第一篇:电动车制动行程问题分析报告
电动车制动行程问题分析报告
问题描述:
根据反馈,电动车制动行程过长,尤其是加装刹车助力后,行程长并且刹车前段太软,容易造成急刹、点头、制动反应时间过长等问题,影响行车安全及操纵舒适性。
经实际测量,加装刹车助力的电动车制动踏板行程为110mm左右。国家标准“GB7258-2004 机动车运行安全技术条件”7.2.9条规定:液压行车制动在达到规定的制动效能时,踏板行程不应大于踏板全行程的3/4,制动器装有自动调整间隙的机动车的踏板行程不应大于踏板全行程的4/5,且乘用车不应大于120mm,其他机动车不应大于150mm。我们的电动车虽能达到国标要求,但是影响行车安全及操纵舒适性。
原因分析:
针对上述问题,电动车及车桥研究所相关技术人员从两方面入手分析问题原因:
其一:根据实际情况调整相应零部件进行各种测试实验。首先更换了后制动分泵(缸径由22.22mm调整为19.05mm),调整后经试车测试制动效果无明显改善。随后推测因制动蹄与制动鼓间隙之间的间隙过大造成制动行程过长问题。为研究该问题,后桥所安排制作了专用的测试制动鼓(铣去制动鼓部分壳体,方便测量内部结构数据)。跟换后测量制动蹄与制动鼓间隙,因无专用工具,直接测量间隙数据准确性及精度不高,仅作为参考。随后测量了完全制动时各轮毂分泵的工作行程。前制动分泵工作行程为1.2mm,后制动分泵工作行程为1.78mm。该数据经多次测量,且测量方法简单(游标卡尺直接量取),因此可作为理论计算数据。同时,还测量了制动踏板机构和制动总泵、真空助力器的工作行程。用自制封口管螺栓封住制动总泵出油口,测量制动踏板工作行程为35~40mmm。由于自制管螺栓中存在少量空气,因此该测量数据存在误差,作为参考数据。根据以上测量数据判断,制动分泵工作行程大是造成制动行程过大的主要原因。分泵工作行程与制动鼓和制动蹄之间的间隙(应不大于0.5mm)、加工精度以及部件刚度有关。结合相关技术资料,我对制动系统的相关数据进行了详细的计算分析,具体计算过程在下文中叙述。
其二:查阅相关技术资料,包括制动系统设计资料、汽车工程手册和相关国家标准等。根据相关技术资料及上述测量数据,我对制动踏板的工作行程进行了理论值计算,如下:
制动踏板的工作行程xp为
XpIp(Smm1m2)
式中
Ip——踏板机构传动比;(GD004为4.88mm)
Sm——总泵活塞行程;
m1——主缸中推杆与活塞间的间隙;(GD004为 1.5mm)
m2——主缸活塞空行程;(GD004为2mm)
考虑到软管变形因素,轿车制动主缸的工作容积一般可取为Vm1.1~1.2V;货车取Vm1.3V,式中V为全部轮缸的总工作容积。
Vm1.2V1.2(V前V后)
1.2(4
44572.88
Sm25.421.22422.2221.78)
Vm42dm4572.8816.05mm
284.88
XpIp(Smm1m2)4.88(16.051.52)97.6mm
制动踏板总行程X为:
XXPXk97.610107.6mm
根据实际测量,制动踏板自由行程为10mm左右,制动踏板总行程为110mm左右,理论计算值与实际测量值基本相符,计算方法具有可靠的理论指导性。
根据上述计算方法,重新匹配制动总泵及各分泵规格,计算后得出比较合理的匹配方案为:
1、制动总泵及前、后分泵缸径均取22.22mm,制动踏板总行程X为76.02mm。对于前后均为鼓式制动器结构的汽车,该行程比较合理。
2、制动总泵缸径取25.4mm,前、后分泵缸径均取22.22mm,制动踏板总行程X为64.56mm,该行程比较理想,但对于我公司电动车来讲,总泵安装空间不足,该方案暂不可行。
结论及措施:
根据上述实验及计算结果,可以初步确定电动车制动行程过大的问题原因及整改措施如下:
1、制动系统匹配不合理:
制动主缸与制动分泵的尺寸匹配存在问题,根据计算结果可更换制动总泵(更换为直径22.22或25.4mm)及前轮制动分泵(更换为直径22.22mm),根据实际试验效果确定最终匹配方案。
2、制动器加工精度存在问题:
设计资料中制动鼓与制动蹄片间隙推荐值为0.2~0.5mm。根据测量,前制动分泵工作行程为1.2mm,后制动分泵工作行程为1.78mm。根据分泵工作行程及制动器结构推断,前制动鼓与制动蹄片间隙在0.6mm左右,后制动鼓与制动蹄片间隙在0.45mm左右,该间隙值在推荐范围上限左右,且对制动行程影响较大,存在提升空间。
第二篇:《身边的行程问题》评价分析
我认为《身边的行程问题》是一个将信息技术与数学学科教学有机整合的成功案例,此案列值得我学习的优点如下:
1、课题概述方面:对学科、年级、课时安排有清晰的说明,并对学习内容和本节课的价值及重要性作了清晰介绍。
2、教学思想方面:较好地体现了教师主导——学生主体的教学思想和人人学有价值的数学、人人都能获得必需的数学、不同的人在书学生得到不同的发展等数学学科教学的先进思想。
3、教学目标分析方面:与课程整体学习目标一致,体现知识与技能、过程与方法、情感态度与价值观三维目标,符合年段特征,体现对学生综合能力尤其是创造性思维能力、解决问题能力的培养,目标阐述清楚、具体,可评价。
4、学习者特征分析:详细列出学生所具备的认知能力、信息技术技能、情感态度和学习基础等,对学习者的兴趣、动机等都作了适当的介绍
5、教学过程设计方面:本课的教学内容是学生在学习了“速度、时间、路程间的数量关系”、“ 24 时记时法”、“小数乘、除法”等知识的基础上进行的教学活动课,训练学生对大量数学知识进行综合运用的能力。教学中,让学生通过上网收集有用信息,并且利用速度、时间、路程之间的数量关系,将收集到的信息加工整理后应用于现实生活以解决生活中的实际问题,这是做得非常有成效的。总的来看,《身边的行程问题》教学设计主要采用抛锚式教学策略(问题解决式教学策略),利用网络上丰富的教学资源和 Excel 工具,使学生在解决问题过程中巩固认识速度、时间、路程之间的基本数量关系,并通过课后的作业使学生再次将知识进行迁移,从而提高学生的信息能力、应用数学知识解决问题的能力以及学习数学的兴趣,体现了人人学有价值的数学、人人都能获得必需的数学、不同的人在数学上得到不同的发展的数学教学思想。其最成功的地方在于:(1)数学学习生活化——符合学生的年龄特征和认知规律。开课伊始,教师提出“美国飞人格林以9.87秒夺得男子100米金牌,每秒钟跑10.13米的实例,让学生指出实例中的速度、时间和路程,找到它们之间的数量关系。” 其次,在课堂教学中,相遇行程问题是面对学生生活实际的,因而该教师充分结合学生的生活经验,为学生营造了一种宽松平等而又充满智力活动的氛围,引导他们借助生活表象来学习知识,激发探究欲望。(2)信息技术与数学学科课程有效整合——多媒体技术和教学有机整合,使学生直观了解相遇问题的情境,采用了表演、动画、图表、图文结合及线段图等多种呈现方式,让学生自己去选择信息、筛选信息、整合信息,从而切实培养学生解决实际问题的能力。
6、教学评价方面:本课教学中,老师根据教学内容和目标设计了评价量表,且做到了评价主体多元化,评价方式多样化,对五年级学生来说,这样的评价是切实可行的。
此教学设计方案不足之处在于:(1)课题概述中没有说明本课出自什么教材版本;(2)在教学中,尊重学生个体差异还未得到充分体现,教师在课堂教学中应该更加关注学生的个体差异,有目的、有针对性地实施分层教学,让不同层次的学生都有所获。
第三篇:小学行程问题
.小学行程问题的经典应用题(附答案)
在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?
