第一篇:高中化学电池反应大全
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
高中化学电池反应大全
1、伏打电池:(负极—Zn、正极—Cu、电解液—H2SO4)
负极:
Zn–2e-==Zn2+(氧化反应)
正极: 2H++2e-==H2↑
(还原反应)离子方程式
Zn + 2H+ == H2↑+ Zn2+
2、铁碳电池:(负极—Fe、正极—C、电解液H2CO3 弱酸性)
负极: Fe–2e-==Fe2+(氧化反应)
正极:2H++2e-==H2↑
(还原反应)离子方程式 Fe+2H+==H2↑+Fe2+(析氢腐蚀)
3、铁碳电池:(负极—Fe、正极—C、电解液 中性或碱性)负极: 2Fe–4e-==2Fe2+(氧化反应)
正极:O2+2H2O+4e-==4(还原反应)化学方程式
2Fe+O2+2H2O==2Fe(OH)2(吸氧腐蚀)
4Fe(OH)2+O2+2H2O==4Fe(OH)3 2Fe(OH)3==Fe2O3 +3 H2O(铁锈的生成过程)4.铝镍电池:(负极—Al、正极—Ni 电解液 NaCl溶液、O2)负极: 4Al–12e-==4Al3+(氧化反应)
正极:3O2+6H2O+12e-==12(还原反应)化学方程式
4Al+3O2+6H2O==4Al(OH)3(海洋灯标电池)
5、普通锌锰干电池:(负极—Zn、正极—C、电解液NH4Cl、MnO2的糊状物)
精心收集
精心编辑
精致阅读
如需请下载!
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
负极:Zn–2e-==Zn2+(氧化反应)
正极:2MnO2+2H++2e-==Mn2O3+H2O(还原反应)化学方程式
Zn+2NH4Cl+2MnO2=ZnCl2+Mn2O3+2NH3↑
6、碱性锌锰干电池:(负极—Zn、正极—C、电解液KOH、MnO2的糊状物)
负极: Zn + 2OH– 2e-== Zn(OH)2
(氧化反应)正极:2MnO2 + 2H2O + 2e-==2MnOOH +2 OH-(还原反应)化学方程式
Zn +2MnO2 +2H2O == Zn(OH)2 + MnOOH
7、银锌电池:(负极—Zn、正极--Ag2O、电解液NaOH)负极 :Zn+2OH––2e-== Zn(OH)2(氧化反应)正极 :Ag2O + H2O + 2e-== 2Ag + 2 OH-
(还原反应)化学方程式
Zn + Ag2O + H2O == Zn(OH)2 + 2Ag
8、铝–空气–海水(负极--铝、正极--石墨、铂网等能导电的惰性材料、电解液--海水)
负极 :4Al-12e-==4Al3+
(氧化反应)正极 :3O2+6H2O+12e-==12OH-(还原反应)总反应式为: 4Al+3O2+6H2O===4Al(OH)3(铂网增大与氧气的接触面)
9、镁---铝电池
(负极--Al、正极--Mg 电解液KOH)
负极(Al): 2Al + 8 OH–2e-= Cu2+
(氧化反应)
4、电冶金
制取金属钠
:电解熔融状态的氯化钠。2NaCl(熔融)= 2Na + Cl2 ↑
二、金属的腐蚀和防护
金属腐蚀:金属(或合金)跟周围接触到的气体(或液体)反应而腐蚀损耗的过程。
金属腐蚀的本质:金属原子
金属阳离子 金属腐蚀类型:化学腐蚀和电化学腐蚀
化学腐蚀 电化腐蚀
条件 金属跟非金属单质直接接触
不纯金属或合金跟电解质溶液接触
现象
无电流产生
本质
金属被氧化
精心收集
精心编辑
精致阅读
如需请下载!有微弱电流产生
较活泼金属被氧化
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
联系
两者往往同时发生,电化腐蚀更普遍
4.钢铁的析氢腐蚀和吸氧腐蚀比较
析氢腐蚀
吸氧腐蚀
条件
水膜呈酸性。
水膜呈中性或酸性很弱。
电极反应 负极Fe(-)正极C(+)总反应: Fe-2e=Fe2+ 2H++2e-=H2 Fe + 2H+= Fe2+ H2↑
2Fe-4e=2Fe2+ O2+2H2O+4e=4OH-
精心收集
精心编辑
精致阅读 如需请下载!
演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案
2Fe+2H2O+O2= 2 Fe(OH)2 4Fe(OH)2+2H2O+O2=4Fe(OH)3 Fe2O3 ? nH2O
通常两种腐蚀同时存在,但以后者更普遍。
二、金属的电化学保护
1、牺牲负极的正极保护法
2、外加电流阴极保护法
牺牲阳极的阴极保护
其它金属防腐蚀的方法:将金属制成合金,采用喷油漆,涂油脂,电镀,喷镀或表面钝化
精心收集
精心编辑
精致阅读
如需请下载!
