《商不变规律》课堂实录+反思(终稿)秋爽 - 副本

时间:2019-05-14 02:40:02下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《商不变规律》课堂实录+反思(终稿)秋爽 - 副本》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《商不变规律》课堂实录+反思(终稿)秋爽 - 副本》。

第一篇:《商不变规律》课堂实录+反思(终稿)秋爽 - 副本

《商不变的规律》课堂实录

授课教师:北京教育科学研究院 吴正宪 实录整理:北京市西城区黄城根小学 薛铮

教学内容:人教版四年级上册第六单元P89例8《商不变的规律》 教学目标:

1.探索商不变的规律,尝试用数学语言进行描述,并进行简单运用。

2.经历“商不变规律”的发现、表达和应用的过程,初步获得探索规律的方法和经验,发展概括、推理能力。3.感受探索、运用规律的乐趣。课堂实录:

一、从生活中来

1.故事引入

师:吴老师给你们带来了一个小故事,请你们仔细听。

(课件播放故事,教师讲述:花果山风景秀丽,气候宜人,那里住着一群猴子。有一天,猴王给小猴子分桃子。猴王说:“给你6个桃子,平均分给你们3只小猴子吧。”小猴子听了,心想我只能得到2个桃子,就连连摇头说:“太少了,太少了。”猴王又说:“好吧,给你60个桃子,平均分给你们30只小猴,怎么样?”小猴子得寸进尺,挠挠头皮,试探地说:“大王,再多给点行不行啊?”猴王一拍桌子,显示出慷慨大度的样子:“那好吧,给你600个桃子,平均分给你们300只小猴,你总该满意了吧?”小猴子觉得占了大便宜,开心地笑了,猴王也笑了。)

(随着故事的进展,教师分别板书三个除法算式: 6÷ 3 =2 60÷30 =2 600÷300=2 师:呵呵!你们都笑出声来了。笑过之后你得思考,猴王和小猴,谁的笑才是聪明的一笑?为什么? 生1:猴王是聪明的。因为猴王分的桃子是原来的10倍,而分给小猴子的只数也是原来的10倍,所以每次的商6除以3等于2,60除以30也等于2,600除以300还是等于2。所以每只猴子分的数量是一样的,所以我认为猴王是聪明的。

师:你更聪明!(孩子们自发响起了热烈的掌声)

师:小猴子们以为占了大便宜,其实每只猴子得到桃子的数都是2。

(教师分别指着黑板上的三个“2”)师:2,2,2,全是2,2在这组算式中叫做?(学生们齐答“商,商不变”。)真好!你们发现了在这组算式中商不变。同学们,看到“商不变”,你有什么问题吗?

生2:为什么商没有变呢?

师:多有价值的问题呀!很值得研究!

生3:我想问,为什么猴王把桃子数乘了10倍,还要把猴子数也要乘10倍?(教师分别指黑板上被除数和除数的位置)

师:明白了。你觉得这儿、这儿可能会藏着点儿秘密,所以商才能不变。你们真会提问!这就是我们马上要研究的,被除数、除数到底是怎么变,商就能保持不变?(教师板书两个问号)

(部分学生马上举起手)

师:已经有感觉了?带着你的感觉慢慢来,也许你的发言会更精彩。要想研究这一类问题,一组算式有点儿……(全班答“少”。)

2.利用图像,提炼算式 PPT展示:

师:你看到什么数学信息?

生1:我看到了它们的单位有元和个。师:就看到单位了? 生2:我还看到了有数据,横向的是2,4,6,8,10个,竖向的有10,20,30,40,50元。

师:说得挺好!(同时出示一个点,如下图)这个点儿表示什么意思?

生3:我觉得这个点表示,比如说买两个桃子用10元钱。

师:买桃子的事儿,真好!继续,这个点呢?(继续出点)一起说吧。

生齐答:买4个桃子需要20元钱,买6个桃子需要30元,买8个桃子需要40元。(陆续出点,整幅图如下:)

师:刚才我们看到的是“个”,“元”。现在你们发现这个“个”和“元”,还有点儿?

学生答道:关系。

师:这词用得太棒了!你还看出什么了?

生5:我发现了,40除以8等于5,说明5元一个。师:他发现了5元。你们发现了吗? 齐答:发现了!

师:要是我,就只站在这个表的外面,而你钻到了表里头,还发现了背后的5元呢。除了可以这样求5元,还能怎么求出5元呢?

生:还可以用第一个为例,用10除以2等于5元,也能求出每个桃子5元。生:我觉得20除以4,30除以6,50除以10,也可以。(学生们说着,一名学生在黑板上记录下三组算式:

师:同学们,你们看,这位同学又帮助我们寻找了一组除法算式。这组除法算式的商? 齐答:商不变。

【设计意图:引导学生在具体情境中感悟变化中藏着不变的现象,提升学习兴趣,更重要的是为进一步探究规律提供了形象的支撑。】

二、探索规律 1.发现规律

师:现在借助两组算式,你能不能寻找被除数和除数怎么变,商就不变了?(有部分学生举手)你们都有感觉了?能不能把你们的感觉就表示在这组算式上,争取让别人一眼就看出来。

教师出示学习建议:

请一个小组到黑板上写。

教师边巡视边说:有困难的小组可以举手,我可以帮助你们。停止讨论,师:下面听听人家的发现,看看跟你有没有相似之处。第一小组汇报:

小组1:我们认为被除数和除数扩大相同的倍数,商不变。师:几倍呢? 小组1:两倍。师:哦,继续。

小组1:20乘2等于40,4乘2等于8,所以商不变,还是5。全班响起掌声。

师:我也给掌声。你们不但写得清楚,说得还特简练。我明白了,就是被除数乘2,我除数也得……(学生答:乘2),商就……(生:不变)。

第2小组汇报:

师:你们别解释了,可以问问他们,也许大家都看懂了呢。生:请问,你们都看懂我这组算式了吗?

生:(指着黑板上的算式):我是这样想的,6乘10等于60,60乘10等于600,3乘10等于30,30乘10等于300,从中我发现了,被除数和除数同时扩大10倍或缩小10倍,商不变。

师问第2小组,是你的意思吗?

第2小组:是我的意思,我恭喜你和我的想法一样。

师:你怎么就走进人家心里了呢,是因为人家写得既清晰又简练。她刚才说了一个乘10,好像还说了一个……

生:缩小。

师看着板书:这里没有缩小呀? 生:有!

师:在哪儿呢?谁愿意上来补充?(第2小组的学生举着手要自己补充)你们要自己补充?好,你们自己来。

师:我们可以从上往下观察,也可以从下往上观察,多全面呀!同学们,你们发现了这么重要的小秘密。这么棒的发现,你还有没有要补充的?

生:我还发现,3到300还有关系。师:有什么关系?

生:如果3乘100等于300,6乘100也等于600,他们两个都是乘100,所以它们的 商还是不变。如果从下往上看的话,300缩小100倍等于3,600缩小100倍等于6,都是同样缩小100倍,所以它们的商还是不变。

师:你说得真精彩!咱们都是挨着观察,这位同学呢? 生:跳着观察。

师:这种观察角度值得学习!黑板上的算式,让你的感觉越来越清晰了。(部分学生举起了手)别着急,能不能带着你的感觉,也写一组具有这种规律的除法算式?

孩子们大声喊道:能!

师:就写两个算式为一组,试试看,写在小篇子上。开始!(教师请学生写到黑板上,并编上号,如下:)

①②是黑板上的原有算式,③ 8÷4=2 32÷16=2 ④ 24÷4=6 240÷40=6 ⑤ 50÷5=10 500÷50=10 ⑥ 10÷5=2 30÷15=2 60÷30=2 ⑦ 100÷2=50 500÷10=50 2500÷50=50 ⑧ 90÷3=30 900÷30=30 师:帮他们查查写的都行吗?冲我点点头或者摇摇头。哦,好多同学向我点头了。我随便挑一组啊,(指第7组)被除数?(生:乘5)除数?(生:乘5)商?(生:不变。)

(教师指黑板上的算式)时:剩下的还是这样的规律吗? 生:是。

师:这样的算式我要还让你写,你能写吗?

(学生说“还能写!”并高高地举起小手,表示还想上黑板上写。)师:还能写多少? 生:无数个!

【设计意图:引导学生通过若干组不同的算式,自己探索被除数和除数是怎么变的,商才保持不变,并把它们表示出来。引导学生借助除法各部分间的依赖关系,再次将观察角度由“一维”向“二维”转变。从而初步感悟商不变的规律,为抽象概括规律打好基础。】

2.表达规律

师:无数组算式中藏着规律吗?你能不能把你发现的规律记在纸上?(学生们开始尝试记下规律,并全班交流。)

师:下面请大家欣赏别人的作品,看对你是否有点儿启发。我拿了谁的小作品,快到全面来。为了便于交流,我把他们编上号。请1号同学说说你的发现。

生1:我认为,除法是永远也写不完的。(有人笑了起来。)师:有错吗? 生:没错。

(教师展示2号同学的作品。)

生2:我认为,被除数和除数扩大10倍,商不变。生:不对!(同时大家都举起手来)师:我能问问1号同学的感受吗? 生:能。

师:谢谢你们。(转向1号同学)看了2号同学的作品,你有什么感受吗? 学生作品如下:

生1看着大屏幕,停顿了大约半分钟后,说道:2号同学他应该说扩大10倍或缩小10倍。

师:你还帮人家补充上了,呵呵!你看看你写的,再看看人家写的,你更欣赏谁的? 生1:自己的。(大家都乐了。)师:你们更欣赏谁的? 齐答:2号!师:理由。

生:因为2号同学他把商不变的原因写出来了。(教师转向1号同学)

师:你要是能善于欣赏别人,你得到的智慧就会越来越多。其实你写的也没错,只是仿佛只站在了窗外,而2号同学却打开了这扇窗,探头发现了里面的秘密。到底是怎么变的呢?

