第一篇:钻孔咬合桩在天津地铁基坑围护结构施工中的应用
钻孔咬合桩在天津地铁基坑围护结构施工中的应用
[摘 要]在天津城区地铁隧道采用明挖法施工时,当地质条件复杂,不宜于施工水泥搅拌桩止水帷幕时,常采用地下连续墙。本文对钻孔咬合桩这一围护结构型式在天津地铁改、扩建工程中的首次应用进行了详细介绍,对其在天津地铁基坑中的应用进行了实际工程监测,并进行了评价分析,认为咬合桩在地铁施工中有广阔的应用前景。
[关键词]基坑;钻孔咬合桩;工程监测前 言
天津目前正在进行大规模地铁建设,其中在市区部分地段采用了明挖法[1]。由于城市中心地带建筑物、交通设施稠密,故地铁工程的基坑开挖只能在支护结构保护下进行垂直开挖。目前地铁深基坑围护结构一般采用的形式有钻孔灌注桩加水泥搅拌桩复合结构,地下连续墙结构和SMW工法[2 3]。
相对上述围护结构,钻孔咬合桩在天津较少有应用。该方法在国外及国内部分地区,已具备成熟的施工经验与工法,有很多成功的工程实例。其适用于沿海地区软弱地层、含水砂层地质情况下的地下工程深基坑围护结构的施工。它采用的是钢筋混凝土桩与素混凝土桩切割咬合成排桩的型式,其围护和止水效果很好,工程造价比地下连续墙和人 工挖孔桩要低20%~30%左右。为此,在天津地铁西南角车站深基坑工程中引入了钻孔咬合桩工法。2 工程概况
天津地铁1号线既有线改、扩建工程西南角站,位于四马路、南开三马路与黄河道、南马路交口处,呈南北走向。本车站将既有结构全部拆除,按照新的建筑平面重新构筑新结构。改建段结构全长244.349m。
2.1 工程地质与水文地质
改建段区间位于第四系全新统人工填土层(Qml)、新近沉积层(Q43N si)、第Ⅰ陆相层(Q4 3a1)、第Ⅰ海相层(Q2 4m)中,岩性以杂填土、粉质粘土、粉土为主,土质松软,多呈可塑~流塑状,属中~高压缩性土。场地地下水类型为孔隙潜水,储存于第四系粘性土、粉土及砂类土中,地下水埋深0.8~4m,水位变幅1~2m。2.2 设计情况
该车站主体为地下一层多跨矩形框架结构,采用明挖顺作法施工。原设计方案基坑围护结构采用钻孔灌注桩加水泥搅拌桩止水帷幕,坑内设钢支撑系统。但由于本工程基坑开挖较深,达到了10m,且其中一段基坑与一栋高层建筑———金禧大酒店距离仅6m,而且由于开挖处杂填土中埋有原地铁修建时抛弃的建筑垃圾,有很多如钢筋、废木料、模板等各种杂填物,情况非常复杂,经现场试验后发现一般钻孔灌注桩成桩较困难;此外,本段地下水埋藏较浅且丰富,桩孔易发生坍塌变形。钻孔咬合桩由于采用了全钢套管护壁,能有效地防止孔内流砂、涌砂现象的产生,并且通过现场实时监测其成孔精度即可得到有效控制,其“一荤(指钢筋混凝土桩)”、“一素(指素凝土桩)”相互咬合排列,挡土和止水效果极佳,经济性好。最后经多方面因素综合考虑,本工程决定采用咬合桩这一新型围护结构型式。钻孔咬合桩施工技术 3.1 工艺原理
钻孔咬合桩的排列方式为一根素混凝土桩(A桩)与一根钢筋混凝土桩(B桩)间隔布置。A桩采用缓凝型混凝土,B桩采用普通混凝土,先施工A桩,后施工B桩。天津地铁西南角站钻孔咬合桩采用的是全护筒冲弧法,即在两侧A桩成桩后利用护筒钻机的下压切割能力,在切割掉A桩部分混凝土的同时使B桩成桩。最后效果是使B桩嵌入两侧A桩一部分,形状类似于相互咬合,故形象的称为咬合桩(如图1)。3.2 工艺流程 3.2.1 导墙施工
为了保证钻孔咬合桩孔口定位的精度并提高桩体就位效率,应在咬合桩成桩前首先在桩顶部两侧施作混凝土导墙或钢筋混凝土导墙(见图1)。
3.2.2 单根咬合桩施工工艺流程
3(1)护筒钻机就位 当定位导墙有足够的强度后,用吊车移动钻机就位,并使主机抱管器中心对应定位于导墙孔位中心;(2)单桩成孔 其步骤为随着第1节护筒的压入(深度为1.5~2.5m),冲弧斗随着从护筒内取土,一边抓土一边继续下压护筒,待第1节全部压入后(一般地面上留1~2m,以便于接筒)检测垂直度,合格后,接第2节护筒,如此循环至压到设计桩底标高;(3)吊放钢筋笼 对于B桩,成孔检查合格后进行安放钢筋笼工作,此时应保证钢筋笼标高正确;(4)灌注混凝土 如孔内有水,需采用水下混凝土灌注法施工;如孔内无水,则采用干孔灌注法施工并注意振捣;(5)拔筒成桩 一边浇注混凝土一边拔护筒,应注意保持护筒底低于混凝土面≥2.5m。3.2.3 排桩施工工艺流程
流程:A1→A2→B1→A3→B2→A4→B3……,如图2所示。
3.3 控制措施
(1)成孔精度控制 为控制咬合桩的成孔精度达到《地下铁道工程施工及验收规范》[4]要求,采用成孔精度全过程控制的措施。本工程采用的是在成桩机具上悬挂两个线柱控制南北、东西向护筒外壁垂直度并用两台测斜仪进行孔内垂直度检查。发现有偏差时及时进行纠偏调整。(2)A桩混凝土缓凝时间的确定 在测定出单桩成桩所需时间t后,可根据下式计算A桩混凝土缓凝时间T
T=3t+K
其中,K为储备时间,一般取1.5t。3.4施工问题与解决方案
(1)防止管涌措施 在B桩成孔过程中,由于A桩混凝土未完全凝固,还处于流动状态,因此其有可能从A、B桩相交处涌入B桩孔内,形成“管涌”。克服措施有:①控制A桩坍落度<14cm;②护筒应超前孔底至少1 5m;③实时观察A桩混凝土顶面是否下陷,若发现下陷应立即停止B桩开挖,并一边将护筒尽量下压,一边向B桩内填土或注水(平衡A桩混凝土压力),直至制止住“管涌”为止。
(2)遇地下障碍物处理方法 由于咬合桩采用的是钢护筒,所以可吊放作业人员下孔内清除障碍物。