第二篇:化学电池的利与弊论文
化学电池的利弊
【摘要】 随着社会经济的快速发展,化学电池在现代社会中的应用十分广泛,而且种类繁多,功能也各不相同。化学电池按工作性质可分为:一次电池(原电池);二次电池(可充电电池);铅酸蓄电池碱性氢氧燃料电池磷酸型燃料电池等等。这些电池的问世既给社会带来好的一面,同时也带来一些弊端,在生产生活中我们要正确对待它。毕竟,“化学电池是把双刃剑”。
【关键词】化学电池工作性质正确对待双刃剑
【引言】化学电池是将化学能直接转变为电能的装置。它在人们日常生活中的应用范围极其广泛。现在我们对化学电池工作原理、种类以及它对环境、对人类健康污染源头的认识一定要到位。只有做到这些我们才能正确的使用好化学电池、才能从本质上对废电池做正确的处理,也只有做到这些、我们的处理方法才会更妥当、化学电池对我们的健康、对环境、才会更有利、才能为我们的生活带来福音。也只有这样,我们对它的处理才不会违背可持续发展、科学发展观、和谐发展的理念,化学电池才会有更好的发展前景。
一、化学电池的发展史简介
1799年,伏特把一块锌板和一块银板浸在盐水里,发现连接两块金属的导线中有电流通过。于是,他就把许多锌片与银片之间垫上浸透盐水的绒布或纸片,平叠起来。用手触摸两端时,会感到强烈的电流刺激。伏特用这种方法成功的制成了世界上第一个电池伏特电堆。这个伏特电堆实际上就是串联的电池组。它成为早期电学实验,电报机的电力来源。
1836年,英国的丹尼尔对伏特电堆进行了改良。他使用稀硫酸作电解液,解决了电池极化问题,制造出第一个不极化,并能保持平衡电流的锌—铜电池,又称丹尼尔电池。此后,又陆续有去极化效果更好的本生电池和格罗夫电池等问世。但是,这些电池都存在电压随使用时间延长而下降的问题。
1860年,法国的普朗泰发明出用铅做电极的电池。这种电池的独特之处是,当电池使用一段使电压下降时,可以给它通以反向电流,使电池电压回升。因为这种电池能充电,可以反复使用,所以称它为蓄电池。
二、化学电池的种类
化学电池按工作性质可分为:一次电池(原电池);二次电池(可充电电池);铅酸蓄电池。其中:一次电池可分为:糊式锌锰电池、纸板锌锰电池、碱性锌锰电池、扣式锌银电池、扣式锂锰电池、扣式锌锰电池、锌空气电池、一次锂锰电池等。二次电池可分为:镉镍电池、氢镍电池、锂离子电池、二次碱性锌锰电池等。铅酸蓄电池可分为:开口式铅酸蓄电池、全密闭铅酸蓄电池。
1.锌锰电池 [1] 锌二氧化锰电池(简称锌锰电池)又称勒兰社(Leclanche)电池,是法国科学家勒兰社(Leclanche,1839-1882)于1868年发明的由锌(Zn)作负极,二氧化锰(MnO2)为正极,电解质溶液采用中性氯化铵(NH4Cl)、氯化锌(ZnCl2)的水溶液,面淀粉或浆层纸作隔离层制成的电池称锌锰电池,由于其电解质溶液通常制成凝胶状或被吸附在其它载体上而呈现不流动状态,故又称锌锰干电池。按使用隔离层区分为糊式和板式电池两种,板式又按电解质液不同分铵型和锌型电池纸板电池两种。干电池用锌制筒形外壳作负极,位于中央的顶盖上有铜帽的石墨棒作正极,在石墨棒的周围由内向外依次是A:二氧化锰粉末(黑色)用于吸收在正极上生成的氢气;B:用饱和氯化铵和氯化锌的淀粉糊作为电解质溶液。
2.碱性锌锰电池[2]
20世纪中期在锌锰电池基础上发展起来的,是锌锰电池的改进型。电池使用氢氧化钾(KOH)或氢氧化钠(NaOH)的水溶液做电解质液,采用了与锌锰电池相反的负极结构,负极在内为膏状胶体,用铜钉做集流体,正极在外,活性物质和导电材料压成环状与电池外壳连接,正、负极用专用隔膜隔开制成的电池。
3.铅酸蓄电池[3]
1859年法国普兰特(Plante)发现,由正极板、负极板、电解液、隔板、容器等5个基本部分组成。用二氧化铅作正极活性物质,铅作负极活性物质,硫酸作电解液,微孔橡胶、烧结式聚氯乙烯、玻璃纤维、聚丙烯等作隔板制成的电池。铅蓄电池可放电也可以充电,一般用硬橡胶或透明塑料制成长方形外壳;正极板上有一层棕褐色的二氧化铅,负极是海绵状的金属铅,正负电极之间用微孔橡胶或微孔塑料板隔开(以防止电极之间发生短路);两极均浸入到硫酸溶液中。放电时为原电池,其电极反应如下: 负极:Pb + SO42-- 2e = PbSO4
