的橡胶相
对壳层补强作用的解释是双壳层起骨架作用。提出了填充炭黑橡胶的不均质结构示意图,见图3-22。图中A相为自由大分子,B相为交联结构,C相为双壳层,该理论认为C相起着骨架作用联结A相和B相,构成一个橡胶大分子与填料整体网络,改变了硫化胶的结构,因而提高了硫化胶的物理机械性能。
(五)橡胶大分子链滑动学说
这是比较新和比较全面的炭黑补强理论。该理论的核心是橡胶大分子能在炭黑表面上滑动,由此解释了补强现象。炭黑粒子表面的活性不均一,有少量强的活性点以及一系列的能量不同的吸附点。吸附在炭黑表面上的橡胶链可以有各种不同的结合能量,有多数弱的范德华力的吸附以及少量的化学吸附。吸附的橡胶链段在应力作用下会滑动伸长。大分子滑动学说的基本概念可用示意图3-23表示。
(1)表示胶料原始状态,长短不等的橡胶分子链被吸附在炭黑粒子表面上。
(2)当伸长时,这条最短的链不是断裂而是沿炭黑表面滑动,原始状态吸附的长度用点标出,可看出滑移的长度。这时应力由多数伸直的链承担,起应力均匀作用,缓解应力集中为补强的第一个重要因素。
(3)当伸长再增大,链再滑动,使橡胶链高度取向,承担大的应力,有高的模量,为补强的第二个重要因素。由于滑动的摩擦使胶料有滞后损失。滞后损失会消耗一部分外力功,化为热量,使橡胶不受破坏,为补强的第三个因素。
(4)是收缩后胶料的状况,表明再伸长时的应力软化效应,胶料回缩后炭黑粒子间橡胶链的长度差不多一样,再伸长就不需要再滑动一次,所需应力下降。在适宜的情况(如膨胀)下,经过长时间,由于橡胶链的热运动,吸附与解吸附的动态平衡,粒子间分子链长度的重新分布,胶料又恢复至接近原始状态。但是如果初次伸长的变形量大,恢复常不超过50%。
图3-23 橡胶大分子滑动学说补强机理模型
也发生滑移,全部分子链高度取向,高定伸,缓解应力集中,应力均匀,滑动耗能;4—恢复,炭黑粒子间的分子链有相等的长度,应力软化再滑移,BB1—原始状态;2—中等拉伸,AA
§3-7 白炭黑 一.白炭黑的制造
白炭黑的制备多采用两种方法,即煅烧法和沉淀法。
煅烧法制备的白炭黑又称为气相法白炭黑或干法白炭黑,它是以多卤化硅(SiClx)为原料在高温下热分解,进行气相反应制得。
干法白炭黑粒径极小,约为15~25nm,飞扬性极大。气相法白炭黑杂质少,补强性好,但制备复杂且成本高,主要用于硅橡胶中,所得产品为透明、半透明状,产品的物理机械性能和介电性能良好,耐水性优越。
沉淀法白炭黑普遍采用硅酸盐(通常为硅酸钠)与无机酸(通常使用硫酸)中和沉淀反应的方法来制取水合二氧化硅。
沉淀法白炭黑粒径较大,约为20~40nm,纯度较低,补强性比煅烧法差,胶料的介电性能特别是受潮后的介电性能较差,但价格便宜,工艺性能好。可单用于NR、SBR等通用橡胶中,也可与炭黑并用,以改善胶料的抗屈挠龟裂性,使裂口增长减慢。二.白炭黑的结构 1.白炭黑的化学结构
白炭黑的95~99%的成分是SiO2,经X射线衍射证实,因白炭黑的制法不同,其结构有不同差别。气相法白炭黑内部结构几乎完全是排列紧密的硅酸三维网状结构,这种结构使粒子吸湿性小,表面吸附性强,补强作用强。而沉淀法白炭黑的结构内除了生成三维结构的硅酸外,还残存有较多的二维结构硅酸,致使结构疏松,有很多毛细管结构,很易吸湿,以致降低了它的补强活性。2.白炭黑的结构
白炭黑的结构象炭黑,它的基本粒子呈球形。在生产过程中,这些基本粒子在高温状态下相互碰撞而形成了以化学键相连结的链枝状结构,这种结构称之为基本聚集体。链枝状结构彼此以氢键吸附又形成了次级聚集体结构,这种聚集体在加工混炼时易被破坏。三.白炭黑的表面化学性质 1.表面基团
图3-24 白炭黑的表面模型
相邻羟基(在相邻的硅原子上),它对极性物质的吸附作用十分重要;隔离羟基,主要存在于脱除水分的白炭黑表面上。这种羟基的含量,气相法白炭黑比沉淀法的要多,在升高温度时不易脱除;双羟基,在一个硅原子上连有两个羟基。
白炭黑表面的基团具有一定的反应性,表面的反应包括:失水及水解反应、与酰氯反应、与活泼氢反应、形成氢键等。2.白炭黑表面的吸附作用
白炭黑表面有很强的化学吸附活性,这与表面羟基有关。它可以和水以氢键形式结合,形成多分子吸附层。除此之外,它还可与许多有机小分子物质发生吸附作用。
多官能团的胺类或醇类的吸附性高于单官能团的,所以SiO2胶料中常用乙醇胺、乙二醇、三乙醇胺等多官能团化合物做活性剂。3.热行为
将白炭黑加热就会放出水分,随温度升高,放出水分量增加。在150~200℃之前,放出水最多,200℃以后趋向平缓,有明显的转折点,见图3-25。折点以前主要是吸附水脱附,折点后是表面羟基缩水反应。四.白炭黑对胶料工艺性能和硫化胶性能的影响
(一)白炭黑对胶料工艺性能的影响 1.胶料的混炼与分散
白炭黑由于比表面积很大,总趋向于二次聚集,加之在空气中极易吸收水分,致使羟基间易产生很强的氢键缔合,进一步提高了颗粒间的凝聚力,所以白炭黑的混炼与分散要比炭黑困难得多,而且在多量配合时,还容易生成凝胶,使胶料硬化,混炼时生热大。为获得良好的分散,就要求初始混炼时,保持尽可能高的剪切力,以便使白炭黑的这些聚集体粒子尽可能被破坏,而又不致使橡胶分子链发生过多的机械降解。为此,白炭黑应分批少量加入,以降低生热。适当提高混炼温度,有利于除掉一部分白炭黑表面吸附水分,降低粒子间的凝聚力,有助于白炭黑在胶料中的分散。2.白炭黑补强硅橡胶混炼胶中的结构控制