生1:被除数扩大10倍,除数也扩大10倍。商不变。

生:2号同学也不完整,应该是,被除数扩大几倍,除数也相应的扩大相同的几倍,商不变。还要说除0外。

生:还是不完整,应该说,被除数扩大或缩小几倍,除数也和被除数一样,扩大或缩小相同的倍数,所以商才不变。

(教师和同学们不由自主地向这位同学送出了掌声。)师:是不是人家3号同学的意思。(同时展示3号作品)

生3:我认为被除数扩大或缩小几倍,除数扩大或缩小几倍,商就不变。学生作品:

3号学生叫到一名学生:我想给3号同学补充一下,应该还有0除外,因为0不能做除数。

师:这个你都知道?说得真完整!0是特殊数,今天我们先不理这0行不行? 生齐答:行!

3号学生接着叫学生:我补充你的,应该是被除数和除数扩大或缩小相同的倍数,商 不变。

(同学们又送出了掌声)生3:我同意你的意见。

师:他的意思是这个几和这个几,必须得是?(生:一样的)但是你这个规律,2号同学,只能管着这组算式(指黑板上的第1组算式),你管得上这组吗?管得上这组吗?(分别指黑板上的第3、第7组算式)而3号同学的规律,能不能管上这组?(教师接下来分别指黑板上的许多组算式,学生一直答:可以。)

师:还能管上那永远也写不完的算式!你这个规律管得可真多!同学们,你们看,那天我上课有同学是这样写的,你们能读懂他吗?

(孩子们静静地观察了半分钟,慢慢地班里响起了恍然大悟的感叹声。)

生:我看懂了他的意思,这里面的三角就是扩大相同的倍数,乘就代表扩大,除号代表缩小,所以这个算式的意思:被除数扩大或缩小相同的倍数,除数也扩大或缩小相同的倍数,商不变。

(又想起了热烈的掌声。)

师:你走进了他心里。乘10,乘2,乘3只管住了自己的算式,人家这小三角却管住了(生:所有的算式)。一个三角,一个几,就管住了那么多的算式!这数学……

生:奇妙!

师:好奇妙!好简练呀!

(教师将课题补充完整:商不变的规律)

师:你们书上还有大专家也总结了商不变的规律,快打开书看看吧。

【设计意图:引导学生个性化的表达,使内隐的认识外显化;并在全班交流中,逐渐完善对规律的认识,发展概括、推理能力。】

三、到生活中去 1.回顾学习过程。

师:下面和老师一起回头看,我们是从“猴王分桃”和“买东西”的事儿进入课堂的,借助它们得到了两组算式,通过观察算式得到了商不变的规律,下面继续回到这幅图。

【设计意图:引导学生有意识的回顾学习过程,获得探索规律的一般方法。】 2.借助图,编故事。(机动)

师:单位去掉了,这里(指横轴)和这里(指纵轴)还能表示什么呢?你能不能编一个小故事?

生1:一个人买苹果,买2个花10元钱,买4个同样的苹果花20元钱,买6个花30元钱,买8个花40元钱。

师:买苹果的事情,行不行?(生齐答:行!)什么不变? 生1:每个西瓜5元钱不变。师:真好!还能编吗?(学生们举着手:能!)

生2:妈妈买2个铅笔盒10元钱,买4个铅笔盒20元钱,买6个铅笔盒30元钱,买8个铅笔盒40元钱。每个铅笔盒的价钱没有变。

师:说得真完整!可是妈妈买这么多铅笔盒……(大家都乐了)数量关系是对的。还能编吗?

(举手的同学更多了)

生3:小明吃西瓜,2分钟吃10块,4分钟吃20块,6分钟吃30块,8分钟吃40块。每分钟吃5块西瓜是不变的。

(大家又笑了,老师们也笑了)

师:小明如果这样吃下去,肚子非撑坏了。但是,数量关系特别清楚。(孩子们举着手,还想编故事)师:大家还想编?这样的故事编得完吗? 生齐答:编不完!

师:是呀,看来符合这种规律的现象在生活中随处可见,需要同学们细心观察。【设计意图:拓展对商不变的规律的认识,感悟“变”与“不变”存在的广泛性,为进一步学习积累相关经验。】

课后反思:

本节课是一节探索运算规律的课,学生需经历完整的探索过程。对于这样一节课,我想从学习情感、学习内容(知识背后蕴藏的数学思想)以及学习方式,三个方面进行反思梳理:

一、兴趣——学习情感

探索运算规律,对小学生来说比较抽象、枯燥。为了让学生更好地消化掉这顿有营养的数学大餐,防止学生见到抽象的数学知识望而生畏,我们必须将它烹制的可口些、好吃些。所以我们没有从枯燥的算式进入课堂,而是设置了尽量符合学生年龄特点的“猴王分桃”的故事情景,以及学生非常熟悉的买东西的情景进入课堂。从故事、从生活走进数学,调动学生学习的热情,激发了学习兴趣。当然,这不仅仅提升了学生学习学习数学的兴趣,还促使学生发现、提出了问题,为本节课的探究指明了方向。同时,情景的创设运用直观方式支撑了抽象的规律,特别是买东西的情景,使抽象的运算规律与直观的图(如下图)建立了联系。

二、建模——学习内容(数学思想)

本节课,前后两次用到了这幅图(如下图)。第一次借助它从生活进入数学,第二次借助它从数学回到生活,使学生感受到商不变规律存在的广泛性。从生活中来——探索规律——到生活中去,这就是建模的过程。

规律的表达方式有多种:算式、表格、图像、文字等等,孩子们本节课通过多种表征 感悟规律,对规律的认识更加全面和丰满。

其实,这幅图(如上图)我们以前也在用,将来还会用。积的变化规律、商不变的规律、正比例等,这些看似零散的知识,就借助了这样一幅图,建立了联系,孩子们在与它一次次的会面中,逐渐感悟到这些知识一致的本质,函数思想就在整个教学过程中不断渗透。

“回头看”是建模过程的回顾,带领学生对研究过程进行有意识的回顾反思,逐渐由“让我探究”变为“我能探究”。

三、对话——学习方式

这节课的“对话”,不但指师生间的对话,更突出学生与学生之间的对话。“生生对话”可促使学生仔细倾听,敢于质疑,重视反思,这些都是学生可持续发展所需的能力。学生的一句“我恭喜你和我的想法一样。”引发了全场的笑声,更激活了学生自主学习、自主评价的主体意识。

本节课的一个教学难点是归纳概括规律,不要说是中年级的学生,即便是六年级即将毕业的学生,用规范的数学语言进行归纳概括都是困难的。书本上的规范用语是多少专家学者千锤百炼的结果,我们要在刚刚接触的新知识上让我们的孩子一步到位,这不是强人所难吗?其实,在本节课中,学生们能自己举出具有相同规律的算式,就表明他们已经发现了规律,我们不强求孩子规范严谨,只是“用自己的方式记下规律”,个性化的表达使孩子们敢表达、能表达,静思默想后,学生的思路如泉涌,呈现出了丰富并极具个性的表达方式。然而只有自主表达,没有对话交流,又怎能让每一个孩子获得发展呢?孩子们就在对话中,不断调整完善自己的认识。借助“推开一扇窗”,引领孩子进入了变化的具体规律;借助“管着几组算式”,帮助孩子们体会数学的简洁和高度概括的奇妙。使每个孩子在表达规律方面获得不同程度的发展。

第二篇:商不变规律反思

《商不变规律》教学设计及反思

设计意图:本节课是在学习了比算乘法和笔算除法的基础上进行教学的,研究了商不变的规律引导学生探讨被除数不变上随除数的变化而变化的规律和除数不变商虽被除数的变化而变化的规律。本节课从乘法变化规律入手,利用乘除法的密切关系,使学生不由自主的想到:在除法中是否也存在着这样的变化规律?它们可能是什么?从而激起学生一探究竟的兴趣。但只有猜测是不够的,要想证明猜测是否正确,就必须予以事实证明,通过对三次验证过程不同角度的指导,促使学生在理解、掌握本课知识点的同时,经历猜测——验证——结论——应用的数学研究过程,尝试大胆合理猜测、举例加以验证的数学研究方法。这既是本节课的教学设计目标,也是新课改所倡导的教学理念。

教学内容:

冀教版小学数学四年级上册商不变规律。

教学目标:

1.通过猜测、探究引导学生发现并掌握被除数、除数和商的变化规律,并能运用规律解决问题。

2.引导学生经历猜测验证结论应用的一般研究过程,培养学生研究问题、解决问题的能力。

3.培养学生善于观察、勇于发现、积极探索的好习惯。

教学重点:

帮助学生发现并理解商的变化规律。

教学难点:

正确理解被除数不变,除数和商之间的变化规律。

教具准备:

实物投影、计算器。

教学过程:

一、利用迁移、大胆猜测。

师: 在前面的学习中,我们已经学习了积的变化规律谁还记得?

生1:一个因数不变,另一个因数扩大或缩小若干倍,积也随之扩大或缩小相同的倍数。

生2:一个因数扩大若干倍,另一个印数缩小相同的倍数,积不变。

师:我们都知道乘法和除法有着密切的关系,现在我们发现了乘法中有这样的规律,大家有什么想法?

生:在除法中是否也存在着类似的规律呢?

师:对呀,我也有这样的疑惑。那么我们能不能大胆的猜测一下:除法中有没有类似的规律?如果有会是什么规律呢?