正极:PbO2 + 4H+ + SO42- + 2e = PbSO4+ 2H2O
总反应式为:Pb + PbO2 + 2H2SO4 = 2PbSO4 + 2H2O
当放电进行时,硫酸溶液的的浓度将不断降低,当溶液的密度降到一定浓度时应停止使用进行充电,充电时为电解池,其电极反应如下:
阳极:PbSO4 + 2H2O--2e = PbO2 + 4H+ + SO42-
阴极:PbSO4 + 2e = Pb + SO42-
总反应式为:2PbSO4 + 2H2O = Pb + PbO2 + 2H2SO4
当溶液的密度升到一定浓度时,应停止充电。
4.锌银电池
一般用不锈钢制成小圆盒形,圆盒由正极壳和负极壳组成,形似纽扣(俗称纽扣电池)。盒内正极壳一端填充由氧化银和石墨组成的正极活性材料,负极盖一端填充锌汞合金组成的负极活性材料,电解质溶液为KOH浓溶液。电极反应式如下:
负极:Zn + 2OH- -2e= ZnO + H2O
正极:Ag2O + H2O + 2e = 2Ag + 2OH-
电池的总反应式为:Ag2O + Zn = 2Ag + ZnO
电池的电压一般为1.59V左右,使用寿命较长。
5.锂电池
锂电池是一类以金属锂或含锂物质作为负极材料的化学电源的总称通称锂电池,分为一次锂电池和二次锂电池。
6.锂离子电池
指能使锂离子嵌入和脱嵌的碳材料代替纯锂作负极,锂的化合物作正极,混合电解液作电解质液制成的电池。锂离子电池是1990年有日本索尼公司研制出并首先实现产品化。国内外已商品化的锂离子电池正极是LiCoO2,负极是层状石墨。
7.海水电池
1991年,我国科学家首创以铝---空气---海水为材料组成的新型电池,用作航海标志灯。该电池以取之不尽的海水为电解质,靠空气中的氧气使铝不断氧化而产生电流。其电极反应式如下:
负极:4Al – 12e = 4Al3+
正极:3O2 + 6H2O + 12e = 12OH-
总反应式为:4Al + 3O2 + 6H2O = 4Al(OH)3
这种电池的能量比普通干电池高数十倍。
8.碱性氢氧燃料电池[5]
这种电池用30%-50%KOH为电解液,在100°C以下工作。燃料是氢气,氧化剂是氧气,电池反应为:
负极 2H2 + 4OH―4e=4H2O
正极 O2 + 2H2O + 4e=4OH-
总反应 2H2 + O2=2H2O
现在对碱性氢氧燃料电池的前景评价不一。否定者认为电池所用的电解质KOH很容易与来自燃料气或空气中的CO2反应,生成导电性能较差的碳酸盐。另外,虽然燃料电池所需的贵金属催化剂载量较低,但实际寿命有限。肯定者则认为该燃料电池的材料较便宜,若使用天然气作燃料时,它比已经商业化的磷酸型燃料电池的成本还要低。
三、废旧化学电池的危害
1.卫生填埋导致渗滤液污染[6]
填埋过程会产生大量的垃圾渗滤液,它是在垃圾堆放和填埋过程中有机质发酵分解和受降水的淋溶、冲刷,以及地表水和地下水的浸泡而滤出的,具有高色度、高有机质负荷、高致病性且成分复杂。废干电池中含有多种重金属,其中Hg、Cd、Pb被视为威胁人类健康的“三大危险金属”。汞及其化合物,特别汞盐和汞蒸气,具有极强的生物毒性,口服、触摸或者吸入后可导致脑和肝损伤。汞在人体上积累,很容易被表面皮肤吸收,日本水俣病则是汞中毒的反面例子;镉易在动植物体内富集,影响动植物的生长,具有很强的毒性,而人类作为食物链上层的生物,从食物中蓄积的镉可导致肝、肾的中毒和骨质疏松;铅可对人的胸、肾脏、心血管等器官和系统产生不良影响,大多数小儿多动症的患者在检测中血铅含量超标。
2.破坏水体及其土壤[7]
一粒纽扣电池可污染60万升水,几乎是一个人一生的饮水量;而一节汞电池烂在地里,能够使1m2的土地失去农业利用价值。大部分废旧电池混入生活垃圾中,被遗弃后,电池慢慢腐烂,其外壳会慢慢腐蚀,而重金属物质溶出,会逐渐渗入水体和土壤,造成污染,最终将会逐级在生物中腹肌,然后通过各种渠道进入人类的食物链,对人类造成极大的危害。重金属污染的最大特点是它在自然界是不能利用任何物理、化学方式降解,只能通过环境净化作用,将重金属污染物稀释或消除。
3.焚烧产生二噁英[8]
