第一篇:《商不变规律》教学随笔
《商不变规律》教学随笔
数学是一门非常严谨的学科,我们教师在教学中,往往由于过于注重教学逻辑和知识的传授,而导致课堂气氛压抑,学生乏味无趣,教学效果低。但是一定要切实上好一节好的数学课,让学生听得有趣、学得轻松是一件很难的事情,教师在课堂的开头导入非常重要。如果课堂的开头导入好了,就能高度激发学生的求知学习兴趣,达到事半功倍的教学效果,使整个课堂非常的活跃。
我个人认为数学课的导入最好是走近小学生的生活,从他们身边的一些事例出发,或者设置一些题型、或引用一些数字、或改编一些有趣的数学故事,然后进行教学,学生易于接受、并能激发学生的学习兴趣高,能使整个课堂教学效果特别好。我校开展数学示范课,我们有幸听了两位数学老师的两节数学课,这两位数学教师对数学课的导入对学生很受启发。先谈谈扬老师的一节课的导入,扬老师本节课的教学内容为《小数的进位加法和退位减法》,课本上设计的导入是通过复习以前学过的一般小数的加减法进而直接开始探讨新授内容,赵老师却是从课本出发,但又不仅仅局限于课本,他从去年我校测量过的学生的体质健康数据出发,通过设疑解决谁比谁高、谁比谁重的生活化问题来引导学生探讨本节课的教学内容,整节课学生自始至终情绪高涨,解决问题有针对性,解决了问题又有成就感,教学效果相当好,同时也使整个课堂非常活跃,教学效果也很好;再谈谈贺老师的一节二年级的数学课,这节课的教学内容为《混合运算》,课本上的设计是通过男女学生的过河乘船来导入进行教学的。事实上我们有好多二年级的学生根本没有乘船的经历,并且不懂“先算乘除法再算加减”的含义,因此如果老师直接引用课本上的例题进行教学,或许好多学生的学习兴趣并不会很高,想当然效果不会太好。幸好张老师在备课时也意识到了这一点,她把学生的“过河乘船”改成“咱班学生坐汽车参观动物园”,这样一来,有好多学生因为有亲身体验,所以学习兴趣极高,课堂气氛宽松,不知不觉一节课下了,教学任务圆满完成了,学生学习热情也很高。我们的数学源于生活用于丰富多彩的生活,或许不同的老师有不同的数学导入方法,有善于设疑者、有喜于归纳者、有惯于直奔主题者„„可谓是“仁者见仁、智者见智”,但学数学最终还要回归到生活中去,用来解决生活中的一些实际问题,因此我们在教学中越接近我们的实际生活,学生就越容易接受和理解,当然我们的教学效果就越好,学生也能够对数学产生更大的乐趣。
小学数学教学感悟
我们每天都要批改作业。批作业是对课堂教学的补充与提高。对数学作业的批改,我们习惯于用“√”“×”来评判。此法在评价学生学习成绩,判断解题正误有一定的作用。但枯燥乏味、缺乏激励性。此外,单纯的用“√”和“×”来评价学习思维、学习成绩影响师生之间的思想、情感交流,直接影响学生的学习情绪。如何更好地通过作业的批改,更好地提高学生学习兴趣,发挥主体能动性,是一个至关重要的问题。加上评语,是一种作业批阅的方式,便于学生更清楚地了解自己作业中的优缺点,还可加强师生间的交流,促进学生各方面和谐统一的进步。将评语引入数学作业的批改中,指出其不足,肯定其成绩,调动了学生的学习积极性,取得了较好的效果。尤其在中高年级效果较明显。
评语如: “画的可真漂亮心呀!”、“解得巧,真聪明”、“你肯定有高招,因为你是我的骄傲”。不责骂质量特别差的作业本,相反,应尽量地发现他们的闪光点,以鼓励的语气调动他们的积极性。“你准行!”“老师相信你一定会做的更棒”。这种带感情色彩的评语使学生感受到了老师对他的关爱,充满了希望。从而会使逐渐产生学习兴趣。对有的题可用多种解法而学生只采用了一种,可以写上:“还有更好的解法吗?”“好学的你肯定还有高招!”。