生1:我觉着除法中肯定有规律,因为乘除法个部分之间是有联系的。

生2:我同意。而且我觉着如果被除数扩大了,除数不变,商也会跟着扩大。

生3:我觉着如果被除数不变,除数缩小、商也跟着缩小,除数扩大、商也跟着扩大。

生4:我猜被除数扩大或缩小、除数缩小或扩大相同的倍数,商不变。

生5:我不同意。我觉着如果被除数不变,除数缩小、商会扩大,除数扩大、商会缩小。

(教师根据学生的猜测进行板书)

(评析:简简单单的复习提问,不经意间将乘、除法之间挂起钩来,打通了知识间的横向联系,巧妙的运用了正迁移,促使学生自己提出问题,从猜测入手启动整个教学活动。)

二、验证猜测、研究规律。

(一)、验证第一个猜测:除数不变,被除数和商的变化规律。

师:合理大胆的猜测是我们研究问题的重要的第一步,但仅仅停留在猜测上还不行,我们下一步应该怎么办?

生:验证。

师:你们打算怎样来验证?

生:可以列算式来试一试。

师:举例实验的方法,确实是个好方法,那么我们就来逐个的验证。先来验证“除数不变,被除数扩大或缩小,商是否也随之扩大或缩小呢?”同学们可以小组合作,把你们所举得算式和结论写在实验报告单上。

(学生小组合作验证)

汇报:

师:哪个小组愿意说说你们的发现?

生1:我们小组举的例子是:10÷2=5,如果2不变,10扩大2倍,商就会变成10,也扩大了2倍,所以我们小组的结论是:除数不变,被除数扩大或缩小若干倍,商也随着扩大或缩小相同的倍数。

生2:我们小组举了3个例子进行验证,4÷2=2,80÷8=10,30÷5=6,每个例子都让除数不变,让被除数扩大、缩小,看商的变化,我们利用了计算器帮助演算,也得到了同样的结论。

师:对这两个小组的汇报大家有什么意见?

生1:我们也得到了同样的结论。

生2:我觉着第2组举了3个例子,更全面一些。

师:举例验证的方法确实应尽可能的多举例,这样才能更全面、正确率才更高,如果我们把全班的例子合在一起就更能说明问题。

(评析:猜测、验证是基本的数学研究方法之一,教师将这一研究思想作为整节课的核心贯穿始终,可见用心良苦。同时借助第一个层次的验证活动使学生体会到:列举法的应用要考虑它的全面性,仅靠一个例子是不能得结论的。)

(二)验证第二个猜测:被除数不变,除数扩大或缩小,商会随之缩小或扩大吗?

师:通过举例验证的方法,我们发现刚才的第一个猜想是正确地的!再来看第二个猜测:被除数不变,除数扩大或缩小,商真的会随之缩小或扩大吗?请大家继续验证。

(学生小组合作验证)

汇报:

生1:我们小组找了2个例子,并用计算器进行了验证:

发现被除数不变,除数扩大几倍,商反而缩小相同的倍数,除数缩小几倍,商就扩大几倍。

生2:我们小组也发现刚才的猜测不对,当被除数不变时,除数与商的变化方向是不一样的。

师:大家知道为什么会这样吗?

(学生茫然)

师:其实在我们生活中,有许多事例能够很好的体现出大家所发现的规律,比如:有一个蛋糕,如果平均分给10个人吃,每人只吃它的,是一小块,如果平均分给5个人吃,每人吃它的,是一大块,如果平均分给2个人吃,每人就会吃它的,更大的一块;这就像被除数不变,除数扩大商就缩小,除数缩小商就扩大的道理是一样的。

(评析:当被除数不变时,除数与商之间的变化规律是学生最难理解的,这与乘法中的一个因数不变,另一个因数与积的变化规律正好相反。教师巧妙的利用生活中学生熟悉的事例,变抽象为形象,突破了难点,起到了画龙点睛的作用。)

师:通过验证我们发现刚才的猜测不对,正确的结论应该是:被除数不变,除数扩大或缩小若干倍,商反而缩小或扩大相同的倍数(板书)。

(三)验证第三个猜测:被除数扩大或缩小、除数缩小或扩大相同的倍数,商不变。

师:同学们,咱们还有一个猜测呢,怎么办?继续验证。

(学生小作合作,继续验证。)

汇报:

生1:我们小组发现“被除数扩大或缩小若干倍,除数缩小或扩大相同的倍数,商不变”这个猜测也是错误的。比如:20÷10=2,如果变成40÷5商是8,不是2。

我们又按照另一种方法去实验:20÷10=2,如果被除数扩大2倍变成40,要想让商不变还是2,除数只能是20,也就是说也扩大了2倍。所以我们认为:被除数和除数同时扩大或缩小相同的倍数时,商才不会变。

生2:我们小组也是这样想的,只是我们组又举了几个例子验证了“被除数和除数同时扩大或缩小相同的倍数时商不变”是正确的。

师:这两个小组的研究思路真好,当他们小组发现有些猜测不正确时,能迅速做出合理的调整,而且还能主动地对新的调整再进行实验验证,这种研究思路值得大家学习。希望同学们在以后遇到类似的情况时,也能像他们一样,决不轻言放弃,及时调整思路,继续深入研究。

师总结:我要忠心的祝贺大家:通过合理的猜测、反复的验证,成功地发现了除法算式中,被除数、除数、商之间的变化规律,大家真了不起!

(评析:教师借助这个层次,使学生体会到:科学研究并不都是一帆风顺的,它需要不断的修正、反复的实验,这有利于培养学生科学严谨、锲而不舍的优秀品质。)

三、运用规律、解决问题。

练习1:

师:这些规律在平时的计算中有什么作用呢?能不能对计算有帮助呢?我们来看这样一组题,(出示):

3420÷57=60

76800÷240=320

34200÷57=

76800÷24=

342÷57=

76800÷2400=

(学生迅速口答出得数,教师记录答案。)

师:这么大的数,大家怎么做得这么快?

生:运用了刚才发现的规律……

师:到底算得对不对呢?规律在这里用的合理不合理呢?用计算器来验算一下。(学生运用计算器来验证。)

学生汇报:通过验证,发现正确。

练习2:(独立完成)

240 ÷30 =8

(240 ×4)÷(30 × ?)=8

(240÷6)÷(30? 6)=8

(240

??)÷(30÷5)=8

四、全课总结。

今天这节课,我们不仅通过大胆合理猜测、举例加以验证的方法,研究发现了除法中的三条变化规律;而且更重要的是我们经历了科学研究的一般规律:猜测——验证——结论,这也是科学家们经常采用的一种研究方法,希望今后同学们能利用今天所学的方法,解决更多的数学问题。

五、课后反思

本节课虽然在设计时力求以学生为主体,引导学生进行探究性学习,但由于备课时不够充分,也存在着以下几点不足。

一、引入时的材料不够充分。

课的开始,我先出示了一道题16÷8= 让学生口算。接着又呈现了6道除法算式,让大家口算:(1)48÷24(2)80÷40(3)160÷80(4)96÷48(5)64÷32(6)8÷4 从这6道题不难发现,前5道题同16÷8 比较,都是扩大几倍,而只有第6题是缩小的情况。因此学生在发现缩小几倍的规律概括的不是很好。既然是发现规律,就应该从多个材料中去找相同的地方。如果多出示一些口算题,这里面多数是商是2的,还有几道不是得2的,其中商2的口算扩大或缩小的情况尽可能多一些。然后让学生观察有什么发现,接着再探究商都是2的这些题的被除数和除数是怎样变化的,效果也许会更好一些。

二、小组合作安排得不够恰当。

探究性学习极力倡导学生在新知学习中积极合作、群体参与。这既可以培养学生的探索精神及参与、合作的意识,又有利于学生形成会学、善学的良好习惯,进一步提高学习能力。但是,在教学中,还应根据教学内容进行合作。在本节课上,出示6道商是2的除法算式,然后小组内讨论:被除数和除数是怎样变化的?结果,我发现有的学生心不在焉,有的一言不发,有的学生还在悄悄说话,还有的小组内的同学各写各的。这严重背离了小组合作学习的初衷,从根本上失去了小组合作的意义。因此,在今后的教学中,一定要根据教学内容,创设一定的问题情境,在问题情境中让小组内的每个成员主动参与,真正将合作学习落到实处。

总之,在课堂教学中,教师应努力创设与学生生活实际相联系的问题情境,激发学生主动参与的兴趣,让学生真正参与到知识的发生、发展过程中,从而达到学生整体素质的全面提高。

第三篇:商不变规律教学反思

在本节课教学的时候,我让学生经历了探究规律——验证规律——抽象概括规律的过程,这样不仅有利于学生认识规律,还有利于培养学生初步的逻辑思维能力,以及学习数学的方法,商不变规律教学反思。总体来看,学生对商不变的规律已有了很好的掌握和理解,学生参与活动的积极性很高,教学反思《商不变规律教学反思》。

但是,在教学中,我发现本节课还有很多不足之处:如整个教学内容,到后面规律的得出,学生掌握的还好;学生语言的综合,概括能力还有待提高,总体看还是比较顺其自然。可到最后简便计算的时候,发现时间已经来不及了,我想是不是需要压缩一下在前半段规律发现的教学,因为在规律发现,举例的时候,只要举两三个列子就可以了,而不是顺着学生的思维继续下去,那么我想本堂的教学任务就能完成了,而且本堂课的深度也会加深,比如在详细讲同时扩大几倍的时候,而在接下来讲除法的时候,可以加快速度,让他们比较后直接总结规律,而不需要像乘法一样的,最后再总结规律,讲0的排除。