(3)克服钢筋笼上浮方法 在向上拔出护筒时,有可能带起放好的钢筋笼。预防措施可选择减小B桩混凝土骨料粒径或者可在钢筋笼底部焊上一块比其自身略小的薄钢板以增加其抗浮能力。4 工程实践效果与分析
在对各种围护结构型式比选后,最终在天津西南角地铁车站基坑工程中选择了钻孔咬合桩这一新工法。施工中,在靠近金禧大酒店一侧的基坑采用φ1200咬合桩,其余基坑段采用φ1000咬合桩,桩间咬合200mm,桩长为19.2m。由于咬合桩这一围护型式首次在天津地铁工程中使用,而且基坑工程又是整个项目的重要工程,因此非常有必要在 基坑开挖过程中跟踪施工进程,对桩体侧移、坑周地面沉陷和地层位移、附近建筑物、地下管网等变形及受力情况进行监测[5],用取得的监测数据,与预测值或计算值相比较并进行分析,能可靠的反映工程施工所造成的影响,能较准确地以量的形式反映这种影响的程度,也可以对咬合桩的适用性进行客观、准确的评价。4.1 监测方案
图3为基坑监测布点平面布置示意图。
监测设备包括:高精度水准仪,经纬仪和测斜仪。根据施工设计,在基坑开挖和主体结构施工期间,主要进行了变位、沉降、咬合桩变位和地下管线位移监测,监测对象及相应使用的仪器见表1。
4.2 数据分析 从2003年8月初开始监测,到2004年2月底结束,前后共计七个月的时间。在基坑开挖期间,工程中没有出现险情和事故,咬合桩防渗效果很好,各项监测数据也比较平稳,现对下面几个监测内容得到的监测数据进行分析说明。
图4和图5表示的是该基坑围护结构中的两处咬合桩的侧移曲线,分别为186号和52号(其具体位置见图3)。
由监测数据结果所绘出的桩体侧向变形曲线图可以看出,咬合桩围护结构桩体的最大侧向变形一般均发生在基坑开挖面以上靠近坑 底的部位[6]。比较186号桩与52号桩的侧移曲线,可明显看到52号桩的桩顶水平位移和桩体最大侧移均比186号桩要大很多。分析其原因,在图3中可以看出,186号桩位于一号线靠近金禧大酒店一侧的基坑边,由前述其桩径为1200mm,而52号桩桩径为1000mm。由于围护桩的桩径增大,所以其抗弯刚度势必会相应提高,在基坑内支撑型式相同的情况下,则桩身各部侧向变形量相应的会变小。52号桩桩顶最大侧移达到了8.5mm,远大于186号桩的2mm。分析原因是由于基坑开挖时第1道支撑加撑不及时,导致开挖后桩体悬臂状态暴露时间过长所致。综合这两个桩体位置与其他测点桩体侧移数据来看,绝大部分桩体变形值均满足要求,最大变形值11.9mm,小于设计要求的灌注桩、地连墙等围护结构水平侧移限值14mm。
图6为基坑外地面沉降随时间变化曲线。测量从基坑开挖时开始,第1个观测点(52-1)位于52号咬合桩桩头,第2个测点(52-2)与第一个测点相距5m,第3个测点(52-3)与第2个测点相距10m(见图3)。
从图6中可以看出,在开始测量时地面已经存在微小的沉降。由于场地地下水位埋深较浅(0.8~4m),为了防止基坑开挖时坑内外水位差较大而引起的流砂、管涌等渗透破坏现象,本工程采取的是基坑外井点降水措施。所以可以认定,初始的微小地面沉降是由于基坑开挖前坑外降水引起的。地表沉降会随着施工过程时间的增大而加大,最大沉降发生在52-2测点处,其次是桩头测点52-3,而距离基坑最远的52-1点沉降值已非常小了,说明此位置处地面沉降受基坑开挖影响已很小。
图7为一号线基坑开挖需重点保护的周围高层建筑物金禧大酒店的沉降随时间变化曲线。
从图7中看出,建筑物在坑外降水时即有一定的沉降,但沉降值很小。而出现沉降最快的时候,正是基坑从开挖至开挖到底这段时间内。而后,这些测点虽然继续下沉,但下沉的速率明显变缓,最大沉降值仅为3.5mm。综合基坑周围其他几幢建筑物的沉降值及地下管线的变 9 形情况来看,最大沉降量在15mm以内,完全满足了规范[7]限定对主基坑周围建筑物和管线的沉降限值20mm的要求。4.3 钻孔咬合桩新工艺的评价分析
从天津地铁一号线西南角站基坑工程采用钻孔咬合桩这一新型围护结构型式的实际施工过程和效果看出,钻孔咬合桩相比较其他几种常用的围护型式有其自身很大的优势:(1)咬合桩采用的是全护筒冲弧法,能够克服不良地质条件下灌注桩成桩困难的问题;(2)咬合桩采用钢护筒,不像灌注桩用的是泥浆护壁,可以大大减小泥浆四溢对周围环境的影响;(3)咬合桩垂直度比灌注桩好,不会塌孔,下挖过程中如遇到土体内有杂物影响时可以直接下去作业人员对杂物进行清理;(4)从经济角度,咬合桩比地铁隧道基坑常用的地下连续墙结构要省20%~30%的经费,经济性好。
同时在本次工程的施工过程中也总结出了一些钻孔咬合桩施工的改进方法,如咬合桩导墙若采用预制结构而代替现浇结构,不仅可以更加方便施工,而且经济性更好等等。5 结 论
(1)在本文所涉及的工程地质条件复杂的情况下进行地铁隧道施工,基坑开挖围护结构采用钻孔咬合桩这种新的围护结构型式,达到了预期的目的;10(2)在基坑工程中,只要围护结构的挡土和止水效果好,并及时架设支撑,基坑开挖时对周围环境不会造成太大的影响,完全可以保证紧邻高层建筑物的沉降变形满足要求;(3)基坑外地表沉降会随着施工过程时间的增长而加大,通过对本工程后续观测的结果来看,后期的沉降将持续半年左右才逐渐趋于稳定;(4)钻孔咬合桩围护结构型式,当条件适当时,可应用在城市地铁施工中,一定会取得可观的社会效益和经济效益,将会有广阔的应用前景。
第二篇:天津地铁基坑施工中钻孔咬合桩的应用