为了调动学生进一步改进作业质量的积极性,我们可以采取一题多评,逐次提高等级的批改策略。当作业发给学生以后,如果他们能够纠正错误,弥补不足,或者补充更好的解题方法,就可以视情况给以提高等级,调动他的积极性。在评语中就可以加一些鼓励引导性质的话,例如:“得数正确,但可以简便计算,你在想一想!”、“好,你跨出了可喜的一步!”等。多种评价能使学生更好的学习数学知识,促使学生养成良好的学习习惯。
《商不变规律》教学随笔
还记得我第一次上公开课的情形,我当时上四年级课程《商不变规律》,有幸得到很多教师详细点评,让我受益匪浅。虽然效果没有预期理想,但是我认为先前的准备和辛苦都是值得的,我想每个教师都是在失败和总结中不断提升自我的。下面我就课程《商不变规律》写写我的教学感受。在设计本节课程的教学目标和教学重、难点的时候,由于课前对学情分析不够,从学生学习的反应来看,本节课的教学目标对于学生来说难度大了,因为学生是刚刚接触“商不变规律”,所以要求他们去“灵活运用商不变规律”是不实际的,在第一次试教时,这个问题就暴露出来,但我一直认为是自己讲解得不够浅显,导致学生较难总结规律并灵活运用到练习题上,所以只是变换自己的教学思路和
策略,以为可以让学生更快得出相应的结论,但当一次次试教,而学生迟迟未能总结出较完备的结论后,我的心更慌了。试教课后,听课的老师都反映,我的教学语言不够精炼,“商不变规律”几乎可以说是我总结出来的,学生还是似懂非懂的,当然到后面巩固练习题就把握不好。参加课后教研,听取了其它老师的建议,特别是陈艳梅老师的点评,我才发现,教学目标没有准确定位,定得过高。比如我原先设计的教学目标“会灵活运用商的变化规律”,这个目标只适用于学习程度较好的同学,要面向绝大部分的学生,以学生为主体,就要把目标定为“发现并用自己的语言概括商不变规律”,这样才能适合大部分学生,达到这个目标,已经是完成这个课时的任务了,至于规律的应用,可以放到下一个课时去。而在实际课堂上,也没有很好地贯彻重、难点的要求,去确实解决由学生自己概括规律的问题,反而把时间花在没有这个基础支撑的练习题上。这实在是这节课最大的缺憾。现在我的体会是,在以后的课程中,一定要大力气分析学情,根据学生实际设定教学设计,使其真正符合学生的学习水平,使教学目标达成度更高。在教学中去发现并总结问题是重要的,当然参加课后教研,也是非常有价值的。经过几次试教和本节课后的教研,我发现自己在教学犯了一个很大的错误,这就是没有“规范”起来,特别是教学设计规范的重要性。在教学设计中,各个步骤或方面其实紧密联系在一起的。我常犯的错误不是缺少教学设计的某个方面,就是把各个步骤简单地分拆开来,缺少联系,有时甚至自相矛盾。其实,从教学内容分析到学习者分析,然后到教学目标、教学重点、难点设置,再到教学过程设计,到最后的教学评价设计、课后反思等,这些内容都是一环接一环的,只有每一个环节都得到很好的设计,整个课程的教学设计才能做好,才能上好一节课。我想,之所以我会出现上面所提到的问题,就是我在教学设计的时候,没有按照正确的过程,一步步去分析,制定目标和相应的策略。
以上就是我的一些想法。在这个思考的过程中,我越来越感觉到,我教学中存在的问题是多方面的,而要解决这些问题,只是看别人教案,听别人课,是不够的,重要是自己能在实际的对比教学中,吸收、自悟、内化,边实践边学习边提高,扎实地上好每一节课,使学生能在教师有效的指导下,学到更多的知识,而自己也能得到更快的提高。