答案为两人跑一圈各要6分钟和12分钟。600÷12=50,表示哥哥、弟弟的速度差600÷4=150,表示哥哥、弟弟的速度和(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数600÷100=6分钟,表示跑的快者用的时间600/50=12分钟,表示跑得慢者用的时间
2.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?
答案为53秒算式是(140+125)÷(22-17)=53秒可以这样理“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。
3.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?
答案为100米300÷(5-4.4)=500秒,表示追及时间5×500=2500米,表示甲追到乙时所行的路程2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。
4.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它?
根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20米。可以得出马与狗的速度比是21x:20x=21:20根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米
5.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?
答案720千米。由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。
6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)答案为22米/秒算式:1360÷(1360÷340+57)≈22米/秒关键理人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。
正确的答案是猎犬至少跑60米才能追上。由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米。从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完
8. AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?
答案:18分钟设全程为1,甲的速度为x乙的速度为y列式40x+40y=1x:y=5:4得x=1/72 y=1/90走完全程甲需72分钟,乙需90分钟故得解
9.甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米?
答案是300千米。通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。因此360÷(1+1/5)=300千米
10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离?
(1/6-1/8)÷2=1/48表示水速的分率 2÷1/48=96千米表示总路程
第四篇:行程问题 1
行程问题
1.小王汽车从家去县城,原计划每小时行12千米,由于有事晚出发半小时,要想按时到达,必须比原计划每小时多行4千米。县城距小王家___________千米。
2.某人开车从A地到B地要行200千米,开始时他以56千米/时的速度行驶,但因中途汽车故障修车半小时,为了按原定计划准时到达,他必须把速度增加14千米/小时来跑完以后的路程,他修车的地方距A地有___________千米。
3.在一圆形跑道上,甲从A点,乙从B点同时出发反向而行,6分钟后两人相遇,再过4分钟甲到达B点,又过8分钟两人再次相遇,甲、乙环形一周各需要______,_____分钟。
4.一条山路从山下到山顶是40分钟还差1000米,从山顶下山35分钟可以走完,已知下山速度是上山的1.6倍,这条山路长___________米。
5.妹妹走着去上学,出发10分钟后,哥哥骑车去追妹妹,5分钟就追上了妹妹,这时哥哥发现东西忘了,立刻返回,取了东西又去追妹妹,再次追上妹妹时,妹妹已走了___________分钟。
6.小张、小王、小李同时从湖边同一地点出发绕湖行驶,小张速度是5.4千米/小时,小王速度4.2千米/小时,他们两人同方向行走,小李与他们反方向行走,半小时后小张与小李相遇,再过5分钟,小李与小王相遇。那么绕湖一周的行程是___________千米。
7.甲、乙两车同时从A、B两地出发,相向而行,3小时后相遇。相遇后甲车继续行驶2小时到达B地,乙车每小时行24千米,AB两地相距___________千米。
8.快车以60千米/小时的速度从甲站向乙站开出,1.5小时后慢车以40千米/小时的速度从乙站向甲站开出,两车相遇时,相遇点距两站的中点70千米。甲、乙两站相距___________千米。
9.甲步行、乙骑车从同一地点出发沿同一条公路前进。如果甲先出发40分钟,乙用30分钟追上甲,如果甲先出发30分钟,乙追上甲要___________分钟。
10. 某人由山底A上山经过山顶B下山到达山底C,共行30千米,共用7.6小时,已知他上山3千米/小时,下山5千米/小时,求上山AB长___________千米。如果从C点原路返回到A,要用___________小时。
第五篇:行程问题(一)
行程问题
(一)引入:甲乙两人相距200米,甲每小时走45米,乙每小时行55米。几分钟后两人相距500米?
完成“相遇问题”填空1~3;“追及问题”填空1~3。
讲解例1~例4。
例1: 妹妹放学回家,以每分钟80米的速度从学校步行回家,6分钟后,哥哥骑自行车以每分钟200米的速度从学校回家,当妹妹到家时,哥哥正好追上妹妹。问哥哥经过多少分钟追上妹妹?(求追及时间)
【跟进】完成(一)(二)中的其余填空。
甲以每小时4千米的速度步行去学校,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙几小时可追上甲?