[摘 要]在天津城区地铁隧道采用明挖法施工时,当地质条件复杂,不宜于施工水泥搅拌桩止水帷幕时,常采用地下连续墙。本文对钻孔咬合桩这一围护结构型式在天津地铁改、扩建工程中的首次应用进行了详细介绍,对其在天津地铁基坑中的应用进行了实际工程监测,并进行了评价分析,认为咬合桩在地铁施工中有广阔的应用前景。
[关键词]基坑;钻孔咬合桩;工程监测 1 前 言
天津目前正在进行大规模地铁建设,其中在市区部分地段采用了明挖法[1]。由于城市中心地带建筑物、交通设施稠密,故地铁工程的基坑开挖只能在支护结构保护下进行垂直开挖。目前地铁深基坑围护结构一般采用的形式有钻孔灌注桩加水泥搅拌桩复合结构,地下连续墙结构和SMW工法[2 3]。
相对上述围护结构,钻孔咬合桩在天津较少有应用。该方法在国外及国内部分地区,已具备成熟的施工经验与工法,有很多成功的工程实例。其适用于沿海地区软弱地层、含水砂层地质情况下的地下工程深基坑围护结构的施工。它采用的是钢筋混凝土桩与素混凝土桩切割咬合成排桩的型式,其围护和止水效果很好,工程造价比地下连续墙和人工挖孔桩要低20%~30%左右。为此,在天津地铁西南角车站深基坑工程中引入了钻孔咬合桩工法。工程概况 天津地铁1号线既有线改、扩建工程西南角站,位于四马路、南开三马路与黄河道、南马路交口处,呈南北走向。本车站将既有结构全部拆除,按照新的建筑平面重新构筑新结构。改建段结构全长244.349m。
2.1 工程地质与水文地质
改建段区间位于第四系全新统人工填土层(Qml)、新近沉积层(Q43N si)、第Ⅰ陆相层(Q4 3a1)、第Ⅰ海相层(Q2 4m)中,岩性以杂填土、粉质粘土、粉土为主,土质松软,多呈可塑~流塑状,属中~高压缩性土。场地地下水类型为孔隙潜水,储存于第四系粘性土、粉土及砂类土中,地下水埋深0.8~4m,水位变幅1~2m。
2.2 设计情况
该车站主体为地下一层多跨矩形框架结构,采用明挖顺作法施工。原设计方案基坑围护结构采用钻孔灌注桩加水泥搅拌桩止水帷幕,坑内设钢支撑系统。但由于本工程基坑开挖较深,达到了10m,且其中一段基坑与一栋高层建筑———金禧大酒店距离仅6m,而且由于开挖处杂填土中埋有原地铁修建时抛弃的建筑垃圾,有很多如钢筋、废木料、模板等各种杂填物,情况非常复杂,经现场试验后发现一般钻孔灌注桩成桩较困难;此外,本段地下水埋藏较浅且丰富,桩孔易发生坍塌变形。钻孔咬合桩由于采用了全钢套管护壁,能有效地防止孔内流砂、涌砂现象的产生,并且通过现场实时监测其成孔精度即可得到有效控制,其“一荤(指钢筋混凝土桩)”、“一素(指素凝土桩)”相互咬合排列,挡土和止水效果极佳,经济性好。最后经多方面因素综合考虑,本工程决定采用咬合桩这一新型围护结构型式。钻孔咬合桩施工技术 3.1 工艺原理
钻孔咬合桩的排列方式为一根素混凝土桩(A桩)与一根钢筋混凝土桩(B桩)间隔布置。A桩采用缓凝型混凝土,B桩采用普通混凝土,先施工A桩,后施工B桩。天津地铁西南角站钻孔咬合桩采用的是全护筒冲弧法,即在两侧A桩成桩后利用护筒钻机的下压切割能力,在切割掉A桩部分混凝土的同时使B桩成桩。最后效果是使B桩嵌入两侧A桩一部分,形状类似于相互咬合,故形象的称为咬合桩(如图1)。
3.2 工艺流程 3.2.1 导墙施工
为了保证钻孔咬合桩孔口定位的精度并提高桩体就位效率,应在咬合桩成桩前首先在桩顶部两侧施作混凝土导墙或钢筋混凝土导墙
(见图1)。
3.2.2 单根咬合桩施工工艺流程
(1)护筒钻机就位 当定位导墙有足够的强度后,用吊车移动钻机就位,并使主机抱管器中心对应定位于导墙孔位中心;(2)单桩成孔 其步骤为随着第1节护筒的压入(深度为1.5~2.5m),冲弧斗随着从护筒内取土,一边抓土一边继续下压护筒,待第1节全部压入后(一般地面上留1~2m,以便于接筒)检测垂直度,合格后,接第2节护筒,如此循环至压到设计桩底标高;
(3)吊放钢筋笼 对于B桩,成孔检查合格后进行安放钢筋笼工作,此时应保证钢筋笼标高正确;
(4)灌注混凝土 如孔内有水,需采用水下混凝土灌注法施工;如孔内无水,则采用干孔灌注法施工并注意振捣;
(5)拔筒成桩 一边浇注混凝土一边拔护筒,应注意保持护筒底低于混凝土面≥2.5m。
3.2.3 排桩施工工艺流程
流程:A1→A2→B1→A3→B2→A4→B3……,如图2所示。
3.3 控制措施
(1)成孔精度控制 为控制咬合桩的成孔精度达到《地下铁道工程施工及验收规范》[4]要求,采用成孔精度全过程控制的措施。本工程采用的是在成桩机具上悬挂两个线柱控制南北、东西向护筒外壁垂直度并用两台测斜仪进行孔内垂直度检查。发现有偏差时及时进行纠偏调整。
(2)A桩混凝土缓凝时间的确定 在测定出单桩成桩所需时间t后,可根据下式计算A桩混凝土缓凝时间T
T=3t+K
其中,K为储备时间,一般取1.5t。3.4施工问题与解决方案
(1)防止管涌措施 在B桩成孔过程中,由于A桩混凝土未完全凝固,还处于流动状态,因此其有可能从A、B桩相交处涌入B桩孔内,形成“管涌”。克服措施有:①控制A桩坍落度<14cm;②护筒应超前孔底至少1 5m;③实时观察A桩混凝土顶面是否下陷,若发现下陷应立即停止B桩开挖,并一边将护筒尽量下压,一边向B桩内填土或注水(平衡A桩混凝土压力),直至制止住“管涌”为止。
(2)遇地下障碍物处理方法 由于咬合桩采用的是钢护筒,所以可吊放作业人员下孔内清除障碍物。
(3)克服钢筋笼上浮方法 在向上拔出护筒时,有可能带起放好的钢筋笼。预防措施可选择减小B桩混凝土骨料粒径或者可在钢筋笼底部焊上一块比其自身略小的薄钢板以增加其抗浮能力。工程实践效果与分析