化学电池随着生活垃圾的排出后集体焚烧,铅、铜等化学电池里包括的重金属离子会对Cl离子产生催化作用而生成二噁英。二噁英是迄今为止发现的最具致癌潜力的物质,被称为“世纪之毒”。人体过量摄入二噁英会引起胸腺萎缩、头痛、失聪等症状,并可能导致染色体损伤、心力衰竭等,甚至产生不可逆的“三致”效应:致畸、致癌和致突变。同样,二噁英也及其容易地积累在动物体内,特别容易存在于动物脂肪和乳汁内,威胁着人类的安全。
四、应对化学电池危害的对策
1.出台或更新完善的、专门的法律法令
戴志群认为,在销售电池时,实行抵押金制度,或采用以旧换新制度,确保废旧电池的回收率;加大宣传力度,提高全民环境意识,树立废旧电池必须回收利用的观念;电池生产厂家也应在废旧电池回收利用方面做出应有的贡献,如交纳特殊行业污染税以承担一定的回收处理费用等。制定相关的政策法规,规定废旧电池必须回收,禁止将废旧电池随意丢入生活垃圾中;制定科学合理的电池生产包装标准,以简化废旧电池回收后的分类。
2.完善废旧电池回收体系
我国应尽快建立废旧电池的回收体系,包括从收集、运输、分类到最后可综合利用的综合利用,不可综合利用的进行处理。
3.积极开发新型化学电源
奥地利维也纳科技大学的研究人员首次开发出由二硒化钨(WSe2)制作的二极管。实验显示,这种材料可被用于超薄柔性太阳电池。研究人员一直在探索找到一种能以超薄层迭的方式排列,但又具有更佳电子特性的材料,它必须类似于石墨烯,而且具有更好的电子特性。利用像二硒化钨等环保新型材料来制造化学电池,一方面可以减少对环境和人体的危害,另一方面可以缓解对电池的需求。
【结论】通过以上论述,我们对化学电池的认识更加深刻,我们知道了很多种类的化学电池以及它们的工作原理、它们的构造、各种化学电池的优点、缺点。所以要想让它们为我们的生产生活服务,我们就要必须抓住他们的优点,避免他们的缺点,正确地利用好化学电池、处理好废旧电池,只有这样,我们对电池的利用与处理才能有更好的效果。
参考文献
[1]张玲,陈磊磊.化学教学[J].上海.2010,(8).[2]严宣申.普通无机化学(第二版)[M],北京,北京大学出版社.2000,134-138.[3]于同双.蓄电池[J],沈阳.2008,(12).[4]严宣申.普通无机化学[M],北京大学出版社.2000,97-104.[5]天津大学化学教研室.无机化学(第三版)[M],北京,高等教育出版社.2002,201-211.[6]杨一鸣.废干电池填埋处理的重金属浸出特征及健康风险评估[J].环境工程,2014,S1:826-830.[7]马云梅.浅谈化学电池的危害与回收利用[J].陕西教育(高教版).2011,Z1:101-102.[8] 张刚.城市固体废物焚烧过程二噁英与重金属排放特征及控制技术研究[D].华南理工大学.2013.
第三篇:化学电池的研究论文全解
本 科 论 文
题 目:学 院:专 业:年
级:姓 名: 化学电池的研究
摘要
通过前人的研究得知化学电池是将化学能直接转变为电能的装置。而这一理论
历了伏特的“伏特电堆”,才有化学电池(原电池和蓄电池两种)的问世。而化学电池按工作性质可分为:一次电池(原电池);二次电池(可充电电池);铅酸蓄电池碱性氢氧燃料电池磷酸型燃料电池等等。这些电池的问世既给社会带来好的一面,同时也带来一些弊端。生产生活中我们要正确对待它。毕竟,“化学电池是把双刃剑”。
关键词:化学电池;发展史;种类;废电池处理
引言
化学电池是将化学能直接转变为电能的装置。它在人们日常生活中的应用范围极其广泛。现在我们就对化学电池工作原理(主要部分是电解质溶液、浸在溶液中的正、负电极和连接电极的导线)、种类以及它对环境、对人类健康污染源头的认识一定要到位。只有做到这些我们才能正确的使用好化学电池、才能从本质上对废电池做正确的处理,也只有做到这些、我们的处理方法才会更妥当、化学电池对我们的健康、对环境、才会更有利、才能为我们的生活带来福音。也只有这样,我们对它的处理才不会违背可持续发展、科学发展观、和谐发展的理念。化学电池才会有更好的发展前景,我们的明天才会更加的美好。
一 化学电池的发展史简介