那么再用节约下来的时间讲简便计算,那这一节课可能就比较有秩序,深度也会加深,而且数学的课堂效率也会增强。

第四篇:《商不变的规律》教学反思

《商不变的规律》教学反思

《商不变的规律》教学反思 篇1

本节课的重难点是让学生通过观察和探索,能够发现理解商不变的规律,并能够灵活运用这个规律解决问题。

一、巧妙设计激发兴趣

上课伊始,我带来了学生爱吃的糖,一下吸引了孩子的注意力,孩子们都想分到更多的糖,都选择了6000块糖,当翻牌儿后,有的孩子认为6000块多,有的孩子认为300人比3000人少,当孩子们细心观察后发现其实每一种分法的结果是一样多的。一个巧妙的设计不但激发了孩子们的学习热情,同时也引发了孩子们的思考,为接下来的学习奠定基础。

二、合作学习教师指导

孩子们发现自己中计了,我疑惑地问:“你是怎么知道的?”一位同学迫不及待地说:“6÷3=2、60÷30=2、600÷300=2、600÷300=2”。就这样,本节课研究的四个算式让孩子们说了出来。我接着提出问题:“观察这几个算式,你发现了什么?”我热情地鼓励同学们认真观察,开动脑筋,团结合作,一定可以找到奥秘所在。在老师的引导下,学生说出了这些算式的变化过程,这时,老师追问:“那么要想商不变,只能乘或除以10、100、1000吗?”同学们心领神会,拿起笔,用不同的算式开始了验证。验证之后,在大家不断的补充、修改、完善下,同学们自己总结了商不变的规律。

在这个过程中,针对学生的质疑,我并没有亲自解释,而是引起同学之间的争论,让同学自己发现、探讨,自己来解决疑问,在这种不断的提问、解答过程中,更加深了对商不变性质的进一步理解,更增加了学生之间高水平思维的沟通,让学生体会到课堂是大家学习探讨的天地,在这样的氛围里学习,孩子们是愉快的。

三、反馈练习深化认识

同学们掌握了商不变性质,我又和同学们一起进入了有趣的练习。学生最感兴趣的是“找朋友”这个环节,后来因为时间关系,孩子们没玩尽性,我打算在练习课上再带孩子们玩一玩,从而加深对商不变规律的掌握。

《商不变的规律》教学反思 篇2

今天的教学比较失败,原因在于没有深入的研究教材,没有把握学生的思维脉搏。只是按照教案执行下去,因此,在教学结束后,留下不少的遗憾。回顾一下,主要有这两个地方没有处理好:

一、简便算法中商的处理不够到位:

课堂结束后,与学生交流的过程中了解到,有的学生对今天的学习内容有一些糊涂的地方没有搞清。例如900÷50,竖式上900个位上的0去掉后,为什么不要在商的个位上写“0”了。

分析原因:

没有沟通900÷50与90÷5之间的联系,没有充分让学生思考为什么商的个位上不用写0的原因。

亡羊补牢:

应该通过思考、组织讨论这个问题达成共识:900÷50根据商不变的规律,它的商与90÷5的商相同,所以去掉0后实际上算的是90÷5的商。因此900个位上的0上面不需要再商0了。

二、简便算法中余数的处理不够到位:

在教学900÷40时,因为预设不充分,在学生出现900÷40的竖式中出现了余数写成20时,没有充分的探究这样写是否正确,而一味考虑学生可能会忘记在横式的余数中忘记写0而作了错误的引导。结果课后有学生表示疑惑,既然40当作4来除,那么余数如果是20的话不是比除数大了吗?

亡羊补牢:在上面分析商末尾是否添0的基础上引导学生分析此题竖式最后的余数应该写几,但是横式上的余数应该写几,明确规范的书写方法,进行强化。

《商不变的规律》教学反思 篇3

本节课的重点是理解和运用商不变的规律,为后面利用这一规律进行简便计算打好基础.教材上很简单,就一个例题从中得出结论:被除数和除数同时乘(或除以)同一个数(0除外),商不变。那如何引导学生主动去发现规律,在理解的基础上应用,是本课的难点.在课堂上,我先出示100÷50=2,再让学生根据这个算式,你还能写出也等于2的算式吗?把学生写的算式分两块板书出来.再让学生观察这些算式与第一道有什么联系?

一开始,学生用语言表达自己所发现的规律时不是太好.我再适当引导了一下,这样学生观察变得有序了,思考也有了方向.通进学生再观察,再思考,再交流,在这个过程中,促进了学生主动参与的热情.大部分学生初步得出了商不变的规律后.我追问了一句:那么,在其他除法式题中是否也成立呢?于是再出示书上的例题让学生用计算器验证一下.最后进一步完善发现的规律,让学生体验数学问题结论的严谨性.后面的练习,大部分学生能达到灵活运用.

《商不变的规律》教学反思 篇4

本节课,学习了商的变化规律,让学生通过“观察——探索——交流——总结”完成学习任务,让学生在合作交流中互相启发、互相激励、共同发展。在学生获取知识的探索过程中,教师给学生提供了探索的时间和空间,让学生有展示研究成果的机会,体验成果的喜悦,感受自主探究的乐趣,激起学生的学习兴趣。

教学过程中也存在着明显的不足:

1.小组合作的实效性还有待提高。有些学生只是“观众”没有参与的欲望,还有的学生只说自己的想法,不愿意倾听别人的想法更别说提出建议和意见了。还得进一步明确每一小组成员的职责,让每一个孩子都有自己的任务可做,充分发挥小组合作的实效性。

2.时间长处理的不好,由于新知用的时间较长,以至于后面的练习量不多。

3.回答问题没能够面向全体学生,总感觉回答问题就是一部分孩子的“接力游戏”,部分学生的积极性不够高。

总之,一节课下来,留给我很多值得继续保持的方面,也留给我一些要注意改进的地方。扬长避短,我还需要在今后的教学中多学习,多反思,多实践,使自己的教学质量得提高。

《商不变的规律》教学反思 篇5

在教学“商不变的规律”这节课时,课堂上发生了一件值得思考的事情。

课堂上,学生通过观察、猜测,初步发现了商不变的规律,接着学生自己举例验证商不变的规律。根据多年的教学经验,我断定是不会出现异常情况的,于是我像往常一样巡视着,发现多数学生是把被除数和除数同时扩大或缩小整十或整百的倍数来验证。我提示他们也可以同时扩大或缩小2倍、3倍等等。我的目的是想让学生扩大验证的范围,没想到特殊的情况发生了。

当我问学生“谁有新发现”时,立刻有两个女生惊喜地说道:老师,我发现了,商真的变了!我想,肯定是他们弄错了,于是故意好奇地反问道:是吗?并把他们举的例子写在黑板上。第一个女生所举的例子,很快被其他学生推翻了,而第二个女生所举的例子却让大家顿时陷入了困惑之中。

她所举的例子是这样的:

6÷5=1……1

12÷10=1……2

18÷15=1……3

看到这样的算式,有的学生说:商真的变了啊!有的学生带着怀疑的口吻说:商不变的规律不成立?也有学生猜测道:商不变的规律只适合没有余数的除法。我故意装作不懂地问道:这是怎么回事呢?此时,有个学生大声说:老师,如果把商变成小数就一样了。这个学生的想法提醒了大家。经过计算,这几道题的商都是1。2,学生们也立刻打消了疑虑。于是我又指着上面三个算式问:那这些算式是怎么回事呢?学生都睁大眼睛,仔细观察算式。我提示道:商和余数的意思相同吗?学生又立刻争论起来。最后大家达成共识:商和余数是两个不同的概念,这些算式的商没有变,都是1,只是余数变了,还是符合商不变的规律的。

虽然这个女生的发现最终不成立,但是我还是表扬了她,正是她举的例子给课堂带来了新鲜空气,让大家明白了商不变的规律的广泛性。同时我也看见孩子的潜力有多大,孩子的思维有多活跃!

这节“商不变的规律”我虽然教了多次,但是唯独这次让我终生难忘。一节课,按照教师的预设顺利地完成任务固然好,但是像今天这样的课堂虽然出乎意料,却比顺顺利利地完成任务更有价值,更有意义,更值得回味。新课程改革的确给课堂带来了变化,给学生提供了发展的空间,也给我们的教学生活增添了从没有过的惊喜!我喜欢新课程,喜欢新课堂,喜欢这些活泼、聪明的学生们!