在对各种围护结构型式比选后,最终在天津西南角地铁车站基坑工程中选择了钻孔咬合桩这一新工法。施工中,在靠近金禧大酒店一侧的基坑采用φ1200咬合桩,其余基坑段采用φ1000咬合桩,桩间咬合200mm,桩长为19.2m。由于咬合桩这一围护型式首次在天津地铁工程中使用,而且基坑工程又是整个项目的重要工程,因此非常有必要在基坑开挖过程中跟踪施工进程,对桩体侧移、坑周地面沉陷和地层位移、附近建筑物、地下管网等变形及受力情况进行监测[5],用取得的监测数据,与预测值或计算值相比较并进行分析,能可靠的反映工程施工所造成的影响,能较准确地以量的形式反映这种影响的程度,也可以对咬合桩的适用性进行客观、准确的评价。
4.1 监测方案
图3为基坑监测布点平面布置示意图。
监测设备包括:高精度水准仪,经纬仪和测斜仪。根据施工设计,在基坑开挖和主体结构施工期间,主要进行了变位、沉降、咬合桩变位和地下管线位移监测,监测对象及相应使用的仪器见表1。
4.2 数据分析
从2003年8月初开始监测,到2004年2月底结束,前后共计七个月的时间。在基坑开挖期间,工程中没有出现险情和事故,咬合桩防渗效果很好,各项监测数据也比较平稳,现对下面几个监测内容得到的监测数据进行分析说明。
图4和图5表示的是该基坑围护结构中的两处咬合桩的侧移曲线,分别为186号和52号(其具体位置见图3)。
由监测数据结果所绘出的桩体侧向变形曲线图可以看出,咬合桩围护结构桩体的最大侧向变形一般均发生在基坑开挖面以上靠近坑底的部位[6]。比较186号桩与52号桩的侧移曲线,可明显看到52号桩的桩顶水平位移和桩体最大侧移均比186号桩要大很多。分析其原因,在图3中可以看出,186号桩位于一号线靠近金禧大酒店一侧的基坑边,由前述其桩径为1200mm,而52号桩桩径为1000mm。由于围护桩的桩径增大,所以其抗弯刚度势必会相应提高,在基坑内支撑型式相同的情况下,则桩身各部侧向变形量相应的会变小。52号桩桩顶最大侧移达到了8.5mm,远大于186号桩的2mm。分析原因是由于基坑开挖时第1道支撑加撑不及时,导致开挖后桩体悬臂状态暴露时间过长所致。综合这两个桩体位置与其他测点桩体侧移数据来看,绝大部分桩体变形值均满足要求,最大变形值11.9mm,小于设计要求的灌注桩、地连墙等围护结构水平侧移限值14mm。
图6为基坑外地面沉降随时间变化曲线。测量从基坑开挖时开始,第1个观测点(52-1)位于52号咬合桩桩头,第2个测点(52-2)与第一个测点相距5m,第3个测点(52-3)与第2个测点相距10m(见图3)。
从图6中可以看出,在开始测量时地面已经存在微小的沉降。由于场地地下水位埋深较浅(0.8~4m),为了防止基坑开挖时坑内外水位差较大而引起的流砂、管涌等渗透破坏现象,本工程采取的是基坑外井点降水措施。所以可以认定,初始的微小地面沉降是由于基坑开挖前坑外降水引起的。地表沉降会随着施工过程时间的增大而加大,最大沉降发生在52-2测点处,其次是桩头测点52-3,而距离基坑最远的52-1点沉降值已非常小了,说明此位置处地面沉降受基坑开挖影响已很小。
图7为一号线基坑开挖需重点保护的周围高层建筑物金禧大酒店的沉降随时间变化曲线。
从图7中看出,建筑物在坑外降水时即有一定的沉降,但沉降值很小。而出现沉降最快的时候,正是基坑从开挖至开挖到底这段时间内。而后,这些测点虽然继续下沉,但下沉的速率明显变缓,最大沉降值仅为3.5mm。综合基坑周围其他几幢建筑物的沉降值及地下管线的变形情况来看,最大沉降量在15mm以内,完全满足了规范[7]限定对主基坑周围建筑物和管线的沉降限值20mm的要求。
4.3 钻孔咬合桩新工艺的评价分析 从天津地铁一号线西南角站基坑工程采用钻孔咬合桩这一新型围护结构型式的实际施工过程和效果看出,钻孔咬合桩相比较其他几种常用的围护型式有其自身很大的优势:
(1)咬合桩采用的是全护筒冲弧法,能够克服不良地质条件下灌注桩成桩困难的问题;
(2)咬合桩采用钢护筒,不像灌注桩用的是泥浆护壁,可以大大减小泥浆四溢对周围环境的影响;
(3)咬合桩垂直度比灌注桩好,不会塌孔,下挖过程中如遇到土体内有杂物影响时可以直接下去作业人员对杂物进行清理;
(4)从经济角度,咬合桩比地铁隧道基坑常用的地下连续墙结构要省20%~30%的经费,经济性好。
同时在本次工程的施工过程中也总结出了一些钻孔咬合桩施工的改进方法,如咬合桩导墙若采用预制结构而代替现浇结构,不仅可以更加方便施工,而且经济性更好等等。结 论
(1)在本文所涉及的工程地质条件复杂的情况下进行地铁隧道施工,基坑开挖围护结构采用钻孔咬合桩这种新的围护结构型式,达到了预期的目的;
(2)在基坑工程中,只要围护结构的挡土和止水效果好,并及时架设支撑,基坑开挖时对周围环境不会造成太大的影响,完全可以保证紧邻高层建筑物的沉降变形满足要求;(3)基坑外地表沉降会随着施工过程时间的增长而加大,通过对本工程后续观测的结果来看,后期的沉降将持续半年左右才逐渐趋于稳定;
(4)钻孔咬合桩围护结构型式,当条件适当时,可应用在城市地铁施工中,一定会取得可观的社会效益和经济效益,将会有广阔的应用前景。
第三篇:浅谈多种围护结构在某基坑围护施工中的应用
浅谈多种围护结构在某基坑围护施
工中的应用
某住宅区三期由8幢16至17层住宅楼、地下车库6个、2~3层纺工路沿街商铺和l幢2至3层商场组成,总建筑面积约为5.7万m2。本工程设一层连通地下室,基础形式为沉管灌注桩和预应力管桩基础。基坑设计开挖深度为3.30~4.90 m。