第二篇:商不变规律教学反思
在本节课教学的时候,我让学生经历了探究规律——验证规律——抽象概括规律的过程,这样不仅有利于学生认识规律,还有利于培养学生初步的逻辑思维能力,以及学习数学的方法,商不变规律教学反思。总体来看,学生对商不变的规律已有了很好的掌握和理解,学生参与活动的积极性很高,教学反思《商不变规律教学反思》。
但是,在教学中,我发现本节课还有很多不足之处:如整个教学内容,到后面规律的得出,学生掌握的还好;学生语言的综合,概括能力还有待提高,总体看还是比较顺其自然。可到最后简便计算的时候,发现时间已经来不及了,我想是不是需要压缩一下在前半段规律发现的教学,因为在规律发现,举例的时候,只要举两三个列子就可以了,而不是顺着学生的思维继续下去,那么我想本堂的教学任务就能完成了,而且本堂课的深度也会加深,比如在详细讲同时扩大几倍的时候,而在接下来讲除法的时候,可以加快速度,让他们比较后直接总结规律,而不需要像乘法一样的,最后再总结规律,讲0的排除。
那么再用节约下来的时间讲简便计算,那这一节课可能就比较有秩序,深度也会加深,而且数学的课堂效率也会增强。
第三篇:商不变规律教学设计
《商不变规律》教学设计
明招小学
朱君卓
教学目标:1.理解和掌握商不变规律,并能运用这一规律口算相关的除法。
2.培养学生观察、分析能力和合作探究的意识和解决问题的初步能力。
3.学生在观察、比较、猜想、概括、验证等学习活动过程中,体验成功;通过体会“变”与“不变”的数学现象,渗透初步的辩证唯物主义思想启蒙教育。
教学过程:
一、直接引题
1.写出课题,让学生读一读,问:你觉得这节课上什么?
二、导学尝试 1.独立完成
师:请大家拿出导学案,“猪八戒吃西瓜”的故事看过了吗?(课前完成)
老庄主和手下人为什么笑了?
师:谁来展示一下你的列式计算。4÷2=2个
8÷4=2个
16÷8=2个 2.师:观察这些算式,什么在变,什么没变? 3.师:被除数和除数究竟怎么变时,商才会不变呢?
下面我们以“60÷20=3”为例,研究一下“被除数60”和“除数20”怎么变化时,商才不变?请同学们根据导学提纲完成1,先独立探索后小组交流(十分钟)4.师:谁来汇报这些算式的答案,运算顺序读法。我们来看看分类,同时乘:
(60×2)÷(20×2)=
(60×3)÷(20×3)=
同时除:
(60÷4)÷(20÷4)=
(60÷10)÷(20÷10)=(1)师:观察这类算式,你有什么发现?
(2)师:什么是同时?什么是相同的数?能将他们合成一句话吗? 5.师:像这样商不变的算式,你能再举举例子吗? 6.读一读句子,你觉得哪些词比较重要?为什么?
7.师:回过头来看看其他不等于3的例子,为什么不等于3? 8.师:你还有哪些疑问?
老师的疑问:“猪八戒吃西瓜”中,他每天都吃了2个,这是怎么回事? 你能填出括号中的变化吗?
4÷2=2个
16÷8=2个
()÷()=2个
()÷()=2个()÷()=2个
()÷()=2个 9.当堂检测
(1)P75“试一试”,解释小女孩为什么这么做?有什么好处? 师:学着小女孩的做法自己算一遍(2)P76“观察与思考” 师:看得懂吗?什么意思? 自己尝试下面的题目,写出过程。10.小结:这节课我们研究了什么规律? 11.我们是怎样开展研究的? 观察猜想——归纳总结——举例验证 12.总结:你有什么收获?