白炭黑,特别是气相法白炭黑是硅橡胶最好的补强剂,但有一个使混炼胶硬化的问题,一般称为“结构化效应”。其结构化随胶料停放时间延长而增加,甚至严重到无法返炼、报废的程度。对此有两种解释,一种认为是硅橡胶端基与白炭黑表面羟基缩合;另一方面认为硅橡胶硅氧链节与白炭黑表面羟基形成氢键。
防止结构化有两个途径,其一是混炼时加入某些可以与白炭黑表面羟基发生反应的物质,如羟基硅油、二苯基硅二醇、硅氮烷等。当使用二苯基硅二醇时,混炼后应在160~200℃下处理0.5~1h。这样就可以防止白炭黑填充硅橡胶的结构化。另一途径是预先将白炭黑表面改性,先去掉部分表面羟基,从根本上消除结构化。3.胶料的门尼粘度
白炭黑生成凝胶的能力与炭黑不相上下,因此在混炼白炭黑时,胶料的门尼粘度提高,以致于恶化了加工性能,故在含白炭黑的胶料配方中软化剂的选择和用量很重要。在IIR中往往加入石蜡烃类、环烷烃类和芳香烃类,用量视白炭黑用量多少及门尼粘度大小而异,一般可达15-30%。在NR中,以植物性软化剂如松香油、妥尔油等软化效果最好,合成的软化剂效果不大,矿物油的软化效果最低。4.胶料的硫化速度
白炭黑粒子表面有大量的微孔,对硫化促进剂有较强的吸附作用,因此明显地迟延硫化。为了避免这种现象,一方面可适当地提高促进剂的用量;另一方面可采用活性剂,使活性剂优先吸附在白炭黑表面,这样就减少了它对促进剂的吸附。
活性剂一般是含氮或含氧的胺类、醇类、醇胺类低分子化合物。对NR来说胺类更适合,如二乙醇胺、三乙醇胺、丁二胺、六亚甲基四胺等。对SBR来说,醇类更适合,如己三醇、二甘醇、丙三醇、聚乙二醇等。活性剂用量要根据白炭黑用量、PH值和橡胶品种而定,一般用量为白炭黑的1~3%。
(二)白炭黑对硫化胶性能的影响
白炭黑对各种橡胶都有十分显著的补强作用,其中对硅橡胶的补强效果尤为突出。
白炭黑是一种补强效果仅次于相应炉法炭黑的白色补强剂。含一定量白炭黑的硫化胶与相应炉法炭黑(如HAF)补强的硫化胶相比,具有强度高、伸长率大,撕裂强度高、硬度高、绝缘性好等优点。通常将炭黑和白炭黑并用,可以获得较好的综合性能。五.白炭黑的发展与应用方向 1.存在的问题(1)加工性能;(2)静电问题;(3)价格问题
2.白炭黑的发展与应用方向
当前,白炭黑的发展向高分散性、精细化、造粒化和表面改性化等方面发展。§3-7 有机补强剂
橡胶用有机补强剂包括合成树脂和天然树脂,但并非所有树脂都可用作补强剂。用作补强剂的树脂多为合成产品,如酚醛树脂、石油树脂及古马隆树脂。天然树脂有木质素等。许多树脂在胶料中同时兼有多种功能,如酚醛树脂可用作补强剂、增粘剂、纤维表面粘接剂、交联剂及加工助剂。石油树脂、高苯乙烯树脂也有多种功能。一.酚醛树脂
一般橡胶专用补强酚醛树脂的聚合必须加入第三单体,并通过油或胶乳改性合成的酚醛树脂,使其具有高硬度、高补强、耐磨、耐热及加工安全和与橡胶相容性好的特征。通用橡胶补强酚醛树脂主要有间苯-甲醛二阶酚醛树脂、贾树油或妥尔油改性二阶酚醛树脂和胶乳改性酚醛树脂。
酚醛树脂的化学结构特征如图3-27所示。
图3-27 酚醛树脂的化学结构特征
R1,R2为不同的烷基;X,Y为非金属原子或烷基
线形酚醛树脂商业化的产品主要有:美国Occidental公司的Durez系列、Schenectady公司的SP系列、Summit公司的Duphene系列、Polymer Applications公司的PA53系列;德国BASF公司的Koreforte系列;法国CECA公司的R系列;我国常州常京化学有限公司的PFM系列。
酚醛树脂主要用于刚性和硬度要求很高的胶料中,尤其常用于胎面部位(胎冠和胎面基部)和胎圈部位(三角胶和耐磨胶料)。二.石油树脂
石油树脂是石油裂解副产物的C5、C9馏分经催化聚合所制得的分子量油状或热塑性烃类树脂。按化学成分可分为芳香族石油树脂(C5树脂)、脂肪族石油树脂(C9树脂)、脂肪-芳香族树脂(C5/C9共聚树脂)、双环戊二烯树脂(DCPD树脂)以及这些树脂加氢后的加氢石油树脂。
C5石油树脂还可进一步分为通用型、调和型和无色透明型3种。DCPD树脂又有普通型、氢化型和浅色型3种之分。C9石油树脂,按原材料预处理及软化点分为PR1和PR2两种型号和多种规格。C5石油树脂软化点多在100℃左右,主要作为增粘剂用于NR和IR胶料中。C9石油树脂软化点为 90~100℃,主要用于油墨和涂料;软化点在120℃以上的C9石油树脂还可用作橡胶补强剂。C5/C9石油树脂为C5和C9两种成分兼有的树脂,软化点为 90~100℃,主要用于NR和SBR等橡胶和苯乙烯型热塑性弹性体。DCPD石油树脂软化点为 80~100℃,用于轮胎、涂料和油墨。氢化的DCPD树脂软化点可高达 100~140℃,主要用于各种苯乙烯型热塑性弹性体和塑料中。三.苯乙烯树脂
常用的高苯乙烯树脂由苯乙烯和丁二烯共聚制得,苯乙烯含量在85%左右,有橡胶状、粒状和粉状。高苯乙烯树脂
§3-10 新型纳米增强技术
近年来,橡胶的纳米增强及纳米复合技术日益引起人们浓厚的兴趣。纳米材料已在许多科学领域引起了广泛的重视,成为材料科学研究的热点。纳米复合材料(nanocomposite)被定义为:补强剂(分散相)至少有一维尺寸小于100nm。与传统的复合材料相比,由于纳米粒子带来的纳米效应和纳米粒子与基体间强的界面相互作用,橡胶纳米复合材料具有优于相同组分常规聚合物复合材料的力学性能、热学性能,为制备高性能、多功能的新一代复合材料提供了可能。