中国论文网 /2/view-12910678.htm
该场地基坑位于东面距离道路边线16.3~16.8 m之间,其外为城市南北向交通主干道,上有高压电缆管线、煤气管(埋深约1.2m)、自来水管(埋深约1.3 m)、联通管(埋深约1.2 m)和电信管(埋深约1.2 m)等地下管线,与本
工程最小距离分别为14.8 m、17.9 m和20.9 m。基坑南面距离道路边线22.9 m,道路边线南侧为城市东西向交通主干道。基坑与投入使用的一期建筑物的最小距离为8.0 m。基坑与二期已建建筑物的最小距离为19.1 m。基坑西侧有一临时施工道路。局部紧靠本工程基坑边。基坑一期与待建三期之间有多条一期已埋设的电缆管线、广电管线、污水管(埋深约1.2m)和雨水管(埋深约1.2/1”1),与本工程最小距离为2.4m。
根据勘察报告,场地原为农田和农民住宅区,现已初步填土平整,部分场地为建筑废土所覆盖,场地中部因施工取土形成积水洼凹地,局部被泥浆水覆盖。基坑开挖深度影响范围内各土层主要物理力学性质指标见表1所示。
场地地下水属孔隙潜水型,勘探期
间在钻孔中测得孔内稳定潜水位埋深一般为0.2~1.1 m,相应的潜水位标高为1.7~1.2 m,地下潜水主要赋存于浅层粘性土中,富水性差,受河流和大气降水补给,潜水位埋深主要受场地微地貌形态控制,潜水位变化主要受控于大气降水和地表河水位,一般情况下地下潜水位略高于当地河水位,在高水位期间,潜水位甚至可达自然地面,地下潜水位随季节变化有所升降,变化幅度较小,一般年变幅为0.5~1.5 m。地下潜水对混凝土结构无腐蚀性;对混凝土结构中钢筋有弱腐蚀性。围护结构设计
综合场地地理位置、土质条件、基坑开挖深度和周围环境条件,本基坑围护具有如下特点:
(1)基坑开挖面积很大,基坑周长约1 400m,地下室围护1.2万余m2:
(2)基坑设计开挖深度为3.30~4.90 m;
(3)场地地基中软弱土层分布较均
匀,且地基浅部的软土层厚度在4m左右,其下卧层为力学性质较好的粘性土层;
(4)本工程周围环境条件尚可,但小区内部局部围墙和管线距本基坑较近。
放坡开挖可节约工程造价,经济性最好。在条件许可的情况下可优先选用。从本基坑的实际情况出发,基坑西侧局部距离本工程二期的几幢建筑物和地下室较近,大部分场地距在建建筑物均在22.0 m开外;且各地下室和主楼均为空地,因此可以考虑采用放坡开挖。
土钉墙围护结构具有经济性好、施工方便、施工工期短、安全可靠等优点。目前已在许多基坑工程中取得了成功的经验。同时,在土质条件比本工程差得多(软土含水量在60%以上)的上饶、九江等地土钉墙也得到了广泛应用,最大开挖深度已达7 m以上。
6l号楼B区北侧1.8 m处存在一污水管,采用其他形式的围护结构在软
土地基中往往变形较大,容易造成周围管线产生变形而开裂等现象,从而引发工程事故,因此采用内撑式排桩墙围护结构。内撑式排桩墙围护结构虽然造价略高一些,但具有可靠性好,围护结构受力合理。变形易控制等优点,尤其适合于在周围环境条件较差的基坑采用。
结合本工程上述特点,根据“安全、经济、方便施工”的原则。采用放坡开挖、复合土钉墙与内撑式排桩墙的围护方案是比较经济合适的。
计算参数及土工指标为:计算中考虑地表施工堆载15kPa:土压力计算采用土体固快指标,各土层物理力学性质指标根据勘察单位提供的本工程地质勘察报告取值。施工要求及现场监测
2.1 施工要求
土钉墙围护是随着基坑挖土的进行而逐步实施的,因此土钉墙施工与挖土作业交叉进行,二者的配合至关重要,直接关系到基坑的安全和施工工期,需
合理安排,分层进行。
基坑土方开挖应结合土钉墙施工,分层、分段进行,每层开挖深度不得超过1.5 m,每层分段开挖长度不得超过30m。开挖面宽度不得小于同层土钉长度,严禁超挖或在上一层未加固完毕就开挖下一层。
在机械开挖出支护坡面后,要求人工及时修整边坡,并进行第一层喷射混凝土的施工作业,尽可能缩短边坡暴露时间。土钉成孔后完成钢筋网布设工作,土钉注浆后及时布设加强筋并喷射第二层面层。
基坑底最后30 cm土方宜采用人工开挖,边挖土边施工基础垫层,并尽早施工地下室底板,缩短基坑暴露时间。在地下室底板达到80%设计强度等级,并采用毛石混凝土填实底板与围护桩之间的孔隙后,方可拆除支撑。
施工单位在土方开挖前。应制定详细的土方作业计划,待甲方、设计、施工单位同意后方可实施。
2.2 现场监测
本围护工程开挖深度、面积均较大,因此除进行安全可靠的围护体系设计、施工外,尚应进行现场监测,作到信息化施工。
本基坑监测内容如下:
(1)基坑开挖过程中,基坑周边深层土体的水平位移监测:
(2)基坑外(土钉墙顶)土体的沉降观测;
(3)周围环境监测:主要包括纺工路及其管线的沉降观测、有无裂缝产生及其发展情况。基坑土体水平位移预警值为45 mm 或坑顶水平位移连续3 d大于5mm/d。
2.3 应急措施
在基坑开挖过程中.如出现边坡水平位移超过警戒值,可采用基坑外卸土,坡顶超前锚杆注浆,加长、加密土钉以及放慢挖土速度的方法处理,必要时用土方或编织袋在坡脚采取反压回填措施。如申花路或地下管线沉降较大时。
可采用注浆加固地基等方法处理。在基坑开挖过程中,场地内应保证有一台挖土机可以随时调用。便于采取应急措施。结语
本工程因地制宜地采用放破开挖、土钉墙围护结构、内支撑式排桩围护结构及基坑降水多种手段相结合的围护方案是比较经济合理的,大大节约了工程造价。