甲、乙二人绕周长为1200米的环形广场竞走,已知甲每分钟走125米,乙的速度是甲的1.2倍。现在甲在乙的后面400米,问:乙追上甲还需多少时间?
该题把“现在甲在乙的后面400米”改为“现在乙在甲的后面400米”,这么做?
有两列火车,一列长102米,每秒行20米;一列长120米,每秒行17米。两车同向而行,从第一列车追及第二列车到两车离开需要几秒?
例2 :一辆摩托车追赶比它先出发的一辆汽车。已知这辆汽车每小时行驶28千米,摩托车每小时行驶40千米,摩托车出发后7小时追上了汽车,汽车比摩托车早出发几小时?(求提早时间)分析 :
【跟进】
1、妹妹以每分钟50米的速度从家出发去学校,哥哥发现妹妹忘记带学具盒,于是哥哥骑自行车以每分钟200米的速度从家出发追赶妹妹,12分钟后追上妹妹。妹妹比哥哥早出发多少分钟?
2、妹妹从家出发去学校上学,以每分钟50米的速度步行,6分钟后哥哥也从家出发去同一所学校,经过12分钟哥哥追上妹妹。问哥哥每分钟走多少米?
例3:两辆拖拉机为农场送化肥,第一辆以每小时9千米的速度由仓库开往农场,30分钟后,第二辆以每小时12千米的速度由仓库开往农场。问:(1)第二辆追上第一辆的地点距仓库多远?
(2)如果第二辆比第一辆早到农场20分钟,仓库到农场的路程有多远?
【跟进】
甲、乙两车同时从A地出发去B地,甲车每小时行12千米,乙车每小时行9千米,途中甲车停车4小时,结果甲车比乙车迟到1小时到达目的地,问AB两地之间的路程是多少千米?(求全程)分析:
例4 :小明在铁路旁边沿铁路方向的公路上散步,他散步的速度是每秒2米,这时从他后面开过来一列火车,从车头到车尾经过他身旁共用了21秒,已知火车全长336米,求火车的速度。
【跟进】小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明。求小强骑自行车的速度。
小华在前面以不变的速度前进,小明在后要去追赶,如果速度是每分钟60米,要15分钟才能追上;如果速度是每分钟70米,要10分钟才能追上;问小华的速度是多少?
分析:小华先行的路程是一定的,即小明比小华多行的路程不变。
追及问题与相遇问题的区别在于运动的方向,及由此而引出的速度和与速度差;共同点是双方所用的时间是相等的。在解答追及问题时,关键是抓住速度差去分析和思考,同时画线段图辅助解题是一种行之有效的方法。
练习
(一)一、填空。
(1)甲、乙两列火车同时从两城相对开出,甲车每小时行54千米,乙车每小时行53千米,经过5小时相遇,两城间的铁路长()千米。
(2)甲、乙两城相距342千米,两列客车分别从甲、乙两城同时相对开出,一列客车每小时行58千米,另一列客车每小时行56千米,()小时相遇。
(3)甲、乙两列火车同时由相距792千米的两地相向而行,9小时后相遇,甲车每小时行45千米,乙车每小时行()千米。
(4)甲、乙两辆汽车同时从东、西两地相向出发,甲车每小时行56千米,乙车每小时行48千米,两车离中点32千米处相遇,那么东、西两地间的路程是()千米。
(5)小明的家在学校南边,小芳的家在学校北边,两家之间的路程是1410千米,每天上学时,如果小明比小芳提前出发3分钟,两人就可以同时到校,已知小明每分钟能走70米,小芳每分钟能走80米,小明的家离学校()米。
(6)两列火车从某站相背而行,甲车每小时行52千米,甲车先开出2小时后,乙车才开出,乙车每小时行48千米,乙车开出5小时后,两列火车相距()千米。
(7)甲乙两人在周长是400米的圆形跑道上锻炼身体,两人朝相反方向跑,甲、乙两人第一次相遇和第二次相遇之间经过40秒,已知甲每秒跑6米,那么乙每秒跑()米。