作为纳米粉体,炭黑和白炭黑均具有纳米材料的大多数特性(如强吸附效应、自由基效应、电子隧道效应、不饱和价效应等)。根据炭黑和白炭黑的原生粒子以及它们在橡胶基质中的一次聚集体的尺寸,炭黑和白炭黑增强橡胶也属于纳米复合材料。也正因为如此,炭黑和白炭黑的高增强地位一直很难被取代。一.插层复合法 1.原理和分类
插层复合法是制备聚合物/层状硅酸盐纳米复合材料的方法。首先将单体或聚合物插入经插层剂处理的层状硅酸盐片层之间,进而破坏硅酸盐的片层结构,使其剥离成厚为1nm、面积为100nm×100nm的层状硅酸盐基本单元,并均匀分散在聚合物基体中,以实现高分子与粘土类层状硅酸盐在纳米尺度上的复合。按照复合过程,插层复合法可分为两大类。
(1)插层聚合(intercalation polymerization)。先将聚合物单体分散、插层进入层状硅酸盐片层中,然后原位聚合,利用聚合时放出的大量热量克服硅酸盐片层间的作用力,使其剥离,从而使硅酸盐片层与聚合物基体以纳米尺度相复合。
(2)聚合物插层(polymer intercalation)。将聚合物熔体或溶液与层状硅酸盐混合,利用力化学或热力学作用使层状硅酸盐剥离成纳米尺度的片层并均匀分散在聚合物基体中。
按照聚合反应类型的不同,插层聚合可以分为插层缩聚和插层加聚两种。聚合物插层又可分为聚合物溶液插层和聚合物熔融插层两种。从结构的观点来看,聚合物/层状硅酸盐纳米复合材料可分为插层型(intercalated)和剥离型(exfolicated)纳米复合材料两种类型,其结构示意图见图3-28所示。
在插层型聚合物/层状硅酸盐纳米复合材料中,聚合物插层进入硅酸盐片层间,硅酸盐的片层间距虽有所扩大,但片层仍然具有一定的有序性。在剥离型纳米复合材料中,硅酸盐片层被聚合物打乱,无规分散在聚合物基体中的是一片一片的硅酸盐单元片层,此时硅酸盐片层与聚合物实现了纳米尺度上的均匀混合。由于高分子链在层间受限空间与层外自由空间有很大的差异,因此插层型聚合物/层状硅酸盐纳米复合材料可作为各向异性的功能材料,而剥离型聚合物/层状硅酸盐纳米复合材料具有很强的增强效应。
图3-28 聚合物/层状硅酸盐复合材料的结构示意图
(a)相分离型微米复合材料;(b)插层型纳米复合材料;(c)剥离型纳米复合材料 2.层状硅酸盐
具有层状结构的粘土矿物包括高岭土、滑石、膨润土、云母四大类。目前研究较多并具有实际应用前景的层状硅酸盐是2:1型粘土矿物,如钠蒙脱土、锂蒙脱土和海泡石等,其单元晶层结构如图3-29所示。
层状硅酸盐的层间有可交换性阳离子,如Na+、Ca2+、Mg2+等,它们可与无机金属离子、有机阳离子型表面活性剂等进行阳离子交换进入粘土层间。通过离子交换作用导致层状硅酸盐层间距增加。在适当的聚合条件下,单体在片层之间聚合可能使层间距进一步增大,甚至解离成单层,使粘土以1nm厚的片层均匀分散在聚合物基体中。
图3-29 2:1型页硅酸盐单元晶层的结构
(片层的厚度约为1nm,层间距也约为1nm,片层的直径范围约为30nm到几个微米之间)3.插层剂的选用原则
插层剂的选择在制备聚合物/层状硅酸盐纳米复合材料的过程中是极其重要的一个环节,需要根据聚合物基体的种类以及复合工艺的具体条件来选择。
选择合适得插层剂需要重点考虑以下几个方面的因素:
(1)容易进入层状硅酸盐晶片间的纳米空间,并能显著增大粘土晶片间片层间距。
(2)插层剂分子应与聚合物单体或高分子链具有较强的物理或化学作用,以利于单体或聚合物插层反应的进行,并且可以增强粘土片层与聚合物两相间得界面粘结,有助于提高复合材料的性能。(3)价廉易得,最好是现有得工业品。
目前在制备聚合物/层状硅酸盐纳米复合材料时常用的插层剂有烷基铵盐、季铵盐、吡啶类衍生物和其他阳离子型表面活性剂等。层状硅酸盐/橡胶纳米复合材料的性能特点是:纳米分散相为形状比(面积/厚度比)非常大的片层填料,限制大分子变形的能力比球形增强剂更强(但弱于常规短纤维),因而橡胶/粘土纳米复合材料具有较高的模量、硬度、强度等高增强性和其他特殊性能如:优异的气体阻隔性能和耐小分子溶胀和透过性能,耐油、耐磨、减震、阻燃、耐热、耐化学腐蚀。适用于轮胎内胎、气密层、薄膜、胶管、胶辊、胶带、胶鞋等制品。
二、溶胶-凝胶法
用溶胶-凝胶法原位生成SiO2增强橡胶是橡胶的纳米增强领域最为活跃的课题,其原理是将二氧化硅的某些反应前体,如四乙氧基硅烷(TEOS)等引入橡胶基质中,然后通过水解和缩合直接生成均匀分散的纳米尺度的SiO2粒子,从而对橡胶产生优异的增强作用。这种复合技术通常是在硫化胶中完成,TEOS最终在硫化胶网络中形成了粒径为10~50nm的SiO2粒子,该粒子直径分布窄,分散非常均匀,性能明显超过了直接填充沉淀法SiO2增强的橡胶。用此技术已制备了SBR,BR,聚二甲基硅氧烷(PDMS),NBR,IIR等纳米复合材料。橡胶/纳米SiO2复合材料中的分散相分散非常均匀,分散相的化学成分及结构、尺寸及其分布、表面特性等均可以控制,这不但为橡胶增强的分子设计提供了可能性,也为橡胶增强理论的研究提供了对象和素材。用该方法制备的纳米复合材料具有很高的拉伸强度和撕裂强度,优异的滞后生热和动/静态压缩性能,在最优化条件下的综合性能明显超过炭黑和白炭黑增强的橡胶纳米复合材料。限于技术的成熟性和产品的成本,该方法在橡胶工业中的广泛应用仍需进一步探讨。三.原位聚合增强法