放坡开挖可节约工程造价,但在软土层中放坡坡度较缓,由于回填土不易密实,应注意其产生的不利影响。
松木桩复合土钉墙或水泥搅拌桩复合土钉墙,有利于提高坡脚土体的承载力,提高基坑的整体稳定性并减小围护结构的位移。在土钉长度相同的情况下,后者土钉的覆盖范围小于前者,可以避免土钉超红线。
内撑式排桩墙围护结构可有效地控制围护结构的弯矩和变形,并具有较好的可靠性。本工程基坑开挖至坑底,围护结构的变形约3.85 cm左右,说明
围护结构设计是安全的。
第四篇:某钻孔咬合桩施工技术及质量控制探讨 2014.4.21
浅谈钻孔咬合桩施工质量保证措施
摘要:钻孔咬合桩是利用超缓凝混凝土的特殊性能,采用高精度的全套管钻机通过专门工艺成孔、成桩的一种特殊桩型,通过桩与桩之间的咬合搭接,形成挡土截水的连续排桩围护结构或地下防渗墙,在施工方法上与钻孔灌注桩及地下连续墙有很多相似之处;本文以山语听溪5#-1地块建设项目基坑支护工程为例,简要介绍几点钢筋混凝土钻孔咬合桩施工质量控制措施。通过该工程的成功实践,可为钻孔咬合桩的广泛运用提供较好的经验。
关键词:钻孔咬合桩;质量控制
一、工程概况
某建设项目位于同安区汀溪镇,总建筑面积:42366.06㎡,地上30732.66㎡,地下10896.473㎡。场地原始地貌属冲洪积阶地地貌单元,现地势较平缓,地表水不发育;卵石层为承压或微承压水,强透水层,为主要含水段,水量丰富;根据现场抽水试验得渗透系数为3.07X10-2/-4.44X10-2/cm/s。场地内地下水水位高程19.07-19.79m。地下水总体迳流方向大致由东北向西南,地下水位受季节气候的影响较大,地下水年变幅约在3.0m左右。
本工程围护结构采用钻孔咬合桩,桩径为1.0m、0.8m,桩中心距0.75m,相邻两桩咬合15cm,桩深约11.6—14.4m,素砼(A序桩)采用塑性混凝土止水桩,主要成分为水、水泥、砂、碎石、膨润土,其配合比为1.34:1:2.83:
3.23:0.18,缓凝时间24小时,塌落度180mm,且混凝土的3天强度值R3d不大于3Mpa。
二、钻孔咬合桩施工流程:
施工准备→测量放样→导墙施工→钻机就位→造浆→钻进成孔→钻渣外运→成孔检测→清孔→沉渣厚度检测→安放钢筋笼→导管水密性试验→下导管→沉渣厚度测试(二次清孔)→灌注水下砼,振动棒震动→超声波检测→交工验收
三、施工过程中出现的问题:
1)本工程设计A桩为素混凝土,B为普通钢筋混凝土桩,A序桩成孔过程
中需与B序桩咬合15cm,要求A序桩混凝土有自稳的强度,所以在A序桩的砼配合比设计初凝时间≥30小时,然而在施工过程初期有个别A序桩出现素混凝土凝固过快,造成B桩成孔困难的现象,影响施工进度。
2)在施工过程中发现有个别B桩孔口定位无误,而桩的垂直度偏差却超过设计及验收规范的要求,导致钻孔咬合桩底部没有足够的咬合量。
3)在施工过程中出现塌孔现象:①停机时塌孔;②浇筑混凝土时塌孔。
4)钻机施工过程中遇地下障碍物。
四、成桩作业质量保证措施
1)导墙施工:导墙起锁口和导向作用,保证成孔垂直度的重要措施,直接关系到钻孔咬合桩顺利成孔和成孔精度,施工中严格控制导墙施工精度,确保轴线误差±20mm,内墙面垂直度0.3%,平整度3mm,导墙顶面平整度5mm,顶面低于自然地面30cm,形成泥浆导流沟,本工程导墙采用C25钢筋砼结构。
2)本工程设计A桩为素混凝土,B为普通钢筋混凝土桩,A序桩成孔过程中需与B序桩咬合15cm,要求A序桩混凝土有自稳的强度,同时不能凝固过快,造成B桩成孔困难,影响施工进度,因此咬合桩的混凝土凝固时间控制是本工程的重点。
①素砼桩砼缓凝时间的确定:素砼桩砼缓凝时间是根据单桩时间来确定的,A桩混凝土缓凝时间≥30小时,单桩时间与地质条件、桩长以及钻机能力等有直接联系,计算公式如下:T=3t+K
式中:T——素桩砼缓凝时间;
t——B桩成桩时间,约4小时,K——储备时间,一般15-20小时;T=3t+K=3*4+18=30小时
混凝土强度3天值不大于3Mpa。
②提前做好缓凝混凝土配合比,进行试桩确定各施工参数。
③商品混凝土搅拌站驻场人员严格监测混凝土配合比及外加剂的掺入量。④做好混凝土施工记录,保证各工序施工均处于可控状态。
⑤控制B桩成孔进度,成孔过快或过慢均有可能对A桩混凝土质量造成损害。
3)为保证钻孔咬合桩底部有足够厚度的咬合量,除对孔口定位误差严格控制外,还要对桩的垂直度进行严格控制,根据设计及验收规定,桩的垂直度偏差不大于3‰。
4)当孔深度达到设计要求后,及时进行孔内虚土和沉渣的清除,并确保孔内沉渣厚达到设计要求(不大于20cm)。用测绳检查桩孔的沉碴和深度。
5)在施工过程中卵石层采用泥浆护壁,防止塌孔和孔内缩径。泥浆护壁是利用泥浆与地下水的压力差来控制水压力与孔壁压力,以确保孔壁的稳定,所以泥浆的相对密度则起到保持压力差的关键作用,调制适合本地土层情况的泥浆,有效避免成孔过程中塌孔的发生,泥浆的要求为相对密度:
1.1~1.2,30分钟泥皮厚度:<2mm; PH值:8~10。
此法施工能有效的减少塌孔,保证成孔质量,减少和杜绝孔底沉渣,保证混泥土的充盈系数。
6)停机时,保持孔内具有规定的水位和泥浆稠度,防止塌孔。
7)地下障碍物的处理方法
钻机施工过程中如遇地下障碍物处理较困难,但对一些比较小的障碍物,如砾石、卵石层都能穿过;小孤石,采用牙轮孔钻头+螺旋钻头破碎,但施工难度较大,会影响一定的施工进度,较大孤石,备用一台冲孔钻,采用冲孔钻施工。