《商不变的规律》教学反思 篇6

一、教材分析:

“商不变的规律”是小学数学中的重要基础知识,它是进行除法简便运算的依据,也是今后学习小数乘除法、分数、比的基本性质等知识的基础。教材通过实例的分析、比较,使学生掌握商不变时被除数、除数的变化规律,从而抽象概括出商不变的规律。本小节内容要使学生理解和掌握商不变的规律,并能运用商不变的规律进行简便计算。同时,培养学生的观察、概括以及发现探求新知的能力。

二、学生分析

本节课内容“商不变的规律”是在学生已较好地掌握了多位数除法的计算方法的基础上学习的,因而对于学生来说,要学好这部分知识,发现和探索出商不变的规律,难度不是很大,但利用商不变的规律解决生活中的.实际问题有一定的难度。我引导学生从身边最熟悉的事例入手,探索怎样利用商不变的规律用类推的数学方法来解决问题。

教学反思:本节课的教学,我与孩子们之间相处得非常融洽。学生经历了分析——综合——抽象概括的过程,这样不仅有利于学生认识规律,还有利于培养学生初步的逻辑思维能力,以及学习数学的方法。在学习的过程中,我关注了学生主体性的发挥,让学生自主探究、合作学习,使每一个孩子都能做一个新知识的发现者、研究者、探索者。有待提高:应多给学生思考的时间,加深学生的理解。

本节课是北师大版四年级上册第五单元的教学内容,我在这节课中突出体现以学生为主体、训练为主线的观念,充分调动学生的学习兴趣,参与学习的全过程,注重引导学生的观察、分析、讨论概括出规律,培养学生科学合理的思维方法和探索精神,教学效果不错。“商不变规律及应用”是学生在学习了除数是整十、整百数的口算以及除数是三位数的笔算除法的基础上学习的。本节课旨在引导学生发现商不变规律和应用商不变规律对被除数和除数末尾都有0的口算、笔算进行简算。根据教材的特点和学生的实际情况,我抓住以下几个方面进行教学,取得了较好的教学效果。

一、能充分发挥教师的主导作用和学生的主体作用,在各个教学环节上充分发挥了教师创造性的教学。在教学中,能给学生创造主动参与的机会,放手让学生讨论,相互交流,并通过尝试练习对比和分析,引导学生独立自主地获取知识。如:让学生从自己动手编题到自己动脑探索,从数量之间的变化中得出“商不变”的规律,从大胆设想规律的用途到——验证,老师“扶”得少,学生创造得多,使学生学会的不仅仅的一条性质,更重要的是学生学会了自主自动,学会了独立思考,主动探索、研究和创造。

二、课堂导入运用多媒体课件呈现了“猴王分桃”的故事,寓意深而颇有情趣,给数学内容赋予了情感色彩,让学生始终在愉悦、和谐的气氛中获取新知。

三、判断练习,让学生说错在哪里,怎样改一下就对了,不仅加深了对商不变规律的理解,而且有效地培养了学生独立思考、敢于争辩、善于表达的能力。

四、设计多种形式、有层次的练习,促使学生知识的形成和内化。

《商不变的规律》教学反思 篇7

《商不变的性质》是人教版四年级上册第五单元的内容,本节课的重难点是让学生通过观察和探索,能够发现理解商不变的规律,并能够灵活运用这个规律解决问题。

整节课下来没有能达到自己预设的教学目标。本节课我是想让学生通过计算两组题目,然后通过观察和思考发现两组算式中的规律,但在实际教学中删了一组算式,直接通过孙悟空分桃的故事导入学习内容。这个例子恰好是个特殊的例子,即相邻算式中的被除数和除数是扩大10倍或缩小10倍,因此多数学生得到的规律是:从上往下看被除数和除数同时乘10,从下往上看被除数和除数同时除以10(在这里我希望学生们得到的结论是被除数和除数同时乘或除以一个相同的数),虽然,我让学生去比较了第一个和第三个式子,但是学生的思维好像定势了,这堂课开放的不够,在某些环节上没有足够的时间让学生去体验和反思。主要是在第一部分我举的例子少,学生感悟得不深刻,因此有些学生并没有理解商不变的规律。

在学生对商不变规律还是似懂非懂的前提下,就让学生自己举例,显得太过勉强。虽然一部分学生能举出例子来加以验证,能够得出:被除数与除数都要扩大或缩小相同的倍数,商才能不变。但因为缺少实例的支撑,得出的结论就显得有点苍白,而且对学生印象不够深刻。因为害怕学生弄不懂就反复讲解,反复强调,结果让已经弄懂的学生反而迷惑了。时间都浪费在前面的讲解上,后面没有时间练习,学生没有得到深入理解商不变规律的机会。

通过对这节课的设计与教学让我体会到作为教师在吃透教材的同时,要多从学生的角度出发,以他们的兴趣水平、理解能力为出发点去精心安排教学内容、设计教学方法,才能使学生少走歪路,学得容易、学得轻松、学得牢固,真正达到减负增效的目的。

总而言之,我认为这节课没有达到自己的预期目标,效果不是太好。

《商不变的规律》教学反思 篇8

今天的教学很顺利,书本上安排的题目的量的确不多。所以我把时间花到让学生表达上去了,哈,有充分的时间,上下来的感觉就是不一样。

我要说:今天的课我上得很舒服,学生也很舒服。

一、

首先,在出示了例题1之后,学生列式进行解答。

900÷50=

我下面巡视的时候发现,在复习了商不变的规律之后,有学生还是采用了老方法来做,没有简便。我就让他上黑板板书,然后和简便的算法进行比较。得出:这样计算是可以的,不过就是比较麻烦。而且,你的算法也正好给了我们检验简便计算是否正确的一种方式。学生听着,也露出了会心的微笑。

二、争论

到例题二900÷40时,我还是让学生自己完成,果然,上黑板的同学在横式上把余数写成了2.正打算着重强调呢,学生们倒也眼尖,一看见了就马上举手发言,说:余数应该是20,又有学生说:余数就是2.班中的意见马上分成了两派。我让认为余数是20的学生说说理由。说得很好。

方佳凯:余数是20,因为2在十位上,表示的是2个十。

袁林丽:余数是20.我用了简便计算后,用原来的竖式进行了验算,得出余数是20.

杨谨侨:余数是20,我也是验算的。不过我是用乘法进行验算的。

第一题例题的渗透还是可以的,最起码到这儿为止,许多学生就开始自觉运用验算了。到此,我就顺势把验算的过程讲了,通过验算得出余数是20.

现在,我发现,我们班学生在课上有话是敢讲的,有不同的意见是敢说的,他们敢于表达自己的想法,敢于和他人进行争论。甚至有时当我一不注意出现口误的时候,他们也会当堂进行纠正。

所以,今天的课我上得很舒服。

《商不变的规律》教学反思 篇9

本节课的重点是理解和运用商不变的规律,为后面利用这一规律进行简便计算打好基础.教材上很简单,就一个例题从中得出结论:被除数和除数同时乘(或除以)同一个数(0除外),商不变。那如何引导学生主动去发现规律,在理解的基础上应用,是本课的难点.在课堂上,我先出示100÷50=2,再让学生根据这个算式,你还能写出也等于2的算式吗?把学生写的算式分两块板书出来.再让学生观察这些算式与第一道有什么联系?一开始,学生用语言表达自己所发现的规律时不是太好.我再适当引导了一下,这样学生观察变得有序了,思考也有了方向.通进学生再观察,再思考,再交流,在这个过程中,促进了学生主动参与的热情.大部分学生初步得出了商不变的规律后.我追问了一句:那么,在其他除法式题中是否也成立呢?于是再出示书上的例题让学生用计算器验证一下.最后进一步完善发现的规律,让学生体验数学问题结论的严谨性.后面的练习,大部分学生能达到灵活运用.

《商不变的规律》教学反思 篇10

“商不变的规律”是在学习了商是二、三位数的除法之后进行教学的。通过本节课的教学的学习,主要引导学生自己发现:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变这一规律。让学生认识到利用这一规律,可以进行简算,同时培养学生初步的抽象、概括能力。

由于在第一单元学习“因数和积的变化规律”时,通过填表、提问引导学习发现规律时,教学效果不是很好,因此,在上课时,我改变了一下教材的呈现方式,以几道口算题的形式出现,让学生在口算时发现一个问题:被除数和除数都变了,怎么商不变?然后引导学生找出被除数和除数是怎样变化的,发现规律。接着又让学生自己举例,来验证一下有没有商变化的情况,通过检验,使他们确信被乘数和除数同时扩大(或缩小)相同的倍数,商是不变的。

本节课虽然在设计时力求以学生为主体,引导学生进行探究性学习,但由于备课时不够充分,也存在着以下几点不足。

一、引入时的材料不够充分。

课的开始,我先出示了一道题16÷8=让学生口算。接着又呈现了6道除法算式,让大家口算:(1)48÷24(2)80÷40(3)160÷80(4)96÷48(5)64÷32(6)8÷4从这6道题不难发现,前5道题同16÷8比较,都是扩大几倍,而只有第6题是缩小的情况。因此学生在发现缩小几倍的规律概括的不是很好。既然是发现规律,就应该从多个材料中去找相同的地方。如果多出示一些口算题,这里面多数是商是2的,还有几道不是得2的,其中商2的口算扩大或缩小的情况尽可能多一些。然后让学生观察有什么发现,接着再探究商都是2的这些题的被除数和除数是怎样变化的,效果也许会更好一些。

二、小组合作安排得不够恰当。

探究性学习极力倡导学生在新知学习中积极合作、群体参与。这既可以培养学生的探索精神及参与、合作的意识,又有利于学生形成会学、善学的良好习惯,进一步提高学习能力。但是,在教学中,还应根据教学内容进行合作。在本节课上,出示6道商是2的除法算式,然后小组内讨论:被除数和除数是怎样变化的?结果,我发现有的学生心不在焉,有的一言不发,有的学生还在悄悄说话,还有的小组内的同学各写各的。这严重背离了小组合作学习的初衷,从根本上失去了小组合作的意义。因此,在今后的教学中,一定要根据教学内容,创设一定的问题情境,在问题情境中让小组内的每个成员主动参与,真正将合作学习落到实处。

三、在练习的设计上,创设的情境还不够。

在教学完“商不变的规律”之后,我出示了这样一道题:400÷25=(400×4)÷(25×4)=1600÷100=16让学生观察这道题应用了什么规律来计算的,接着又出示了两道题:(1)800÷25(2)625÷25让学生用上面的方法来计算。结果发现,学生并不会利用这个规律来算。如果把400÷25这道题创设一个与学生生活实际相联系的情境,如我校参加大型腰鼓比赛的学生有400人,其中25人站成一行,你们能不能算出一共有多少行?学生在这样的生活情境中去学习,更容易产生学习兴趣。在笔算的基础上,再出示简便算法,学生一定会更容易理解。