近十年来,不饱和羧酸盐/橡胶纳米复合材料的研究日益受到人们的关注。这是一种利用原位自由基聚合生成分散相的纳米复合材料。所谓“原位聚合”增强,是指在橡胶基体中“生成”增强剂,典型的方法如在橡胶中混入一些与基体橡胶有一定相容性的带有反应性官能团的单体物质,然后通过适当的条件使其“就地”聚合成微细分散的粒子,并在橡胶中形成网络结构,从而产生增强作用。不饱和羧酸金属盐增强橡胶就是“原位聚合”增强的典型例子。1.不饱和羧酸盐的制备
不饱和羧酸盐的通式可用Mn+(RCOO-)n表示,其中M为价态为n的金属离子,R为不饱和烯烃。RCOO-可以是丙烯酸(AA)、甲基丙烯酸(MAA)和马来酸等的羧酸根离子,其中AA和MAA等α,β-不饱和羧酸最为常见。不饱和羧酸盐的制备一般是通过金属氧化物或氢氧化物与不饱和羧酸进行中和反应制得的。不饱和羧酸盐也可在橡胶中原位制得,即将金属氧化物和不饱和羧酸直接加入橡胶中,让中和反应在橡胶中原位发生。一般是在密炼机中将金属氧化物和橡胶混合均匀,再加入不饱和羧酸。2.不饱和羧酸盐补强橡胶的特点
早期不饱和羧酸盐作为过氧化物的活性交联助剂,提高交联效率。80年代后,不饱和羧酸盐在橡胶中的应用得到重视,发现不饱和羧酸盐不仅可以改善硫化特性,而且直接用不饱和羧酸盐补强的橡胶也具有较高的硬度和强度,逐渐用于一些产品的制造,如用于高尔夫球芯。日本ZEON公司也开发了商品名为ZSC的复合材料,应用于汽车零部件、油田开采等领域。与传统的炭黑补强相比,不饱和羧酸盐补强橡胶有以下特点:(1)在相当宽的硬度范围内都有着很高的强度;
(2)随着不饱和羧酸盐用量的增加,胶料粘度变化不大,具有良好的加工性能;(3)在高硬度时仍具有较高的伸长率;(4)较高的弹性。
3.不饱和羧酸盐补强橡胶的机理
不饱和羧酸盐补强的橡胶中存在着大量的离子交联键并分散着纳米粒子,这种结构特点使硫化胶具有独特的性能。
离子交联键具有滑移特性,能最大限度地将应力松弛掉,并产生较大的变形,因此能够赋予硫化胶高强度、高的断裂伸长率。不饱和羧酸盐在橡胶基体中发生聚合反应,生成的聚盐以纳米粒子的形式存在在橡胶中,并有一部分不饱和羧酸盐接枝到橡胶大分子上,从而改善了橡胶与填料粒子间的相容性。
橡胶,特别是合成橡胶的增强一直是橡胶领域的重要研究课题。炭黑和白炭黑增强一直占据着主导地位,统治着橡胶工业。而原位纳米复合技术的高分散性、可设计性(物理化学结构、界面、形状、尺寸及其分布等)却是橡胶技术追求的理想境界。因此发展价格低廉的新型纳米增强剂,寻找更科学、适用的纳米复合技术,是橡胶纳米增强研究的一个重要方向。同时,利用纳米复合技术开发特种和功能性新型纳米复合材料,以填补炭黑和白炭黑增强弹性体的性能空缺。
第五篇:电路原理知识总结
电路原理总结
第一章 基本元件和定律
1.电流的参考方向可以任意指定,分析时:若参考方向与实际方向一致,则i>0,反之i<0。
电压的参考方向也可以任意指定,分析时:若参考方向与实际方向一致,则u>0反之u<0。
2. 功率平衡
一个实际的电路中,电源发出的功率总是等于负载消耗的功率。
3. 全电路欧姆定律:U=E-RI 4. 负载大小的意义:
电路的电流越大,负载越大。电路的电阻越大,负载越小。5. 电路的断路与短路
电路的断路处:I=0,U≠0 电路的短路处:U=0,I≠0 二. 基尔霍夫定律 1. 几个概念:
支路:是电路的一个分支。
结点:三条(或三条以上)支路的联接点称为结点。
回路:由支路构成的闭合路径称为回路。网孔:电路中无其他支路穿过的回路称为网孔。
2. 基尔霍夫电流定律:
(1)定义:任一时刻,流入一个结点的电流的代数和为零。
或者说:流入的电流等于流出的电流。(2)表达式:i进总和=0
或: i进=i出
(3)可以推广到一个闭合面。3. 基尔霍夫电压定律
(1)定义:经过任何一个闭合的路径,电压的升等于电压的降。
或者说:在一个闭合的回路中,电压的代数和为零。
或者说:在一个闭合的回路中,电阻上的电压降之和等于电源的电动势之和。(2)表达式:1
或: 2 或: 3(3)基尔霍夫电压定律可以推广到一个非闭合回路
三. 电位的概念
(1)定义:某点的电位等于该点到电路参考点的电压。
(2)规定参考点的电位为零。称为接地。(3)电压用符号U表示,电位用符号V表示
(4)两点间的电压等于两点的电位的差。
(5)注意电源的简化画法。
四. 理想电压源与理想电流源 1. 理想电压源
(1)不论负载电阻的大小,不论输出电流的大小,理想电压源的输出电压不变。理想电压源的输出功率可达无穷大。(2)理想电压源不允许短路。2. 理想电流源
(1)不论负载电阻的大小,不论输出电压的大小,理想电流源的输出电流不变。理想电流源的输出功率可达无穷大。(2)理想电流源不允许开路。
3. 理想电压源与理想电流源的串并联(1)理想电压源与理想电流源串联时,电路中的电流等于电流源的电流,电流源起作用。
(2)理想电压源与理想电流源并联时,电源两端的电压等于电压源的电压,电压源起作用。
4. 理想电源与电阻的串并联