8)钻孔咬合桩砼灌注
①由于本工程地下水位较高,孔内都有水,采用导管法浇注水下砼灌注,导管直径为300mm,浇注砼前先进行压力试验。
②在浇注过程中,随时检查是否漏水。第一次浇注时,导管底部距孔底30~50cm,浇注砼量要经过计算确定,在浇注中导管下端埋深控制在2~4m范围;提升导管时,采用测绳测量严格控制其埋深和提升速度,严禁将导管拔出砼面,防止断桩和缺陷桩的发生。
③水下砼要连续浇注不得中断,边灌注边拔导管,并逐步拆除;砼灌注至设计桩顶标高以上0.50∽1m(超灌量0.50m),桩上部无砼部分用土回填至地面标高,完全拔出导管。桩顶砼不良部分要凿掉清除,要保证设计范围内的桩体不受损伤,并不留松散层。
④水下灌注混凝土采用振动棒振捣,在咬合部位加强振捣,用来增加桩体咬合及密实度。
⑤每浇注50m3 留臵1 组试件;小于50m3 的单桩,每根桩留臵1 组试件。
9)塌孔的处理:
①轻微塌孔:使用挖土机向孔内回填可塑性好的粘性土,钻机反转向下加压,正转取土,充分压实孔壁,重新成孔;
②严重塌孔:向孔内浇筑低标号C20混凝土或高标号砂浆,待24小时后重新成孔(时间根据气温确定);
③浇筑混凝土时塌孔
在灌注过程中如发现井孔内水(泥浆)位忽然上升溢出,随即骤降并冒出气泡,应怀疑是塌孔征象,塌孔原因可能是孔内水位降低,不能保持原有静水压力,以及由于周围堆放重物或机械振动等,均有可能引起塌孔。
发生塌孔后,应查明原因,采取相应措施,如保持或加大水头、移开重物、排除振动等,防止继续塌孔。然后用吸泥机吸出坍入孔中泥土;如不继续塌孔,可恢复正常灌注。如塌孔仍不停止,坍塌部位较深,宜将导管拔出,将砼钻开抓出,同时将钢筋抓出,只求保存孔位,再以粘土掺砂砾回填,待回填土沉实后重新钻孔成桩。
四、事故桩的补救措施
在钻孔咬合桩施工过程中,因A桩超缓混凝土的质量不稳定出现早凝现象或机械设备故障等原因,造成钻孔咬合桩的施工未能按正常要求进行而形成事故桩。事故桩的处理主要分以下几种情况:
1)平移桩位侧咬合:B桩成孔施工时,其一侧A1桩的砼已经凝固且强
度超过施工要求,使钻机不能按正常要求切割咬合A1、A2桩。在这种情况下,宜向A2桩方向平移B桩桩位,使钻机单侧切割A2桩施工B桩,并在A1桩和B桩外侧另加一根高压旋喷桩作为防水处理;或者在A1桩和B桩外侧另加一根阀管双液注浆作为防水处理。
2)背桩补强:B1桩成孔施工时,其两侧A1、A2桩的混凝土均已凝固,在这种情况下,则放弃B1桩的施工,调整桩序继续后面咬合桩的施工,以后在B1桩外侧增加三根咬合桩与A1、A2桩相切。在基坑开挖过程中将A1和A2桩之间的夹土清除植筋喷射C20混凝土即可。
3)预留咬合企口:在B1桩成孔施工中发现A1桩砼已有早凝倾向但还未完全凝固时,此时为避免继续按正常顺序施工造成事故桩,可及时在A1桩右侧施工一砂桩以预留出咬合企口,待调整完成后再继续后面桩的施工。
4)当成孔精度不能满足3‰的要求时,采用回填土,然后纠编调直重新成孔,直至达到施工精度要求时灌注砼。
五、结束语
钻孔咬合桩作为地下工程围护结构的一种新的工法,通过山语听溪5#-1地块建设项目基坑支护工程的实践证明,桩间咬合良好,表面平顺,除个别桩间有湿渍外,并无明显渗漏水,成桩的垂直精度高;暂未发现有侵限情况的发生,达到预期的设计效果。
第五篇:SMW工法在基坑围护结构中的应用综述
SMW工法在基坑围护结构中的应用综述
姓名:
,学号:
(上海大学 土木工程系)
[摘要]SMW 工法自从日本引进后,作为围护结构在国内得到了一定程度的应用,但是使用中也发现了不少问题。本文从经济性、机械设备、设计方法和施工技术等方面进行了分析总结,并提出了一些问题,以便此工法能得到深入研究和广泛应用。
[关键词]SMW工法;组合结构;变形
SMW工法是Soil Mixing Wall的简称,它是一种劲性复合围护结构,通过特殊的多轴深层搅拌机在现场按设计深度将土体切散,同时从钻头前端将水泥桨强化剂注入土体,使之在搅拌过程中与地基土反复混合搅拌。在各施工平面之间,采取重叠搭接,在水泥土混合体未硬之前插入受拉材料(常为H型钢),作为应力加强材料,直至水泥结硬、形成劲性复合围护墙体。这种结构充分发挥了水泥土混合体和受拉材料的力学特性[1],同时具有经济、工期短、高止水性、对周围环境影响小等特点。
1987年,我国冶金建研院列项研究,1994年通过部级鉴定。上海隧道公司进一步结合上海软土深基坑围护工程的特点,进行了型钢水泥土复合桩结构试验、型钢减摩擦剂研制、型钢起拔模拟试验、专用桩机及起拔型钢设备研制,取得了重要成果,1997年8月经鉴定认为其达到国际先进水平[2]。SMW工法在国内应用时仍受到不少限制,机械设备、设计理论、施工技术等方面还存在一些问题,SMW工法围护结构的基坑塌方频率较其它围护型式要高,应该引起工程界的重视。国外应用情况
SMW工法由日本成幸工业株式会社1976年开发成功。作为基坑围护结构的一种施工方法,它在日本、美国、法国以及东南亚和台湾等许多地方得到了广泛应用。归正[3]等人对日本成幸工业株式会社1984~1996年的SMW工法施工情况进行了统计分析,在台湾和美国等地施工73项工程,总面积1003419m2,1992~1996年平均每年施工249.5项工程,每项工程平均施工面积16555m2。傅德明[4]认为,SMW围护为日本国内基坑围护的
—1—
主要工法,约占地下围护结构的80%。