总之,在课堂教学中,教师应努力创设与学生生活实际相联系的问题情境,激发学生主动参与的兴趣,让学生真正参与到知识的发生、发展过程中,从而达到学生整体素质的全面提高。

《商不变的规律》教学反思 篇11

《商不变规律》是学生在学习了除数是整十、整百数的口算以及除数是三位数的笔算除法的基础上学习的。本节课旨在引导学生发现商不变规律和应用商不变规律对被除数和除数末尾都有0的口算、笔算进行简算。我在这节课中突出体现以学生为主体、训练为主线的观念,充分调动学生的学习兴趣,参与学习的全过程,注重引导学生的观察、分析、讨论概括出规律,培养学生科学合理的思维方法和探索精神,教学效果不错。课堂上我能充分发挥教师的主导作用和学生的主体作用,在各个教学环节上充分发挥了教师创造性的教学。在教学中,能给学生创造主动参与的机会,放手让学生讨论,相互交流,并通过尝试练习对比和分析,引导学生独立自主地获取知识。如:让学生从自己动手编题到自己动脑探索,从数量之间的变化中得出“商不变”的规律,从大胆设想规律的用途到——验证,老师“扶”得少,学生创造得多,学生不仅学会知识,更重要的是提高了独立思考,主动探索、研究和创造的能力。

《商不变的规律》教学反思 篇12

这节课最重要的我认为是引导学生经历探索发现“商不变规律”的过程,因此我非常重视和期待生成的过程。在观察4个算式的被除数和除数的变化时,我预设了3 个阶段----1、末尾0多少的变化;2同时扩大或缩小相同的倍数;同时乘或除以相同的数(0除外)。在这个过程中,让学生充分的通过全班交流、小组合作、同桌探讨等方式,运用观察、比较、分析、概括归纳和验证的学法,积极主动地探索规律,符合学生的认知规律,使学生在这个过程中不但发现、理解和掌握了商不变的规律,最重要的经历了整个探究过程,为学生以后的发展,尤其是自主学习的能力的培养起到一定的促进作用。实际的效果也比较明显,这是我本节课最大的收获。

因此,在以后的教学中,我还要根据学生情况和教学内容,注重学习过程,相信经过长年累月的训练,学生会掌握必备的学习方法,取得长足的进步,正所谓:积硅步,至千里!

《商不变的规律》教学反思 篇13

一、直入主题

最初的教学设计有一个“猴王分桃”的教学情境,但我认为教学情境比较老化,同时情境的创设把学生放到一个的学习活动目标不是很明确的位置,所设计的问题也同样显得“泛”而不“精”,导致学生的回答漫无边际,难以实质性地触到商不变时被除数和除数的变化规律上去;因此,决定将“猴王分桃”的故事放入发散思维的环节中,直接从计算引入课题。

这样的引入,学生能直接切入主题,并有足够的时间让学生观察、思考和发现隐含在算式中的变化规律;同时,在学生观察、发现被除数和除数的变化规律时,不对学生的发现加以限制,而是及时引导学生验证、反思自己所发现的规律,肯定自己的成功,发现自己的不足,充分体现出数学教学的核心,实现培养学生的观察、思维能力和探究意识,课堂教学效率明显得到提高。

二、引导总结

在总结规律的时候,不是急于总结归纳,而是让学生根据所发现的规律,写出一组商不变的除法算式,让学生在写算式的过程中感悟规律的真正含义和思考怎样把规律所蕴涵的内容用自己的语言表达出来。同时,学生写算式并没有泛泛而写,而是老师写出一个算式,让学生在此基础上进行变化,突出了教学重点是让学生掌握变化的规律,又能更好地在汇报活动中帮助学生思考和理解,同样体现出教师的引导作用。

三、渗透思想

整个教学活动,贯穿着以知识与技能目标为载体,让学生在不断的观察、思考,交流与讨论的学习过程中,掌握观察——思考——猜想——验证——应用的探究方法以及数学里的不完全归纳法等数学方法,并让学生在和谐、民主、平等的学习活动中获得成功的学习体验,感受探究与发现的快乐,增加学习数学的兴趣和信心。

《商不变的规律》教学反思 篇14

第一个班级纪律实在是太糟糕,当一个老师要管理班级纪律的时候,她的课堂进度自然会慢下来。

从我自身的角度来反思,我把重点放在了被除数不变,除数不变,以及被除数和除数同时变化上,这样讲过去大部分人都觉得内容过于深奥,一个班只有少部分人能跟上来。

我这节课,将商不变变成次要,而把那些变成了重点,而很明显,我的重点并未突破,而且将课程内容偏题了。

其实,商不变的规律对基础好的孩子是很容易掌握的,但是对基础差的孩子,我今天这节课显然难度过大!这是我对学情不了解的缘故。

明日一堂课,只有再上一堂练习课,巩固今天学的三个规律。

其实一堂课,当孩子懂的时候,老师是能感觉出来的,当孩子不懂的时候,就是老师的错了。

第五篇:《商不变的规律》教学反思

《商不变的规律》教学反思13篇

《商不变的规律》教学反思 篇1

这节课最重要的我认为是引导学生经历探索发现“商不变规律”的过程,因此我非常重视和期待生成的过程。在观察4个算式的被除数和除数的变化时,我预设了3 个阶段----1、末尾0多少的变化;2同时扩大或缩小相同的倍数;同时乘或除以相同的数(0除外)。在这个过程中,让学生充分的通过全班交流、小组合作、同桌探讨等方式,运用观察、比较、分析、概括归纳和验证的学法,积极主动地探索规律,符合学生的认知规律,使学生在这个过程中不但发现、理解和掌握了商不变的规律,最重要的经历了整个探究过程,为学生以后的发展,尤其是自主学习的能力的培养起到一定的促进作用。实际的效果也比较明显,这是我本节课最大的收获。

因此,在以后的教学中,我还要根据学生情况和教学内容,注重学习过程,相信经过长年累月的训练,学生会掌握必备的学习方法,取得长足的进步,正所谓:积硅步,至千里!

《商不变的规律》教学反思 篇2

今天的课上得很不顺利,主要是表达方面的问题。

我从复习积的变化规律入手,再引出研究除法中的一些规律。我没有采用课本上的例题,而是先让学生口算100÷50,然后让学生依据这道题,写出一些相关的除法算式,我把学生说的算式写成了两列,一列是被除数和除数同时乘相同的数,另一列是同时除以相同的数的,然后让学生结合每道题观察与100÷50有何变化,只有个别学生愿意表达自己的看法,我估计其他学生不会组织自己的语言,好不容易说出来了,然后让学生比较与书本概括的有何不同时,都能发现“0除外”,但是问及其为什么加上这句话时就无语了,看来学生的基础知识很不扎实。

课本“想想做做”的四道题只完成了三道,关键是前面让学生说说发现的规律所用的时间太多了。总的感觉,今天的课死气沉沉的,只有几个同学在发言,即使有些同学发言了,也说不完整,是不是平时我让学生练习表达得不够,指导学生表达的方法是否要改进,这个值得我去好好思考的。

《商不变的规律》教学反思 篇3

今天的教学比较失败,原因在于没有深入的研究教材,没有把握学生的思维脉搏。只是按照教案执行下去,因此,在教学结束后,留下不少的遗憾。回顾一下,主要有这两个地方没有处理好:

一、 简便算法中商的处理不够到位:

课堂结束后,与学生交流的过程中了解到,有的学生对今天的学习内容有一些糊涂的地方没有搞清。例如900÷50,竖式上900个位上的0去掉后,为什么不要在商的个位上写“0”了。

分析原因:

没有沟通900÷50与90÷5之间的联系,没有充分让学生思考为什么商的个位上不用写0的原因。

亡羊补牢:

应该通过思考、组织讨论这个问题达成共识:900÷50根据商不变的规律,它的商与90÷5的商相同,所以去掉0后实际上算的是90÷5的商。因此900个位上的0上面不需要再商0了。

二、 简便算法中余数的处理不够到位:

在教学900÷40时,因为预设不充分,在学生出现900÷40的竖式中出现了余数写成20时,没有充分的探究这样写是否正确,而一味考虑学生可能会忘记在横式的余数中忘记写0而作了错误的引导。结果课后有学生表示疑惑,既然40当作4来除,那么余数如果是20的话不是比除数大了吗?