第四篇:商不变规律教学设计
《商不变规律》的教学设计
唐河县第三小学 刘晓闯
设计理念:《数学课程标准》在课程实施建议中明确指出:“数学教学要紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设各种情景,为学生提供从事数学学习活动的机会,激发对数学的兴趣,以及学好数学的愿望。在数学课堂教学中创设一定的生活情景,数学走进学生生活,让他们亲近数学,进而引导学生在生活中发现数学,让数学与生活结合,在真实或模拟的生活情景中学习数学、运用数学。同时,在课堂教学过程中,通过学生自主互助合作获取知识,参与知识发生发展的过程,深刻理解所学知识并能灵活运用。本节课主要是学习商不变规律。通过情景设置,逐渐让学生发现计算当中的规律,再通过学生合作学习总结出商不变规律。让学生充分完成现象分析,初步感知;比较观察,概括规律;举例验证,加深理解;解决问题,运用规律。
教学内容:
人教版九年义务教育六年制小学数学第七册P84。教学目标:
1.理解和掌握商不变规律,并能运用这一规律口算相关的除法。2.培养学生观察、分析、概括以及发现规律、探索新知的能力。教学过程:
1.故事导入
师:花果山风景秀丽,气候宜人,那儿住着一群猴子。有一天,猴王让小猴分桃子。猴王说:“给你8个桃子,平均分给2只小猴子。”小猴子一听,连连摇头,“不行,太少了!太少了!”“那就给你80个桃子,平均分给20只猴子。”小猴子喊道:“还少,还少。”“还少呀?那就给你800个桃子,平均分给200只猴子吧。”小猴子得寸进尺,试探地说:“大王开恩,再多给点行不行呀?”猴王一拍桌子,显出慷慨的样子:“那好吧,给你8000个桃子平均分给2000只小猴子,这下你该满意了吧。”小猴子笑了,猴王也笑了。
师:同学们谁的笑是聪明的一笑,为什么?
生1:猴王的笑是聪明的一笑。桃子的总数与猴子的总只数变了,但每只小猴子每次分到桃子的个数没有变。
生2:猴王的笑是聪明的一笑。因为猴王把小猴子给骗了,每只小猴子还是分的4个桃子。
【设计意图】:针对小学生喜欢听故事的特点,新课以学生熟悉的感兴趣的故事形式开头,创设一种符合孩子心理的情景,激发起孩子的积极性和探究新知识的欲望。为整堂课的顺利进行打下坚实的感情基础。
2.探索规律
先让学生通过故事中给出的信息提出问题,老师顺势出示问题:平均每只猴子分得几个桃子?然后课件出示自学提示: 小组合作,完成以下问题:
8÷2=4
80÷20=4
800÷200=4 8000÷2000=4 从上往下或从下往上仔细观察四个算式,你发现了什么?学生开始小组活动。
【设计意图】:设计这个环节,让学生通过观察四个算式,通过小组的合作研讨,发现从上往下看,被除数和除数都乘相同的数,商不变。从下往上看,被除数和除数都除以相同的数,商不变。在这个过程中,充分发挥小组合作的优势,让学生通过研讨,观察、分析,归纳,发现商不变的规律。
各小组汇报交流
通过交流汇报,互相补充,学生得出:被除数和除数同时扩大或缩小相同的倍数,商不变。
为了让学生说出“乘或除以相同的数”,我引导学生:扩大就是怎样运算?缩小就是怎样运算?学生总结出:被除数和除数同时乘或除以相同的数,商不变。
3.验证规律 师:同学们发现的这个规律是否具有普遍性呢?请你们接下来再举几个例子,看被除数和除数同时乘或除以相同的数,商变不变?