(8)甲在A城,乙、丙在B城同时相向而行,甲时速14千米,乙时速11千米,丙时速9千米。已知甲、乙相遇后,又经过2小时甲、丙相遇,那么两城间的路程是()千米。
(9)A、B两站相距440千米,甲、乙两车同时从两站相对开出,甲车每小时行35千米,乙车每小时行45千米。一只燕子以每小时50千米的速度和甲车同时出发,向乙车飞去,遇到乙车又折回向甲车飞去,遇到甲车又返回飞向乙车,这样一直飞下去,燕子飞了()千米,两车才能相遇。
(10)一辆汽车从甲地到乙地去,如果每小时行驶45千米,就要延误1小时到达;如果每小时行驶50千米,就可提前1小时到达,甲乙两地的路程是()千米。
(11)甲队以每小时行进15千米的速度去正前方120千米外的A镇侦察,与甲队同时出发的乙队以每小时9千米的速度前进,那么甲队完成任务后折返原路行()小时和乙队相遇。
(12)甲、乙两辆汽车同时分别从A、B两地相对开出,甲每小时行40千米,乙车每小时行45千米,甲乙两车第一次相遇后继续前进,甲、乙两辆汽车各自到B、A两地后,立即按原路原速返回,两车从开始到第二次相遇共用6小时,那么A、B两地相距()千米。
二、解答。
甲乙两列车同时从A、B两地相对开出,第一次在离A地75千米处相遇,相遇后继续前进到达目的地后又立即返回,第二次相遇在离B地55千米处,求 AB两地相距多少千米?
练习
(二)一、填空。
(1)甲、乙两人相距4千米,乙在前,甲在后,两人同时同向出发,2小时后家追上乙,乙每小时行6千米,甲的速度是()。
(2)甲以每小时4千米的速度步行去某地,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙()小时可以追上甲。
(3)甲、乙二人由A地到B地,甲每分钟走50千米,乙每分钟走45千米,乙比甲早走4分钟,二人同时到达B地,那么A地到B地的距离是()米。
(4)有两列火车,一列长102米,每秒钟行20米;一列长120米,每秒钟行17米,两车同向而行,从第一列车追上第二列车到两列车离开需要()秒。
(5)某人步行的速度为每秒2米,一列火车从后面开来,超过他用了10秒。已知列车长90米,那么列车的速度是()。
(6)甲、乙两车同时、同地出发去统一目的地,甲车每小时行40千米,乙车每小时行35千米,途中甲车停车3小时,结果甲车比乙车迟1小时到达目的地,那么两地之间的距离是()。
(7)甲、乙两人沿运动场的跑道跑步,甲每分钟跑300米,乙每分钟跑280米,跑道一圈长400米,如果两人同时由同地向同一方向起跑,那么甲经过()分钟才能第一次追上乙。
二、解答。
1.一架飞机侵犯我国领空,我机立即起飞迎击。在两机相距50千米时,敌机调转机头,以每分钟15千米的速度逃跑,我机以每分钟22千米的速度追击,当我机追至距敌机1千米时,与敌机展开了激战,只用半分钟击落了敌机,敌机从逃跑到被我机歼灭这段时间共用几分钟?
2.甲乙两地之间 的铁路长240千米,快车从甲城、慢车从乙城同时相向开出,3小时相遇。如果两车分别从两城向同一方向开出,慢车在前面,快车在后,15小时快车就可以追上慢车,求快车与慢车每小时各行多少千米?
3.张明、李军和赵琪三人都要从甲地到乙地,早上6点钟,张、李二人一起从甲地出发,张明每小时走5千米,李军每小时走4千米,赵琪上午8点从甲地出发,傍晚6点,张、赵同时到达乙地,问赵琪什么时候追上赵军?
4.甲乙丙三人,甲每分钟走20米,乙每分钟走22米,丙每分钟走25米,甲乙从东镇,丙从西镇,同时相对出发,丙遇到乙后,10分钟再遇到甲,求两镇距离是多少千米?