亡羊补牢:在上面分析商末尾是否添0的基础上引导学生分析此题竖式最后的余数应该写几,但是横式上的余数应该写几,明确规范的书写方法,进行强化。

《商不变的规律》教学反思 篇4

《商不变规律》是学生在学习了除数是整十、整百数的口算以及除数是三位数的笔算除法的基础上学习的。本节课旨在引导学生发现商不变规律和应用商不变规律对被除数和除数末尾都有0的口算、笔算进行简算。我在这节课中突出体现以学生为主体、训练为主线的观念,充分调动学生的学习兴趣,参与学习的全过程,注重引导学生的观察、分析、讨论概括出规律,培养学生科学合理的思维方法和探索精神,教学效果不错。课堂上我能充分发挥教师的主导作用和学生的主体作用,在各个教学环节上充分发挥了教师创造性的教学。在教学中,能给学生创造主动参与的机会,放手让学生讨论,相互交流,并通过尝试练习对比和分析,引导学生独立自主地获取知识。如:让学生从自己动手编题到自己动脑探索,从数量之间的变化中得出“商不变”的规律,从大胆设想规律的用途到——验证,老师“扶”得少,学生创造得多,学生不仅学会知识,更重要的是提高了独立思考,主动探索、研究和创造的能力。

《商不变的规律》教学反思 篇5

《商不变的性质》是人教版四年级上册第五单元的内容,本节课的重难点是让学生通过观察和探索,能够发现理解商不变的规律,并能够灵活运用这个规律解决问题。

整节课下来没有能达到自己预设的教学目标。本节课我是想让学生通过计算两组题目,然后通过观察和思考发现两组算式中的规律,但在实际教学中删了一组算式,直接通过孙悟空分桃的故事导入学习内容。这个例子恰好是个特殊的例子,即相邻算式中的被除数和除数是扩大10倍或缩小10倍,因此多数学生得到的规律是:从上往下看被除数和除数同时乘10,从下往上看被除数和除数同时除以10(在这里我希望学生们得到的结论是被除数和除数同时乘或除以一个相同的数),虽然,我让学生去比较了第一个和第三个式子,但是学生的思维好像定势了,这堂课开放的不够,在某些环节上没有足够的时间让学生去体验和反思。主要是在第一部分我举的例子少,学生感悟得不深刻,因此有些学生并没有理解商不变的规律。

在学生对商不变规律还是似懂非懂的前提下,就让学生自己举例,显得太过勉强。虽然一部分学生能举出例子来加以验证,能够得出:被除数与除数都要扩大或缩小相同的倍数,商才能不变。但因为缺少实例的支撑,得出的结论就显得有点苍白,而且对学生印象不够深刻。因为害怕学生弄不懂就反复讲解,反复强调,结果让已经弄懂的学生反而迷惑了。时间都浪费在前面的讲解上,后面没有时间练习,学生没有得到深入理解商不变规律的机会。

通过对这节课的设计与教学让我体会到作为教师在吃透教材的同时,要多从学生的角度出发,以他们的兴趣水平、理解能力为出发点去精心安排教学内容、设计教学方法,才能使学生少走歪路,学得容易、学得轻松、学得牢固,真正达到减负增效的目的。

总而言之,我认为这节课没有达到自己的预期目标,效果不是太好。

《商不变的规律》教学反思 篇6

“商不变的规律”是在学习了商是二、三位数的`除法之后进行教学的。通过本节课的教学的学习,主要引导学生自己发现:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变这一规律。让学生认识到利用这一规律,可以进行简算,同时培养学生初步的抽象、概括能力。

由于在第一单元学习“因数和积的变化规律”时,通过填表、提问引导学习发现规律时,教学效果不是很好,因此,在上课时,我改变了一下教材的呈现方式,以几道口算题的形式出现,让学生在口算时发现一个问题:被除数和除数都变了,怎么商不变?然后引导学生找出被除数和除数是怎样变化的,发现规律。接着又让学生自己举例,来验证一下有没有商变化的情况,通过检验,使他们确信被乘数和除数同时扩大(或缩小)相同的倍数,商是不变的。

本节课虽然在设计时力求以学生为主体,引导学生进行探究性学习,但由于备课时不够充分,也存在着以下几点不足。

一、引入时的材料不够充分。

课的开始,我先出示了一道题16÷8=让学生口算。接着又呈现了6道除法算式,让大家口算:(1)48÷24(2)80÷40(3)160÷80(4)96÷48(5)64÷32(6)8÷4从这6道题不难发现,前5道题同16÷8比较,都是扩大几倍,而只有第6题是缩小的情况。因此学生在发现缩小几倍的规律概括的不是很好。既然是发现规律,就应该从多个材料中去找相同的地方。如果多出示一些口算题,这里面多数是商是2的,还有几道不是得2的,其中商2的口算扩大或缩小的情况尽可能多一些。然后让学生观察有什么发现,接着再探究商都是2的这些题的被除数和除数是怎样变化的,效果也许会更好一些。

二、小组合作安排得不够恰当。

探究性学习极力倡导学生在新知学习中积极合作、群体参与。这既可以培养学生的探索精神及参与、合作的意识,又有利于学生形成会学、善学的良好习惯,进一步提高学习能力。但是,在教学中,还应根据教学内容进行合作。在本节课上,出示6道商是2的除法算式,然后小组内讨论:被除数和除数是怎样变化的?结果,我发现有的学生心不在焉,有的一言不发,有的学生还在悄悄说话,还有的小组内的同学各写各的。这严重背离了小组合作学习的初衷,从根本上失去了小组合作的意义。因此,在今后的教学中,一定要根据教学内容,创设一定的问题情境,在问题情境中让小组内的每个成员主动参与,真正将合作学习落到实处。

三、在练习的设计上,创设的情境还不够。

在教学完“商不变的规律”之后,我出示了这样一道题:400÷25=(400×4)÷(25×4)=1600÷100=16让学生观察这道题应用了什么规律来计算的,接着又出示了两道题:(1)800÷25(2)625÷25让学生用上面的方法来计算。结果发现,学生并不会利用这个规律来算。如果把400÷25这道题创设一个与学生生活实际相联系的情境,如我校参加大型腰鼓比赛的学生有400人,其中25人站成一行,你们能不能算出一共有多少行?学生在这样的生活情境中去学习,更容易产生学习兴趣。在笔算的基础上,再出示简便算法,学生一定会更容易理解。

总之,在课堂教学中,教师应努力创设与学生生活实际相联系的问题情境,激发学生主动参与的兴趣,让学生真正参与到知识的发生、发展过程中,从而达到学生整体素质的全面提高。

《商不变的规律》教学反思 篇7

一、直入主题

最初的教学设计有一个“猴王分桃”的教学情境,但我认为教学情境比较老化,同时情境的创设把学生放到一个的学习活动目标不是很明确的位置,所设计的问题也同样显得“泛”而不“精”,导致学生的回答漫无边际,难以实质性地触到商不变时被除数和除数的变化规律上去;因此,决定将“猴王分桃”的故事放入发散思维的环节中,直接从计算引入课题。

这样的引入,学生能直接切入主题,并有足够的时间让学生观察、思考和发现隐含在算式中的变化规律;同时,在学生观察、发现被除数和除数的变化规律时,不对学生的发现加以限制,而是及时引导学生验证、反思自己所发现的规律,肯定自己的成功,发现自己的不足,充分体现出数学教学的核心,实现培养学生的观察、思维能力和探究意识,课堂教学效率明显得到提高。

二、引导总结

在总结规律的时候,不是急于总结归纳,而是让学生根据所发现的规律,写出一组商不变的除法算式,让学生在写算式的过程中感悟规律的真正含义和思考怎样把规律所蕴涵的内容用自己的语言表达出来。同时,学生写算式并没有泛泛而写,而是老师写出一个算式,让学生在此基础上进行变化,突出了教学重点是让学生掌握变化的规律,又能更好地在汇报活动中帮助学生思考和理解,同样体现出教师的引导作用。

三、渗透思想

整个教学活动,贯穿着以知识与技能目标为载体,让学生在不断的观察、思考,交流与讨论的学习过程中,掌握观察——思考——猜想——验证——应用的探究方法以及数学里的不完全归纳法等数学方法,并让学生在和谐、民主、平等的学习活动中获得成功的学习体验,感受探究与发现的快乐,增加学习数学的兴趣和信心。

《商不变的规律》教学反思 篇8

本节课的重点是理解和运用商不变的规律,为后面利用这一规律进行简便计算打好基础.教材上很简单,就一个例题从中得出结论:被除数和除数同时乘(或除以)同一个数(0除外),商不变。那如何引导学生主动去发现规律,在理解的基础上应用,是本课的难点.在课堂上,我先出示100÷50=2,再让学生根据这个算式,你还能写出也等于2的算式吗?把学生写的算式分两块板书出来.再让学生观察这些算式与第一道有什么联系?一开始,学生用语言表达自己所发现的规律时不是太好.我再适当引导了一下,这样学生观察变得有序了,思考也有了方向.通进学生再观察,再思考,再交流,在这个过程中,促进了学生主动参与的热情.大部分学生初步得出了商不变的规律后.我追问了一句:那么,在其他除法式题中是否也成立呢?于是再出示书上的例题让学生用计算器验证一下.最后进一步完善发现的规律,让学生体验数学问题结论的严谨性.后面的练习,大部分学生能达到灵活运用.

《商不变的规律》教学反思 篇9

本节课的重点是理解和运用商不变的规律,为后面利用这一规律进行简便计算打好基础.教材上很简单,就一个例题从中得出结论:被除数和除数同时乘(或除以)同一个数(0除外),商不变。那如何引导学生主动去发现规律,在理解的基础上应用,是本课的难点.在课堂上,我先出示100÷50=2,再让学生根据这个算式,你还能写出也等于2的算式吗?把学生写的算式分两块板书出来.再让学生观察这些算式与第一道有什么联系?

一开始,学生用语言表达自己所发现的规律时不是太好.我再适当引导了一下,这样学生观察变得有序了,思考也有了方向.通进学生再观察,再思考,再交流,在这个过程中,促进了学生主动参与的热情.大部分学生初步得出了商不变的规律后.我追问了一句:那么,在其他除法式题中是否也成立呢?于是再出示书上的例题让学生用计算器验证一下.最后进一步完善发现的规律,让学生体验数学问题结论的严谨性.后面的练习,大部分学生能达到灵活运用.