课件出示题目: 小芳、小刚、小红三个小朋友也各自列了一个式子来验证这一规律。
小芳:(80×100)÷(20×100)=4 小刚:(80 ÷ 20)÷(20 ÷ 20)= 4 小红:(80×0)÷(20×0)=4 通过同桌间讨论,使学生知道必须“0除外”。得出完整的商不变规律,课件出示商不变规律:被除数和除数同时乘或除以相同的数(0除外),商不变。
【设计意图】:设计这个环节,主要是让学生通过不同的例子验证商不变规律的适应性、普遍性,证明我们通过分析、归纳,得出的商不变规律结论是正确的。以后可以使用这个商不变规律解决问题。
4.应用规律解决问题(1)基础练习想一想,算一算
72÷9= 36÷9= 80÷40= 720÷90= 360÷90= 800÷400= 7200÷900= 3600÷900= 8000÷4000= 【设计意图】:通过口算的基础练习,让学生学会应用商不变规律进行计算,而不是用以前的方法计算
(2)认真观察,填一填。20÷5=4(20 ×6)÷(5 ×)=4(20 ÷)÷(5 ÷5)=4(20 ×)÷(5×8)=4
16÷8=2(16÷)÷(8○2)=2(16○3)÷(8×)=2(16÷)÷(8÷)=2 【设计意图】:通过观察,填写适当的数或运算符号,使学生进一步理解商不变规律的内涵。
(3)根据已知算式,判断正误。
已知48÷12=4,判断下列各式是否正确。如果不对,怎样改一下就对了。
①(48×5)÷(12×5)=4()②(48×3)÷(12×4)=4()③(48÷6)÷(12×6)=4()④(48÷4)÷(12÷4)=4()
【设计意图】:通过判断,并说理由,使学生进一步理解商不变规律的内涵。
(4)拓展练习
根据给出的例子,你能很快算出下面算式的结果吗? 例:400÷25 =(400×4)÷(25×4)= 1600÷100 = 16
150÷25 200÷25 【设计意图】:通过拓展练习,拓宽学生视野,培养学生知识迁移及灵活运用的能力,为后面学习除法简便运算奠定基础。
5.课堂小结
人教版九年义务教育六年制小学数学第七册P87。
《商不变规律》的教学设计
唐河县第三小学 刘晓闯
第五篇:商不变的规律
“商不变的规律”说课
本节教材是义务教育课程标准北师大版四年级数学上册第六单元“除法”中的的内容。编者意图是在学生学会三位数除以两位数的基础上,引导学生探索、构建“商不变的规律”这一知识模型,并能运用该规律进行除法的简便计算。本节教学重点是让学生在探索过程中发现规律。因此,教学时,要引导学生先计算,然后依次按照从上到下和从下到上的顺序去观察,比较算式中被除法和除数的变化及对应的商的关系,从而发现商不变的规律。对于规律的学习,重要的是能够用自己的语言进行比较清楚的描述,并能在具体的情境中加以应用,而不要求用统一的语言去描述并强记,另外“商不变的规律”是学生在四年级下册学习“小学除法”的基础,因此该“规律”的理解和运用尤为重要。
学情分析:
对于本节教材的学习,学生有了除数是两位数除法计算的知识基础,并且在本册的第三单元学生在学习乘法的结合律、乘法的分配律时,通过具体的情景活动,他们已经历“发现问题、举例验正、归纳规律、实践运用”的过程,这些学习方法的形成对学生发现“商不变的规律”将有较大的促进作用,因此,在学生“商不变的规律”时,完全可以把探索、发现的过程交给学生,让学生自己确定观察的方法,自己归纳观察结果。但这次我去执教的地点是一个村校,通过调查得知该班学生思维不太活跃,发言不很积极,上课很难调动学生发言的积极性,所以我想采取有趣的情境引入,提问层次适当放低,探索过程教师作一些适当引导,以调动学生参与的积极性,从而针对不同学生达到有效教学。设计理念:
创设情境,激发学学生参与探究的兴趣和欲望,引导学生在自主探索、合作交流的过程中主动构建数学知识模型,并运用建构的规律解决问题,在建构、运用过程中渗透数学思想和方法。
教学目标:
1、经历探索的过程,发现商不变的规律。
2、能运用商不变的规律,进行除法的简便计算。
3、培养学生观察、概括以及提出问题、分析问题、解决问题的能力。
4、学生在参与观察、比较、猜想、概括、验证等学习活动过程中,体验成功,培养学生爱数学的情感。
教学重点: 理解并归纳出商不变的规律。
教学难点: 会初步运用商不变的规律进行一些简便计算。教具、学具: 小黑板、计算题卡。
教学设计
教学过程:
一、创设情境,激发兴趣。
师:同学们注意了,我讲一个故事给你们听。你们看过《西游记》吗?里面的内容很精彩,老师知道同学们都很喜欢里面的孙悟空,今天老师就给大家讲个孙悟空分桃子的故事。孙悟空西天取经回来后,就迫不及待的来到花果山看他的孩儿们,它给孩儿们带来礼物——桃子,他对身边的1只猴子说:“把8个桃子平均分给你们2只猴子吧!”这两只猴子连连摇头:“太少了!太少了!”外面的猴子听说后又进来一些猴子。孙悟空就说:“那好吧,把80个桃子平均分给20只猴子,怎么样?”猴子们得寸进尺,挠挠头皮,试探地说:“大王,再多点行不行啊?”所有的猴子都听到分桃子了,一起跑到孙悟空身边。孙悟空一拍胸脯,显示出慷慨大度的样子:“那就把800个桃子平均分给200只猴子,你们总该满意了吧?小猴子们笑了,孙悟空也笑了。[设计意思:通过学生喜爱的故事,引入新课,激发学生投入学习的兴趣,也给学生创设一个宽松的课堂氛围,并引导学生在故事情境中发现问题,提出问题,从而为解决问题做好铺垫。]
二、探究规律,发现规律。
㈠ 师:同学们,小猴子和孙悟空都笑了,谁的笑是聪明的一笑,为什么?