(1)理想电压源与电阻并联,可将电阻去掉(断开),不影响对其它电路的分析。(2)理想电流源与电阻串联,可将电阻去掉(短路),不影响对其它电路的分析。5. 实际的电压源可由一个理想电压源和一个内电阻的串联来表示。
实际的电流源可由一个理想电流源和一个内电阻的并联来表示。五. 支路电流法
1. 意义:用支路电流作为未知量,列方程求解的方法。
2. 列方程的方法:
(1)电路中有b条支路,共需列出b个方程。
(2)若电路中有n个结点,首先用基尔霍夫电流定律列出n-1个电流方程。
(3)然后选b-(n-1)个独立的回路,用基尔霍夫电压定律列回路的电压方程。3. 注意问题:
若电路中某条支路包含电流源,则该支路的电流为已知,可少列一个方程(少列一个回路的电压方程)。六. 叠加原理
1. 意义:在线性电路中,各处的电压和电流是由多个电源单独作用相叠加的结果。2. 求解方法:考虑某一电源单独作用时,应将其它电源去掉,把其它电压源短路、电流源断开。
3. 注意问题:最后叠加时,应考虑各电源单独作用产生的电流与总电流的方向问题。叠加原理只适合于线性电路,不适合于非线性电路;只适合于电压与电流的计算,不适合于功率的计算。七. 戴维宁定理
1. 意义:把一个复杂的含源二端网络,用一个电阻和电压源来等效。2. 等效电源电压的求法: 把负载电阻断开,求出电路的开路电压UOC。等效电源电压UeS等于二端网络的开路电压UOC。
3. 等效电源内电阻的求法:
(1)把负载电阻断开,把二端网络内的电源去掉(电压源短路,电流源断路),从负载两端看进去的电阻,即等效电源的内电阻R0。
(2)把负载电阻断开,求出电路的开路电压UOC。然后,把负载电阻短路,求出电路的短路电流ISC,则等效电源的内电阻等于UOC/ISC。八. 诺顿定理 1. 意义:
把一个复杂的含源二端网络,用一个电阻和电流源的并联电路来等效。
2. 等效电流源电流IeS的求法:
把负载电阻短路,求出电路的短路电流ISC。则等效电流源的电流IeS等于电路的短路电流ISC。
3. 等效电源内电阻的求法: 同戴维宁定理中内电阻的求法。本章介绍了电路的基本概念、基本定律和基本的分析计算方法,必须很好地理解掌握。其中,戴维宁定理是必考内容,即使在本章的题目中没有出现戴维宁定理的内容,在第2章<<电路的瞬态分析>>的题目中也会用到。
第2章 电路的瞬态分析 一. 换路定则: 1. 换路原则是:
换路时:电容两端的电压保持不变,Uc(o+)=Uc(o-)。
电感上的电流保持不变,Ic(o+)= Ic(o-)。原因是:电容的储能与电容两端的电压有关,电感的储能与通过的电流有关。2. 换路时,对电感和电容的处理
(1)换路前,电容无储能时,Uc(o+)=0。换路后,Uc(o-)=0,电容两端电压等于零,可以把电容看作短路。
(2)换路前,电容有储能时,Uc(o+)=U。换路后,Uc(o-)=U,电容两端电压不变,可以把电容看作是一个电压源。
(3)换路前,电感无储能时,IL(o-)=0。换路后,IL(o+)=0,电感上通过的电流为零,可以把电感看作开路。
(4)换路前,电感有储能时,IL(o-)=I。换路后,IL(o+)=I,电感上的电流保持不变,可以把电感看作是一个电流源。
3. 根据以上原则,可以计算出换路后,电路中各处电压和电流的初始值。二. RC电路的零输入响应 三. RC电路的零状态响应 2. 电压电流的充电过程
四. RC电路全响应
2. 电路的全响应=稳态响应+暂态响应
稳态响应 暂态响应 3. 电路的全响应=零输入响应+零状态响应
零输入响应 零状态响应 五. 一阶电路的三要素法: 1. 用公式表示为:
其中: 为待求的响应,待求响应的初始值,为待求响应的稳态值。
2. 三要素法适合于分析电路的零输入响应,零状态响应和全响应。必须掌握。3. 电感电路的过渡过程分析,同电容电路的分析。
电感电路的时间常数是: 六. 本章复习要点
1. 计算电路的初始值
先求出换路前的原始状态,利用换路定则,求出换路后电路的初始值。2. 计算电路的稳定值
计算电路稳压值时,把电感看作短路,把电容看作断路。
3. 计算电路的时间常数τ 当电路很复杂时,要把电感和电容以外的部分用戴维宁定理来等效。求出等效电路的电阻后,才能计算电路的时间常数τ。4. 用三要素法写出待求响应的表达式 不管给出什么样的电路,都可以用三要素法写出待求响应的表达式。第3章 交流电路复习指导
一. 正弦量的基本概念 1. 正弦量的三要素
(1)表示大小的量:有效值,最大值(2)表示变化快慢的量:周期T,频率f,角频率ω.(3)表示初始状态的量:相位,初相位,相位差。
2. 正弦量的表达式:
3. 了解有效值的定义:
4. 了解有效值与最大值的关系:
5. 了解周期,频率,角频率之间的关系:
二. 复数的基本知识:
1. 复数可用于表示有向线段,如图: 复数A的模是r,辐角是Ψ 2. 复数的三种表示方式:(1)代数式:(2)三角式:(3)指数式:(4)极坐标式:
3. 复数的加减法运算用代数式进行。复数的乘除法运算用指数式或极坐标式进行。
4. 复数的虚数单位j的意义:
任一向量乘以+j后,向前(逆时针方向)旋转了,乘以-j后,向后(顺时针方向)旋转了。
三. 正弦量的相量表示法:
1. 相量的意义:用复数的模表示正弦量的大小,用复数的辐角来表示正弦量初相位。相量就是用于表示正弦量的复数。为与一般的复数相区别,相量的符号上加一个小园点。
2. 最大值相量:用复数的模表示正弦量的最大值。
3. 有效值相量:用复数的模表示正弦量的有效值。
4. 例题1:把一个正弦量 用相量表示。解:最大值相量为: 有效值相量为: 5. 注意问题:
正弦量有三个要素,而复数只有两个要素,所以相量中只表示出了正弦量的大小和初相位,没有表示出交流电的周期或频率。相量不等于正弦量。
6. 用相量表示正弦量的意义:
用相量表示正弦后,正弦量的加减,乘除,积分和微分运算都可以变换为复数的代数运算。
7. 相量的加减法也可以用作图法实现,方 3 法同复数运算的平行四边形法和三角形法。四. 电阻元件的交流电路
1. 电压与电流的瞬时值之间的关系:u=Ri 式中,u与i取关联的参考方向 设:(式1)则:(式2)
从上式中看到,u与i同相位。
2. 最大值形式的欧姆定律(电压与电流最大值之间的关系)从式2看到:
3. 有效值形式的欧姆定律(电压与电流有效值之间的关系)从式2看到:
4. 相量形式的欧姆定律(电压相量与电流相量之间的关系)由式1和式2 得: 相位 与相位 同相位。5. 瞬时功率:
6.平均功率:
五. 电感元件的交流电路
1. 电压与电流的瞬时值之间的关系: 式中,u与i取关联的参考方向 设:(式1)则:(式2)从上式中看到,u与i相位不同,u 超前i 2. 最大值形式的欧姆定律(电压与电流最大值之间的关系)从式2看到:
3. 有效值形式的欧姆定律(电压与电流有效值之间的关系)从式2看到:
4. 电感的感抗: 单位是:欧姆
5. 相量形式的欧姆定律(电压相量与电流相量之间的关系)由式1和式2 得:
相位 比相位 的相位超前。6. 瞬时功率:
7.平均功率:
8. 无功功率:用于表示电源与电感进行能量交换的大小 Q=UI=XL
单位是乏:Var
六. 电容元件的交流电路
1. 电压与电流的瞬时值之间的关系:
式中,u与i取关联的参考方向 设:(式1)则:(式2)从上式中看到,u与i不同相位,u 落后i 2. 最大值形式的欧姆定律(电压与电流最大值之间的关系)从式2看到:
3. 有效值形式的欧姆定律(电压与电流有效值之间的关系)从式2看到:
4. 电容的容抗: 单位是:欧姆
5. 相量形式的欧姆定律(电压相量与电流相量之间的关系)由式1和式2 : 得:
相位 比相位 的相位落后。6. 瞬时功率:
7.平均功率:
8. 无功功率:用于表示电源与电容进行能量交换的大小
为了与电感的无功功率相区别,电容的无功功率规定为负。Q=-UI=-XC 单位是乏:Var
七.R、L、C元件上电路与电流之间的相量关系、有效值关系和相位关系如下表所示: 元件
名称 相量关系 有效值 关系 相位关系 相量图 电阻R 电感L 电容C 表1 电阻、电感和电容元件在交流电路中的主要结论
八.RLC串联的交流电路 RLC串联电路的分析
RLC串联电路如图所示,各个元件上的电压相加等于总电压:
1. 相量形式的欧姆定律
上式是计算交流电路的重要公式 2. 复数阻抗:
复阻抗Z的单位是欧姆。
与表示正弦量的复数(例:相量)不同,Z仅仅是一个复数。3. 阻抗模的意义:(1)
此式也称为有效值形式的欧姆定律(2)
阻抗模与电路元件的参数之间的关系
4. 阻抗角的意义:(1)
阻抗角是由电路的参数所确定的。(2)
阻抗角等于电路中总电压与电流的相位差。
(3)当,时,为感性负载,总电压 超前电流 一个 角;
当,时,为容性负载,总电压 滞后电流 一个 角;
当 , 时,为阻性负载,总电压 和电流 同相位;这时电路发生谐振现象。
5. 电压三角形:在RLC串联电路中,电压相量 组成一个三角形如图所示。图中分别画出了、和 三种情况下,电压相量与电流相量之间的关系。
6. 阻抗三角形:
了解R、XL、与 角之间的关系及计算公式。
九.阻抗的串并联 1. 阻抗的串联 电路如图:
(1)各个阻抗上的电流相等:
(2)总电压等于各个阻抗上和电压之和:(3)总的阻抗等于各个阻抗之和:(4)分压公式: 多个阻抗串联时,具有与两个阻抗串联相似的性质。
2. 阻抗的并联 电路如图:
(1)各个阻抗上的电压相等:
(2)总电流等于各个阻抗上的电流之和:(3)总的阻抗的计算公式: 或(4)分流公式: 多个阻抗并联时,具有与两个阻抗并联相似的性质。
3. 复杂交流电路的计算
在少学时的电工学中一般不讲复杂交流电路的计算,对于复杂的交流电路,仍然可以用直流电路中学过的计算方法,如:支路电流法、结点电压法、叠加原理、戴维宁定理等。
十.交流电路的功率
1.瞬时功率:p=ui=UmIm sin(ωt+φ)sinωt=UIcosφ-UIcos(2ωt+φ)2.平均功率:P= = =UIcosφ
平均功率又称为有功功率,其中 cosφ称为功率因数。
电路中的有功功率也就是电阻上所消耗的功率:
3.无功功率:Q=ULI-UCI= I2(XL-XC)=UIsinφ
电路中的无功功率也就是电感与电容和电源之间往返交换的功率。4.视在功率: S=UI
视在功率的单位是伏安(VA),常用于表示发电机和变压器等供电设备的容量。5.功率三角形:P、Q、S组成一个三角形,如图所示。其中φ为阻抗角。它们之间的关系如下:
十一。电路的功率因数 1. 功率因数的意义