《商不变的规律》教学反思 篇10

本节课是北师大版四年级上册第五单元的教学内容,我在这节课中突出体现以学生为主体、训练为主线的观念,充分调动学生的学习兴趣,参与学习的全过程,注重引导学生的观察、分析、讨论概括出规律,培养学生科学合理的思维方法和探索精神,教学效果不错。“商不变规律及应用”是学生在学习了除数是整十、整百数的口算以及除数是三位数的笔算除法的基础上学习的。本节课旨在引导学生发现商不变规律和应用商不变规律对被除数和除数末尾都有0的口算、笔算进行简算。根据教材的特点和学生的实际情况,我抓住以下几个方面进行教学,取得了较好的教学效果。

一、能充分发挥教师的主导作用和学生的主体作用,在各个教学环节上充分发挥了教师创造性的教学。在教学中,能给学生创造主动参与的机会,放手让学生讨论,相互交流,并通过尝试练习对比和分析,引导学生独立自主地获取知识。如:让学生从自己动手编题到自己动脑探索,从数量之间的变化中得出“商不变”的规律,从大胆设想规律的用途到——验证,老师“扶”得少,学生创造得多,使学生学会的不仅仅的一条性质,更重要的是学生学会了自主自动,学会了独立思考,主动探索、研究和创造。

二、课堂导入运用多媒体课件呈现了“猴王分桃”的故事,寓意深而颇有情趣,给数学内容赋予了情感色彩,让学生始终在愉悦、和谐的气氛中获取新知。

三、判断练习,让学生说错在哪里,怎样改一下就对了,不仅加深了对商不变规律的理解,而且有效地培养了学生独立思考、敢于争辩、善于表达的能力。

四、设计多种形式、有层次的练习,对于学生的思维能力的训练有很大的帮助。

《商不变的规律》教学反思 篇11

本节课的重难点是让学生通过观察和探索,能够发现理解商不变的规律,并能够灵活运用这个规律解决问题。

一、巧妙设计激发兴趣

上课伊始,我带来了学生爱吃的糖,一下吸引了孩子的注意力,孩子们都想分到更多的糖,都选择了6000块糖,当翻牌儿后,有的孩子认为6000块多,有的孩子认为300人比3000人少,当孩子们细心观察后发现其实每一种分法的结果是一样多的。一个巧妙的设计不但激发了孩子们的学习热情,同时也引发了孩子们的思考,为接下来的学习奠定基础。

二、合作学习教师指导

孩子们发现自己中计了,我疑惑地问:“你是怎么知道的?”一位同学迫不及待地说:“6÷3=2、60÷30=2、600÷300=2、600÷300=2”。就这样,本节课研究的四个算式让孩子们说了出来。我接着提出问题:“观察这几个算式,你发现了什么?”我热情地鼓励同学们认真观察,开动脑筋,团结合作,一定可以找到奥秘所在。在老师的引导下,学生说出了这些算式的变化过程,这时,老师追问:“那么要想商不变,只能乘或除以10、100、1000吗?”同学们心领神会,拿起笔,用不同的算式开始了验证。验证之后,在大家不断的补充、修改、完善下,同学们自己总结了商不变的规律。

在这个过程中,针对学生的质疑,我并没有亲自解释,而是引起同学之间的争论,让同学自己发现、探讨,自己来解决疑问,在这种不断的提问、解答过程中,更加深了对商不变性质的进一步理解,更增加了学生之间高水平思维的沟通,让学生体会到课堂是大家学习探讨的天地,在这样的氛围里学习,孩子们是愉快的。

三、反馈练习深化认识

同学们掌握了商不变性质,我又和同学们一起进入了有趣的练习。学生最感兴趣的是“找朋友”这个环节,后来因为时间关系,孩子们没玩尽性,我打算在练习课上再带孩子们玩一玩,从而加深对商不变规律的掌握。

《商不变的规律》教学反思 篇12

今天的教学很顺利,书本上安排的题目的量的确不多。所以我把时间花到让学生表达上去了,哈,有充分的时间,上下来的感觉就是不一样。

我要说:今天的课我上得很舒服,学生也很舒服。

一、

首先,在出示了例题1之后,学生列式进行解答。

900÷50=

我下面巡视的时候发现,在复习了商不变的规律之后,有学生还是采用了老方法来做,没有简便。我就让他上黑板板书,然后和简便的算法进行比较。得出:这样计算是可以的,不过就是比较麻烦。而且,你的算法也正好给了我们检验简便计算是否正确的一种方式。学生听着,也露出了会心的微笑。

二、争论

到例题二900÷40时,我还是让学生自己完成,果然,上黑板的同学在横式上把余数写成了2.正打算着重强调呢,学生们倒也眼尖,一看见了就马上举手发言,说:余数应该是20,又有学生说:余数就是2.班中的意见马上分成了两派。我让认为余数是20的学生说说理由。说得很好。

方佳凯:余数是20,因为2在十位上,表示的是2个十。

袁林丽:余数是20.我用了简便计算后,用原来的竖式进行了验算,得出余数是20.

杨谨侨:余数是20,我也是验算的。不过我是用乘法进行验算的。

第一题例题的渗透还是可以的,最起码到这儿为止,许多学生就开始自觉运用验算了。到此,我就顺势把验算的过程讲了,通过验算得出余数是20.

现在,我发现,我们班学生在课上有话是敢讲的,有不同的意见是敢说的,他们敢于表达自己的想法,敢于和他人进行争论。甚至有时当我一不注意出现口误的时候,他们也会当堂进行纠正。

所以,今天的课我上得很舒服。

《商不变的规律》教学反思 篇13

在教学“商不变的规律”这节课时,课堂上发生了一件值得思考的事情。

课堂上,学生通过观察、猜测,初步发现了商不变的规律,接着学生自己举例验证商不变的规律。根据多年的教学经验,我断定是不会出现异常情况的,于是我像往常一样巡视着,发现多数学生是把被除数和除数同时扩大或缩小整十或整百的倍数来验证。我提示他们也可以同时扩大或缩小2倍、3倍等等。我的目的是想让学生扩大验证的范围,没想到特殊的情况发生了。

当我问学生“谁有新发现”时,立刻有两个女生惊喜地说道:老师,我发现了,商真的变了!我想,肯定是他们弄错了,于是故意好奇地反问道:是吗?并把他们举的例子写在黑板上。第一个女生所举的例子,很快被其他学生推翻了,而第二个女生所举的例子却让大家顿时陷入了困惑之中。

她所举的例子是这样的:

6÷5=1……1

12÷10=1……2

18÷15=1……3

看到这样的算式,有的学生说:商真的变了啊!有的学生带着怀疑的口吻说:商不变的规律不成立?也有学生猜测道:商不变的规律只适合没有余数的除法。我故意装作不懂地问道:这是怎么回事呢?此时,有个学生大声说:老师,如果把商变成小数就一样了。这个学生的想法提醒了大家。经过计算,这几道题的商都是1。2,学生们也立刻打消了疑虑。于是我又指着上面三个算式问:那这些算式是怎么回事呢?学生都睁大眼睛,仔细观察算式。我提示道:商和余数的意思相同吗?学生又立刻争论起来。最后大家达成共识:商和余数是两个不同的概念,这些算式的商没有变,都是1,只是余数变了,还是符合商不变的规律的。

虽然这个女生的发现最终不成立,但是我还是表扬了她,正是她举的例子给课堂带来了新鲜空气,让大家明白了商不变的规律的广泛性。同时我也看见孩子的潜力有多大,孩子的思维有多活跃!

这节“商不变的规律”我虽然教了多次,但是唯独这次让我终生难忘。一节课,按照教师的预设顺利地完成任务固然好,但是像今天这样的课堂虽然出乎意料,却比顺顺利利地完成任务更有价值,更有意义,更值得回味。新课程改革的确给课堂带来了变化,给学生提供了发展的空间,也给我们的教学生活增添了从没有过的惊喜!我喜欢新课程,喜欢新课堂,喜欢这些活泼、聪明的学生们!

下载《商不变规律》课堂实录+反思(终稿)秋爽 - 副本word格式文档
下载《商不变规律》课堂实录+反思(终稿)秋爽 - 副本.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《商不变的规律》教学反思

    本节课的重难点是让学生通过观察和探索,能够发现理解商不变的规律,并能够灵活运用这个规律解决问题。一、巧妙设计激发兴趣上课伊始,我带来了学生爱吃的糖,一下吸引了孩子的注意......

    《商不变的规律》教学反思大全

    今天的课上得很不顺利,主要是表达方面的问题。我从复习积的变化规律入手,再引出研究除法中的一些规律。我没有采用课本上的例题,而是先让学生口算100÷50,然后让学生依据这道题,......

    商不变的规律

    “商不变的规律”说课 本节教材是义务教育课程标准北师大版四年级数学上册第六单元“除法”中的的内容。编者意图是在学生学会三位数除以两位数的基础上,引导学生探索、构......

    商不变的规律

    《商不变的规律》教学设计 一、教学目标: 1.使学生结合具体情境,通过合作探究学习,经历观察、比较和探讨的数学研究过程,在已有知识基础上放手探讨商不变的规律。 2.通过本节课......

    商不变规律教案

    《商不变规律》教学设计 主备人:刘占有 教学目标: 1.理解和掌握商不变的规律,并能运用这一规律口算有关除法;培养学生观察、概括以及提出问题、分析问题、解决问题的能力。 2.学......

    《商不变规律》教案

    商不变规律 教学内容: 人教版六年制小学数学第六册教科书第66页例15,例15下面的“做一做”,练习十四的第11~13题 教学目的: 1.通过观察、讨论、发现、验证,使学生理解和掌握被除数、......

    商不变的规律教学设计及反思

    商不变的规律教学设计及反思2014.11.22一、教材分析“商不变的规律”是小学数学中的重要基础知识,它是进行除法简便运算的依据,也是今后学习小数乘除法、分数、比的基本性质等......

    商不变的规律教学设计及反思范文

    商不变的规律教学设计及反思 2014.11.22 一、教材分析 “商不变的规律”是小学数学中的重要基础知识,它是进行除法简便运算的依据,也是今后学习小数乘除法、分数、比的基本性......