学生思考后回答。
(预设)生1:„„猴王的笑是聪明的一笑,桃子的总数与猴子的总只数变了,但每只猴子分到的桃子个数没有变。
生2:„„猴王的笑是聪明的一笑,因为猴王把小猴子给骗了,每只小猴子还是分到4个桃子。
师:你(们)是怎样看出来的?从哪儿看出来的?(预设)生:„„(计算的)
师:能列出算式吧吗?
引导学生列出算式,并结合板书把算式补充完整。
板书 ①8÷2=4
②80÷20=4
③800÷200=4
㈡
1、这些都是什么运算的算式,第一竖的数叫什么?第二竖的数又叫什么?第三竖的数又叫什么
2、师:请同学们仔细观察这组算式,你发现了什么?
„预设意图 :这样预设,给学生创设发挥的空间,要比直接引导学生从上往下或从下往上观察预留的思维空间要大,课堂上观察学生反应情况,学生发现不了,再逐步引导。‟
生独立观察思考。
师:你有重要发现吗?把你的重要发现说一说好吗?
小组交流,师巡视辅导。全班交流汇报。
生:我发现它们的得数都是4,商不变。
师:她发现一个非常重要的数学现象,商不变。(板书:商不变)
师:这节课,我们就来研究“商不变的规律”。(板书课题)
师:商不变,谁发生了变化?怎样变的?
(预设)生1:被除数和除数同时乘上了10(扩大10倍)。
师:这个同学说了一个很好的词,你们知道是什么词吗?“同时”是什么意思?你能说一说吗?
生:„„
师:“同时”指被除数和除数都扩大了10倍。(而不是一个扩大,一个缩小,或一个扩大,一个不变。)
(预设)生2:②式和①式比较„„ 师:他用一个非常好的方法发现规律,用两个算式进行比较,这是多好的学习方法呀!你能像他这样去发现其它算式的一些规律吗?
生:„„
师:同学们发现那么多的规律,真聪明!能用一句话概括你发现的规律吗?
生:„„
师:被除数和除数,同时乘10,100,1000,商不变。(板书)
师:同学们刚才是从上往下看,发现了这么重要的规律,那么从下往上看,有规律吗?
生汇报,师板书。
师:被除数和除数同时除以10、100、1000商不变 师:是不是只有被除数和除数同时乘或除以10,100,1000,商不变呢?那你能验证吗?请你多写几个商是4的除法算式,看看有没有这个规律。
生写算式,师出示:
师:请同学们仔细观察这组算式,符合这个规律吗?
生观察,汇报。
师引导:看来这里扩大和缩小的不一定是整十整百,整千的位数,也可以是1倍、2倍、3倍、4倍等,那么我们就要把10倍、100倍„„改成“相同的倍数”了。
师在板书上改写。
师:这里所有数都可以吗?
(预设)生:„„(零除外)
师:为什么要零除外?