从功率三角形中可以看出,功率因数。功率因数就是电路的有功功率占总的视在功率的比例。功率因数高,则意味着电路中的 5 有功功率比例大,无功功率的比例小。2. 功率因数低的原因:
(1)生产和生活中大量使用的是电感性负载 异步电动机,洗衣机、电风扇、日光灯都为感性负载。
(2)电动机轻载或空载运行(大马拉小车)异步电动机空载时cosφ=0.2~0.3,额定负载时cosφ=0.7~0.9。3. 提高功率因数的意义:
(1)提高发电设备和变压器的利用率 发电机和变压器等供电设备都有一定的容量,称为视在功率,提高电路的功率因数,可减小无功功率输出,提高有功功率的输出,增大设备的利用率。(2)降低线路的损耗
由公式,当线路传送的功率一定,线路的传输电压一定时,提高电路的功率因数可减小线路的电流,从而可以降低线路上的功率损耗,降低线路上的电压降,提高供电质量,还可以使用较细的导线,节省建设成本。4. 并联电容的求法一,从电流相量图中导出:
在电感性负载两端并联电容可以补偿电感消耗的无功功率,提高电路的功率因数。电路如图:
计算公式如下:
5. 并联电容的求法二,从功率三角形图中导出: 如图所示,和S1是电感性负载的阻抗角和视在功率,和S是加电容后电路总的阻抗角和视在功率,QL和QC分别是电感和电容的无功功率,Q是电路总的无功功率。
计算公式如下:
十二。本章复习重点
1. 概念题:关于正弦量表达式、相量表达式式、感抗、容抗、阻抗等公式判断正误的题目,如教材各节后面的思考题。可能以填空题、判断题的形式出现。2. 用相量计算交流电路
用相量计算交流电路,是本章的核心内容,必须掌握。但由于复数的计算很费时间,所以本章不会出很复杂的电路计算题。重点应掌握简单交流电路的计算,例如:RLC串联电路、RL串联电路、RL串联后再并联电容等电路。
3. 有些电路不用相量也能计算,甚至比用相量法计算电路要简单。只用阻抗、相位角、有功功率、无功功率、视在功率等相差公式计算电路,例如作业题3.7.1、3.7.2等。第4章 供电与用电复习指导
一、概念题:
1. 星形联结法中线电压与相电压的关系,线电流与相电流的关系。三角形联结法中线电压与相电压的关系,线电流与相电流的关系。
基本要求是:已知一个线电压或相电压的表达式(三角函数式或相量表达式),能写出其它线电压和相电压的表达式。
2.三相负载故障情况(短路、断路)下,电路的分析与简单计算。
3.已知负载的额定相电压,根据三相电源的电压考虑采用何种联结方法(星形或三角形)。
二、简单计算题:
考察三相电路的基本知识,一般用于对称三相电路的计算。
例1:有一电源和负载都是星形联结的对称三相电路,已知电源线电压为 380 V,负载每相阻抗模 为10Ω,试求负载的相电流和线电流。
解:负载相电压 Up = 220 V 负载相电流 Ip =22A 负载线电流 IL = 22 A
三、用相量进行计算的题目
一般用于计算不对称的三相电路。
例3:已知R1=22Ω,R2=38Ω,UL=380V,求线电流的大小。解:用相量法求解。设U相的相电压为
四、用功率相加的方法计算电路 求总的有功功率、无功功率和视在功率的方法是: 总的有功功率等于各个元件的有功功率之和,等于各个支路的有功功率之和,也等于各个部分电路的有功功率之和。
总的无功功率等于各个元件的无功功率之和,等于各个支路的无功功率之和,也等于各个部分电路的无功功率之和。
总的视在功率按式 计算。注意:一般情况下,用此法计算电路,有时比用相量法计算电路要简单一些,此方法也可用于单相交流电路的计算。
第6章 电动机复习指导
一. 本章主要的计算公式及分类 本章公式很多,可归纳总结如下:
1.转速、转差率、极对数、频率之间的关系
2.输出功率、转矩之间的关系
3.输入功率、额定电压、额定电流、额定功率因数之间的关系
4.输入功率、输出功率、损耗和效率之间的关系
5.Y一△起动时起动电流和起动转矩的公式
6. 自耦变压器降压起动时起动电流和起动转矩的公式
7. 其它公式
二. 本章复习重点
(一).概念题:
1.关于转速、转差率、极对数、频率之间的关系的题目。例1.日本和美国的工业标准频率为 60 Hz,他们的三相电动机在 p = 1 和 p = 2 时转速如何?答:分别为3600转/分和1800转/分。
例2.50HZ 的三相异步电动机,转速是 1
440 r/min 时,转差率是多少?转子电流的频率是多少?
答:S=0.04,f2=Sf1=2HZ.2.关于电动机的联接方式(星形或三角形)及简单计算。
例1.额定电压为 380 V / 660 V,星/角联结的三相异步电动机,试问当电源电压分别为 380 V 和 660 V 时各采用什么联结方式?它们的额定电流是否相同?额定相电流是否相同?额定线电流是否相同?若不同,差多少?
答:当电源电压为 380 V 时采用三角形联结方式,当电源电压为 660 V时采用星形联结方式时它们的额定相电流相同,额定线电流不同。
例2:380 V星形联结的三相异步电动机,电源电压为何值时才能接成三角形? 380 V角形联结的三相异步电动机,电源电压为何值时才能接成星形? 答:220 V 和 660 V。
3. 关于星形一三角形起动、自耦变压器降压起动的问题。
例1:星形-三角形减压起动是降低了定子线电压还是降低了定子线电压?自偶减压起动呢?