1799年,伏特把一块锌板和一块银板浸在盐水里,发现连接两块金属的导线中有电流通过。于是,他就把许多锌片与银片之间垫上浸透盐水的绒布或纸片,平叠起来。用手触摸两端时,会感到强烈的电流刺激。伏特用这种方法成功的制成了世界上第一个电池—— “伏特电堆”。这个“伏特电堆”实际上就是串联的电池组。它成为早期电学实验,电报机的电力来源。
1836年,英国的丹尼尔对 “伏特电堆”进行了改良。他使用稀硫酸作电解液,解决了电池极化问题,制造出第一个不极化,能保持平衡电流的锌—铜电池,又称“丹尼尔电池”。此后,又陆续有去极化效果更好的 “本生电池”和 “格罗夫电池”等问世。但是,这些电池都存在电压随使用时间延长而下降的问题。
1860年,法国的普朗泰发明出用铅做电极的电池。这种电池的独特之处是,当电池使用一段使电压下降时,可以给它通以反向电流,使电池电压回升。因为这种电池能充电,可以反复使用,所以称它为“ 蓄电池”。
然而,无论哪种电池都需在两个金属板之间灌装液体,因此搬运很不方便,特别是蓄电池所用液体是硫酸,在挪动时很危险。
二 化学电池的种类
化学电池按工作性质可分为:一次电池(原电池);二次电池(可充电电池);铅酸蓄电池。其中:一次电池可分为:糊式锌锰电池、纸板锌锰电池、碱性锌锰电池、扣式锌银电池、扣式锂锰电池、扣式锌锰电池、锌空气电池、一次锂锰电池等。二次电池可分为:镉镍电池、氢镍电池、锂离子电池、二次碱性锌锰电池等。铅酸蓄电池可分为:开口式铅酸蓄电池、全密闭铅酸蓄电池。
1.锌锰电池
锌二氧化锰电池[1](简称锌锰电池)又称勒兰社(Leclanche)电池,是法国科学家勒兰社(Leclanche,1839-1882)于1868年发明的由锌(Zn)作负极,二氧化锰(MnO2)为正极,电解质溶液采用中性氯化铵(NH4Cl)、氯化锌(ZnCl2)的水溶液,面淀粉或浆层纸作隔离层制成的电池称锌锰电池,由于其电解质溶液通常制成凝胶状或被吸附在其它载体上而呈现不流动状态,故又称锌锰干电池。按使用隔离层区分为糊式和板式电池两种,板式又按电解质液不同分铵型和锌型电池纸板电池两种。
干电池用锌制筒形外壳作负极,位于中央的顶盖上有铜帽的石墨棒作正极,在石墨棒的周围由内向外依次是A:二氧化锰粉末(黑色)------用于吸收在正极上生成的氢气;B:用饱和了氯化铵和氯化锌的淀粉糊作为电解质溶液。
2.碱性锌锰电池[2]
20世纪中期在锌锰电池基础上发展起来的,是锌锰电池的改进型。电池使用氢氧化钾(KOH)或氢氧化钠(NaOH)的水溶液做电解质液,采用了与锌锰电池相反的负极结构,负极在内为膏状胶体,用铜钉做集流体,正极在外,活性物质和导电材料压成环状与电池外壳连接,正、负极用专用隔膜隔开制成的电池。
3.铅酸蓄电池[3]
1859年法国普兰特(Plante)发现,由正极板、负极板、电解液、隔板、容器等5个基本部分组成。用二氧化铅作正极活性物质,铅作负极活性物质,硫酸作电解液,微孔橡胶、烧结式聚氯乙烯、玻璃纤维、聚丙烯等作隔板制成的电池。
铅蓄电池可放电也可以充电,一般用硬橡胶或透明塑料制成长方形外壳;正极板上有一层棕褐色的二氧化铅,负极是海绵状的金属铅,正负电极之间用微孔橡胶或微孔塑料板隔开(以防止电极之间发生短路);两极均浸入到硫酸溶液中。放电时为原电池,其电极反应为:
负极:Pb + SO42-- 2e === PbSO4
正极:PbO2 + 4H+ + SO42- + 2e === PbSO4+ 2H2O
总反应式为:Pb + PbO2 + 2H2SO4 ====== 2PbSO4 + 2H2O
当放电进行时,硫酸溶液的的浓度将不断降低,当溶液的密度降到一定浓度时应停止使用进行充电,充电时为电解池,其电极反应如下:
阳极:PbSO4 + 2H2O--2e === PbO2 + 4H+ + SO42-
阴极:PbSO4 + 2e === Pb + SO42-
总反应式为:2PbSO4 + 2H2O ====== Pb + PbO2 + 2H2SO4
当溶液的密度升到一定浓度时,应停止充电。
4.锌银电池
一般用不锈钢制成小圆盒形,圆盒由正极壳和负极壳组成,形似纽扣(俗称纽扣电池)。盒内正极壳一端填充由氧化银和石墨组成的正极活性材料,负极盖一端填充锌汞合金组成的负极活性材料,电解质溶液为KOH浓溶液。电极反应式如下:
负极:Zn + 2OH- -2e=== ZnO + H2O
正极:Ag2O + H2O + 2e === 2Ag + 2OH-
电池的总反应式为:Ag2O + Zn ====== 2Ag + ZnO
电池的电压一般为1.59V左右,使用寿命较长。
5.镉镍电池和氢镍以及金属氢化物镍电池
二者均采用氧化镍或氢氧化镍作正极,以氢氧化钾或氢氧化钠的水溶液作电解质溶液,金属镉或金属氢化物作负极。金属氢化物电池为20世纪80年代,利用吸氢合金和释放氢反应的电化学可逆性发明制成,是小型二次电池主导产品。
6.锂电池 锂电池是一类以金属锂或含锂物质作为负极材料的化学电源的总称通称锂电池,分为一次锂电池和二次锂电池。
7.锂离子电池
指能使锂离子嵌入和脱嵌的碳材料代替纯锂作负极,锂的化合物作正极,混合电解液作电解质液制成的电池。锂离子电池是1990年有日本索尼公司研制出并首先实现产品化。国内外已商品化的锂离子电池正极是LiCoO2,负极是层状石墨。
8.熔融盐燃料电池
这是一种具有极高发电效率的大功率化学电池,按其所用燃料或熔融盐的不同,有多个不同的品种,如天然气、CO、---熔融碳酸盐型、熔融磷酸盐型等等,一般要在一定的高温下才能工作。
负极反应式:2CO + 2CO32--4e === 4CO
2正极反应式:O2 + 2CO2 + 4e=== 2CO32-
总反应式为:2CO + O2=== 2CO2
该电池的工作温度一般650oC 左右。9.海水电池
1991年,我国科学家首创以铝---空气---海水为材料组成的新型电池,用作航海标志灯。该电池以取之不尽的海水为电解质,靠空气中的氧气使铝不断氧化而产生电流。其电极反应式如下:
负极:4Al – 12e === 4Al3+
正极:3O2 + 6H2O + 12e === 12OH-
总反应式为:4Al + 3 O2 + 6H2O === 4Al(OH)
3这种电池的能量比普通干电池高数十倍。
本段是新型化学电池(1)碱性氢氧燃料电池[5]
这种电池用30%-50%KOH为电解液,在100°C以下工作。燃料是氢气,氧化剂是氧气。其电池图示为(―)C|H2|KOH|O2|C(+)
电池反应为 负极 2H2 + 4OH―4e=4H2O
正极 O2 + 2H2O + 4e=4OH-
总反应 2H2 + O2=2H2O
碱性氢氧燃料电池早已于本世纪60年代就应用于美国载人宇宙飞船上,也曾用于叉车、牵引车等,但其作为民用产品的前景还评价不一。否定者认为电池所用的电解质KOH很容易与来自燃料气或空气中的CO2 反应,生成导电性能较差的碳酸盐。另外,虽然燃料电池所需的贵金属催化剂载量较低,但实际寿命有限。肯定者则认为该燃料电池的材料较便宜,若使用天然气作燃料时,它比已经商业化的磷酸型燃料电池的成本还要低。
(2)磷酸型燃料电池
它采用磷酸为电解质,利用廉价的炭材料为骨架。它除以氢气为燃料外,现在还有可能直接利用甲醇、天然气、城市煤气等低廉燃料,与碱性氢氧燃料电池相比,最大的优点是它不需要CO2处理设备。磷酸型燃料电池已成为发展最快的,也是目前最成熟的燃料电池,它代表了燃料电池的主要发展方向。目前世界上最大容量的燃料电池发电厂是东京电能公司经营的11MW美日合作磷酸型燃料电池发电厂,该发电厂自1991年建成以来运行良好。近年来投入运行的100多个燃料电池发电系统中,90%是磷酸型的。市场上供应的磷酸型发电系统类型主要有日本富士电机公司的50KW或100KW和美国国际燃料电池公司提供的200KW。
富士电机已提供了70多座电站,现场寿命超过10万小时。
磷酸型燃料电池目前有待解决的问题是:如何防止催化剂结块而导致表面积收缩和催化剂活性的降低,以及如何进一步降低设备费用。
三 废电池的危害与处理方法[6]
1、电池的危害[7]
一般的电池主要成分为碳棒、碳粉、铝皮、包装纸,其中含有铁、碳、锌、锰、铝等元素以及一些微量的汞、镉、镍等元素,虽然所含的汞、镍含量极少,但其是重金属,所以对人体、环境的危害却不可估量。