生:因为零乘任何数都得零,零不能当除数。
师:我们发现的就是重要的“商不变的规律”,这个规律在所有除法中都适用吗?
师:请请同们列一组算式验证一下。
生验证,指名汇报。
师小结:看来这个规律对所有除法都适用。
[设计意图:这一环节通过学生自主探索,小组合作,全班交流三个层次,引导学生逐步构建“商不变的规律”这一数学知识的模型,让学生经历“发现----探索----构建”的学习过程,培养学生学数学的方法。]
三、应用规律,拓展延伸。师:同学们对这一规律理解了吗?智慧老爷爷想考考你到底掌握的怎么样?可以吗?
1、请你计算。8000÷2000=
80„„0÷20„„0=
在板书下补充 100个0 100个0
生做过后师:你们是一部高级电脑,比普通电脑快多了,看来这个规律的作用太大了,这么大的数同学们都能计算出来。
2、P75 T1 板书到小黑板。
3、从上到下,先算出每组题中第一题的商,然后很快地写出下面两组的商。
72÷9=
36÷3=
80÷4= 720÷90=
360÷30=
800÷40= 7200÷900=
3600÷300=
8000÷400=
4、判断,下面的计算对吗?为什么不对?
14÷2=7
15÷3=5
(14×2)÷(2÷2)=7()
150÷30=5()(14×5)÷(2×3)=7()
150÷30=50()(14×0)÷(2×0)=7()
1500÷300=500()
5、比赛。
比一比,在1分钟内看谁写出相等的除法算式最多。赛后,让第1名同学说说取胜秘诀。
6、P75页,观察与思考
感受规律的作用真大(可以使计算简便)。
[设计意图:设计不同层次的变式练习,突破难点,让学生进一步能理解运用所探索的规律,以达到灵活运用知识解决问题,培养学生应用意识和能力。]
四、总结全课,概括梳理。
师:这节课,你学会了什么,有什么新发现?数学有趣吗?
师总结:通过同学们的探索,发出了那么重要“商不变规律”,并且那么有用,同学们真了不起!下节课,你们的老师将带着你们把它运用到竖式计算中,还可以使竖式计算简便呢!
五、作业:
列举出几组数学算式,说一说商不变的规律。板书设计:
商不变的规律
①8÷2=4
6÷3=2 ②80÷20=4
24÷12=2 ③800÷200=4 48÷24=2 8000÷2000=4 120÷60=2 80„„0÷20„„0=4
100个0 100个0 被除数和除数同时扩大或缩小相同的倍数,商不变。
反思:
本节课是探索性很强的数学课,是让学生探索“商不变的规律”,并利用该规律使有关除法简便,这要求学生要有一定的知识基础,具备一定的探索能力,我们知道,学生的学习往往经历感知(具体)-----概括(抽象)-----应用(实际)的认识过程。而在这个过程中有两次飞跃,第一次飞跃是由“感知----概括”,也就是说学生的认识活动要在具体感知基础上,通过抽象概括,从而得出知识的结论。第二次飞跃是由“概括----应用”,这是把掌握的知识结论应用于实际的过程。能辅助学生做好这两个飞跃,久而久之就教会了学生“学数学的方法”做到了“授之以渔”。基于这一认识本节课我们设计了开放度很大的学习活动,设计了适宜于学生学习的一系列活动。
1、创设故事情境,激发学生兴趣。
创设学生感兴趣的孙悟空分桃子故事情境,激发学生学习兴趣,启发积极思维,学生在故事中发现问题,从而带着愉悦的心情去探索。
2、创设探究空间,引发探索。
学生发现问题,老师不急于告诉学生结论,而是让学生观察、思考、探究,让学生通过自主探索,小组合作,全班交流,引导学生逐步去发现,去构建,去理解“商不变的规律”,引导学生经历“发现——探索——构建——应用”的知识建构过程,从而培养学生学会学数学做数学的方法。在这一过程中,最大限度地为学生提供探索、发现、总结的空间,让学生在独立思考和同伴互助等形式下完成规律的探究过程,感受发现的快乐,培养学生爱数学的情感。