答:前者是降低了定子相电压,没有降低线电压,后者是降低了定子线电压,使得相电压也随之降低。4. 其它
(二)。计算题:至少会作以下2类题目。1.关于电动机的额定数据的计算。
例1:一台4个磁极的三相异步电动机,定子电压为380V,频率为 50 Hz,三角形联结。在负载转矩 TL = 133 N?m 时,定子线电流为47.5 A,总损耗为 5 kW,转速为1 440r/min。求:(1)同步转速;(2)转差率;(3)功率因数;(4)效率。解:(1)由题目知 p=2,所以
(2)(3)(4)
2.关于能否采用直接起动、星形一三角形起动、自耦变压器降压起动的题目。
例1:某三相异步电动机,PN=30 kW,UN=380 V,三角形联结,IN=63 A,nN=740 r/min,KS=1.8,KI=6,TL=0.9 TN,由 SN = 200 KV ? A 的三相变压器供电。电动机起动时,要求从变压器取用的电流不得超过变压器的额定电流。试问:(1)能否直接起动?(2)能否星-三角起动?(3)能否选用 KA=0.8 的自耦变压器起动? 答:(1)
变压器的额定电流为
虽然 但由于,故不可以直接起动。(2)
由于,故不可以采用星一三角起动。(3)
从变压器取用的电流为:
由于,故可以选用KA=0.8的自耦变压器起动。
第7章电气控制电路复习指导
一.复习内容: 1. 熟悉电气控制电路中常用控制电器的结构、工作原理。包括刀开关、空气开关、行程开关、熔断器、按钮、交流接触器、中间继电器、时间继电器等。
2. 必须理解、掌握并能默写(画)出异步电动机起停控制电路和正反转控制电路,这是本章的核心内容,也是能分析其它控制电路的基础。
3. 理解电气控制电路中的各种保护环节。包括短路保护、过载保护、失压保护、零压保护、互锁(联锁)保护等。
4. 理解电气控制电路中的其它控制功能。例:点动控制、长动控制、自锁控制、顺序控制、时间控制、行程控制等。二.考试例题:
1. 画出异步电动机直接起动的控制电路,要求具有短路保护、过载保护、失压保护、零压保护功能。
2. 画出异步电动机直接起动的控制电路,要求具有短路保护、过载保护、失压保护、零压保护功能。并能进行点动控制和长动控
制。
3. 画出异步电动机正反转控制电路,要求具有短路保护、过载保护、失压保护、零压保护、联锁保护功能。
4. 改错题。要求熟悉电气控制电路的功能和各种控制电器的符号。
5. 能分析和设计简单的顺序控制电路。如两台电动机按一定的顺序起动或停止的控制电路。
6. 能分析和设计简单的行程控制电路。如实现自动往返的控制电路。
由于本章学时很少(只有4学时),讲的内容不是很多,在整个电工学课程(共十几章,每章都有题)中所占比例不是很大,一般不会出难题和大题,前4个题应重点掌握。第8章 半导体器件复习指导
本章复习的重点是概念题、作图题和判断题。
一.概念题
1.关于半导体材料的性质
例1:半导体材料有哪些性质?答:光敏特性、热敏特性、掺杂特性。
例2:P型半导体中,()是多数载流子?()是少数载流子?答:空穴、自由电子。例3:N型半导体中,()是多数载流子?()是少数载流子?答:自由电子、空穴。2.关于关于PN结的性质 例1:PN结加正向电压时,P区接电源的()极,N区接电源的()极。答:正、负。例2:PN结加反向电压时,P区接电源的()极,N区接电源的()极。答:负、正。3.关于二极管的性质
例1:硅二极管的导通电压是()伏,锗二极管的导通电压是()伏?答:0.7V、0.3V。
例2:硅二极管的死区电压是()伏,锗二极管的死区电压是()伏?答:0.5V、0.2V。
例3:二极管的最高反向工作电压是否等于反向击穿电压?答:不相等,约为1/2到2/3。
4.关于晶闸管的性质
例1:晶闸管的导通条件是什么?答:阳极 8 和控制极都加正向电压。二.作图题和判断题
1.关于二极管的题目,一般要用理想二极管来判断。
例1:输入电压是交流电压,画出输出电压和波形。
例2:上题中,输入电压改为直流电压,求输出电压的大小。改变二极管和电阻的位置、改变二极管的方向、改变电源电压的大小,上题可变成多个题目。
例3:A、B端的电位不同,求F 电位。2.关于稳压二极管的题目 要了解稳压管的几种工作状态
稳压管加反向电压,且反向电压大于稳压值,稳压管的电压等于稳压值。
稳压管加反向电压,且反向电压小于稳压值,稳压管不导通。
稳压管加正向电压,稳压管导通,导通电压很小,约0.6-0.7V。
3.关于三极管的三种工作状态。
放大状态:发射结正向偏置、集电结反向偏置。公式 成立。
饱和状态:发射结正向偏置、集电结正向偏置。
UCE约为0.2一0.3V 集电极电流等于集电极饱和电流ICS,截止状态:发射结反向偏置、集电结反向偏置。
UCE等于电源电压 ;集电极电流为零IC=0。
第11章 直流稳压电源复习指导
一. 理解并记住整流电路的16个基本公式 1. 单相半波整流电路
(1)输出电压的大小用平均值来表示
(2)输出电流的平均值
(3)通过二极管的电流平均值
(4)二极管承受反向电压的最大值
2. 单相桥式整流电路
(1)输出电压的大小用平均值来表示
(2)输出电流的平均值
(3)通过二极管的电流平均值
(4)二极管承受反向电压的最大值
3. 单相半波可控整流电路
(1)输出电压的大小用平均值来表示
(2)输出电流的平均值
(3)通过晶闸管的电流平均值
(4)晶闸管承受正反向电压的最大值
4. 单相桥式半控整流电路
(1)输出电压的大小用平均值来表示
(2)输出电流的平均值
(3)通过晶闸管和二极管的电流平均值
(4)晶闸管承受正反向电压的最大值
二. 整流电路加电容滤波后的计算公式 1. 滤波电容的选择公式 单相半波整流电路 单相桥式整流电路 2. 输出电压U0的值
三. 单相桥式整流电路中二极管和电容的故障分析
1. 某二极管断路:电路变为单相半波整流电路。
2. 某二极管短路:造成电源短路。3. 某二极管接反:造成电源短路。4. 滤波电容开路: 5. 负载开路:
四. 整流电路的例题 五.其它概念 1.可控整流电路中控制角和导通角的关系:α+θ=180°。
2.滤波电容的极性。