(1)废电池对人体的危害。汞是一种毒性很强的重金属,对人体中枢神经的破坏力很大,上世纪五十年代发生在日本的震惊中外的水俣病就是由于汞污染造成的。目前我国生产的含汞碱性干电池的汞含量达1%—5%,中性干电池的汞含量为0.025%,我国电池生产消耗的汞每年就达几十吨之多。镉在人体内极易引起慢性中毒,主要病症是肺气肿、骨质软化、贫血,严重使人体瘫痪。而铅进入人体后最难排泄,它干扰肾功能、生殖功能。
(2)废电池对环境的危害。目前,我国的废电池几乎都和生活垃圾一起排出;而生活垃圾多以堆肥,焚烧,填埋三种方式处理。据检验,我国有的城市每吨垃圾汞含量竟高达1.7~5.1g,其中70%来自废电池。当生活垃圾堆肥处理时,会因含汞等重金而影响发酵;当生活垃圾焚烧处理时,烟气中的汞含量也高达1~5mg/Nmз,超过世界保健机构规定的标准60~300倍;当生活垃圾填埋处理时,电池中的重金属可能随滤液一起渗漏出,成为污染土壤和地下水的永久隐患。有关资料显示,一节一号电池烂在地里,能使1平方米的土壤永久失去利用价值;一粒纽扣电池可使600吨水受到污染,相当于一个人一生的饮水量。在对自然环境威胁最大的几种物质中,电池里就包含了汞、铅、镉等多种,若将废旧电池混入生活垃圾一起填埋,或者随手丢弃,渗出的汞及重金属物质就会渗透于土壤、污染地下水,进而进入鱼类、农作物中,破坏人类的生存环境,间接威胁到人类的健康。
2:处理方法[8]
(1)堆肥法:当生活垃圾堆肥处理时,会因含汞等重金属而影响发酵,这种处理方法对人体和环境都有害。
(2)焚烧法:当生活垃圾焚烧处理时,烟气中的汞含量也高达1~5mg/Nmз,超过世界保健机构规定的标准60~300倍,危害更大。
(3)填埋法:当生活垃圾填埋处理时,电池中的重金属可能随滤液一起渗漏出,成为污染土壤和地下水的永久隐患。
(4)热处理法:瑞士有两家专门加工利用旧电池的工厂,巴特列克公司采取的方法是将旧电池磨碎,然后送往炉内加热,这时可提取挥发出的汞,温度更高时锌也蒸发,它同样是重金属。铁和锰融合成后成为炼钢所需的锰铁合金,该工厂一年可以加工2000吨废电池,可获得780吨锰铁合金,4000吨锌合金及3吨汞。另一家工厂则是从电池中提取铁元素,并将氧化锰、氧化锌、氧化铜和氧化镍等金属混合物作为金属直接出售。
(5)湿处理法:德国马格德堡近郊区正兴建一个“湿处理”装置,在这里除铅蓄电池外,各类电池均溶解于硫酸,然后借助离子树脂从溶液中提取各种金属物,用这种方式获得的原料比热处理方法纯净,因而在市场上售价也更高,而且电池中包含的各种物质有95%都能提取出来。湿处理可省去分拣环节(因为分拣是手工操作,会增加成本。)马格德堡这套装置年加工能力可达7500吨,其成本虽然比填埋方法略高,但贵重原料不致丢弃也不会污染环境。
(6)真空热处理法[9]:德国阿尔特公司研制的真空热处理法还要便宜,不过这首先需要在废电池中分拣出镍镉电池,废电池在真空中加热,其中汞迅速蒸发,即可将其回收,然后将剩余原料磨碎,后用磁体提取金属铁,再从余下粉末中提取镍和锰。
结论
通过以上论述,我们对化学电池的认识更加深刻,我们知道了很多种类的化学电池以及它们的工作原理、它们的构造、各种化学电池的优点、缺点。所以要想让它们为我们的生产生活服务、为社会主义建设社会服务,我们就要必须抓住他们的优点、知道他们的缺点、以至于扬长避短。这样正确地利用好化学电池、处理好废旧电池,也只有这样,我们对电池的利用与处理才能更佳;也只有这样,我们的生活才能更美好,社会主义的明天才更加美好。
参考文献
[1]张玲,陈磊磊.化学教学[J].上海.2010 ,(8)[2]严宣申.普通无机化学(第二版)[M], 北京, 北京大学出版社.2000, 134-138.[3]于同双.蓄电池[J] ,沈阳.2008,(12).[4]严宣申.普通无机化学[M], 北京大学出版社.2000,97-104.[5]天津大学化学教研室.无机化学(第三版)[M], 北京, 高等教育出版社.2002., 201-211.[6]人力资源和社会保障部教材办公室, 化学电池制造工[J], 北京.2005,(17).[7]废电池污染防治技术政策.国家环境保护总局[J].2003,(22).[8]期崔燕,王海宁.技情报开发与经济[J] , 北京.2007,(8).[9]戴志群,黄思良.化学废旧电池的环境污染和利用[J] ,江苏.2005 ,(13).
第四篇:反应情况材料
反应情况材料
各位领导:
反应人:滦平县巴克什营镇缸房村三居民组。反应情况:
1:村委,在没经村民及村民
2:缸房村三居民组认为2001年1月2日
山承包合同是无效的。
事实和理由:2001年1月2日朱国阳与巴克什营镇缸房村签订的荒山使用合同存在如下瑕疵:
1:没有村民代表签字,全体村民也不知情,发现违法使用大东沟时,三居民组一直找有关部门维权,至今没有结果。
2:签订合同以来,大东沟从未绿化治理过。
3:发现两份合同内容第四条:大东沟使用权出让日期自相矛盾,一份是‘2001年1月2日至2031年1月2日’,没有村委印章;一份是‘2001年1月2日至2071年1月1日’,有村委印章。中华人民共和国土地管理法
第二十条 耕地的承包期为三十年。草地的承包期为三十年至五十年。林地的承包期为 三十年至七十年;特殊林木的林地承包期,经国务院林业行政主管部门批准可以延长。
4: 非法开矿,矿渣肆意堆积在原有的土地上。
中华人民共和国土地管理法 第六十五条 有下列情形之一的,农村集体经济组织报经原批准用地的人民政府批准,可以收回土地使用权:
(一)为乡(镇)村公共设施和公益事业建设,需要使用土地的;
(二)不按照批准的用途使用土地的;
(三)因撤销、迁移等原因而停止使用土地的。
5:破坏耕地面积20余亩,毁坏山地160多亩,砍伐原有树木25000多棵。破坏环境资源保护罪 第三百四十二条 违反土地管理法规,非法占用耕地、林地等农用地,改变被占用土地用途,数量较大,造成耕地、林地等农用地大量毁坏的,处五年以下有期徒刑或者拘役,并处或者单处罚金。中华人民共和国土地管理法
第六十条 承包方违法将承包地用于非农建设的,由县级以上地方人民政府有关行政主管部门依法予以处罚。
承包方给承包地造成永久性损害的,发包方有权制止,并有权要求承包方赔偿由此造成的损失。
情况反应人:三居民组及全体村民
2005年
月
日 附全体三居民组居民签字:
第五篇:高中生物学实验的各种颜色反应总结
高中生物学实验的各种颜色反应总结
1、斐林试剂检测可溶性还原糖 原理:还原糖+斐林试剂→砖红色沉淀
注意:斐林试剂的甲液和乙液要等量混合均匀后方可使用,而且是现用现配,条件需要水浴加热。
应用:检验和检测某糖是否为还原糖;不同生物组织中含糖量高低的测定;在医学上进行疾病的诊断,如糖尿病、肾炎。
2、苏丹Ⅲ、苏丹Ⅳ检测脂肪
原理:苏丹Ⅲ+脂肪→橘黄色;苏丹Ⅳ+脂肪→红色 注意:脂肪的鉴定需要用显微镜观察。应用:检测食品中营养成分是否含有脂肪。
3、双缩脲试剂检测蛋白质 原理:蛋白质+双缩脲试剂→紫色
注意:双缩脲试剂在使用时,先加A液再加B液,反应条件为常温(不需要加热)。应用:鉴定某些消化液中含有蛋白质;用于劣质奶粉的鉴定。
4、碘液检测淀粉 原理:淀粉+碘液→蓝色
注意:这里的碘是单质碘,而不是离子碘。应用:检测食品中营养成分是否含有淀粉
5、DNA的染色与鉴定 染色原理:DNA+甲基绿→绿色 应用:可以显示DNA在细胞中的分布。鉴定原理:DNA+二苯胺→蓝色
应用:用于DNA粗提取实验的鉴定试剂。
6、吡罗红使RNA呈现红色 原理:RNA+吡罗红→红色
应用:可以显示RNA在细胞中的分布。
注意:在观察DNA和RNA在细胞中的分布时用的是甲基绿和吡罗红混合染色剂,而不是单独染色。
7、线粒体的染色
原理:健那绿染液是专一性染线粒体的活细胞染料,可以使活细胞中的线粒体呈现蓝绿色,而细胞质接近无色。
应用:可以用高倍镜观察细胞中线粒体的存在。
8、酒精的检测
原理:橙色的重铬酸钾溶液在酸性条件下与酒精发生化学反应,变成灰绿色。应用:探究酵母菌细胞呼吸的方式;制作果酒时检验是否产生了酒精;检查司机是否酒后驾驶。
9、CO2的检测
原理:CO2可以使澄清的石灰水变混浊,也可使溴麝香草酚蓝水溶液由蓝变绿在变黄。
应用:根据石灰水混浊程度或溴麝香草酚蓝水溶液变黄的时间长短,可以检测酵母菌培养液中CO2的产生情况。
10、染色体(或染色质)的染色
原理:染色体容易被碱性染料(如龙胆紫溶液或醋酸洋红溶液)染成深色。应用:用高倍镜观察细胞的有丝分裂。