日本SMW桩的搅拌钻机一般采用3轴钻机,也开发了4轴~6轴钻机,一次成墙长度达1.5m~3m,最大搅拌深度达65m,水泥土强度达1.0MPa~3.0Mpa,钻孔垂直精度可达1/200。为适应不同的工程要求,日本目前主要开发了三类机型[5]。标准机型按钻头规格分两种,φ550的机型,桩架高18m、成墙深35.0m;φ850的机型,桩架高30m、成墙深45.0m。低高度机型有SMW15M机型、SMW5000机型、STS机型三种系列。TMW(Touatsu Soil Mixing Wall)机型与SMW机型相比则可形成等厚度混合土连续墙,提高了防水能力。钻机功率主要有90kW、120kW、150kW、180kW等, 其中90kW、120kW 最为常用,150kW以上主要用于软岩地层。国内研究进展
2.1 机械设备
国内SMW工法的施工机械,主要有国产的双轴搅拌机(SJB-40型),也有引进的三轴搅拌机(日本的PAS-120VAR型)。建设部北京建筑机械综合研究所[8]吸收国外的先进技术,开发出了ZKD110型多轴式连续墙钻孔机,该机根据土质不同有砂质土用、粘性土用砂砾及岩盘用三种钻具,电机功率为55(4P)/40(8P)×2kW,钻孔深度最深达30m。黄均龙和张冠军[9]对国产双轴搅拌机(SJB-37×2)、日本三轴搅拌机(PAS-120VAR)和国产四轴搅拌机(SJB-42/30×4)的性能进行了比较,三种机型的电机功率分别为2×37kW、2×45kW、4×42/30kW,成墙深度分别为20m左右、27m、28m左右。由于国内通用机械制造业与国际上先进国家的差距,SMW工法的施工机械、成桩深度、施工效率以及施工质量上存在着一些缺陷,阻碍了SMW工法的进一步发展,其推广与普及受到一定限制。
2.2 设计方法
通常认为[10],水土侧压力由型钢单独承担,水泥土作用是抗渗止水。试验表明,水泥土对型钢的包裹作用提高了型钢刚度、减少了位移。此外,水泥土起到套箍作用,可以防止型钢失稳。SMW支护结构的设计内容主要包括如下几个方面: ① 水泥掺入比
—2—
水泥掺入比一般在综合考虑土质、侧压、芯材间隔等因素的基础上,根据室内试验确定。丁克等[11]通过试验得出试验数据结论,主要有(1)~(4)式的关系。
水泥土单轴抗压强度qu与水泥掺入比aw的关系: 水泥土的设计抗压强度:
设计抗剪强度:
设计抗拉强度:
qukwawquo
(1)
fcqu28/
2(2)
(3)
(4)
fcqu28/6fcqu28/10
式中kw为强度增长系数,qu0为原状土无侧限抗压强度,qu28为水泥土28天单轴抗压强度。② 型钢入土深度DH
型钢入土深度主要由基坑抗隆起稳定性、挡墙内力和变位不超过允许值、能顺利拔出等条件决定,按式(5)验算抗隆起安全系数Ks来确定型钢入土深度(要求Ks≥1.10~1.20、型钢埋入水泥土长度lHDHH),若该数值使结构内力和变位过大,则需加大入土深度后再进行挡墙结构分析。
Ks(DHNqcNc)/[(HDH)q]
(5)
式中:DH —型钢入土深度,H—基坑开挖深度,γ—坑底及墙外侧土体重度,c —坑底土体凝聚力,q —地面超载,Nq、Nc —地基承载力系数。③ 水泥土桩入土深度Dc
SMW工法中水泥土桩入土深度Dc主要有三方面的水力条件决定:确保坑内降水不影响到基坑以外环境、防止管涌发生、防止底鼓发生。④ 型钢抗拔验算
H型钢的抗拔力Pm主要由静摩擦力Pf、变形阻力Pd及自重G等三部分组成,即
PmPfPdG
(6)
⑤ SMW工法截面设计
截面应符合以下设计要求:型钢净间距、芯材与孔壁之间最小保护层厚度、水泥土墙体厚度。
—3—
⑥ 挡墙强度及变形验算
多层支撑挡墙结构常采用等值梁法、逐层开挖支撑支承力不变法和弹性梁法等方法。局部验算时主要包括[1]:型钢底端截面水泥土抗剪强度、水泥土与型钢联接部位错动剪力、水泥土搭接处抗剪强度、侧压力作用下承载拱的轴力强度。软土地区还要进行整体稳定性、抗倾覆、抗滑动等验算。
2.3 经济效益
SMW挡墙成本一般为地下连续墙的70%左右,若考虑H型钢的回收,则成本可再下降20%~30%。表1为镇江市新河桥泵站基坑三种围护方案的工程造价[6],实际费用比设计测算一般还要多。上海市轨道交通明珠线二期工程溧阳路车站[7]设计围护结构时,考虑了地下连续墙,钻孔灌注桩及SMW工法三个方案。按每延米折算,三个方案测算造价分别为4.8万元、3.7万元、2.82万元。
表1 三种施工方法经济分析 工程直接工程间接费/万元 工程总工支护方法
费 /万元
沉井法 深层搅拌桩加灌注桩 SMW
153.5
措施
费用
拆迁
/万元 33.0 217.9
期 /d 85
分析 结果 设计测算
115.0
81.5
0.0 196.5
设计测算 实际费用
31.4
115.0 74.0 0.0 189.0 55
2.4 一些试验成果
SMW工法中由于型钢与水泥土的相互作用,使型钢抗弯刚度得到提高。图1[12]为日本材料协会对H型钢与水泥土共同作用的试验结果曲线,曲线a表示水泥土与H型钢混合体荷载挠度的关系,曲线b为H型钢的相应关系。由图1可见,相同荷载作用下水泥土与H型钢的混合体挠度要小一些,其抗弯刚度比相应H型钢的刚度要大20%,刚度的提高
—4—
可用刚度提高系数表示:
(ECSICS)/(ESIS)
(7)
式中,Ecs、Es分别为H型钢混合体与H型钢的弹性模量,Ics、Is分别为H型钢混合体与H型钢的惯性矩。
型钢起拔回收和重复利用是SMW工法的一个最大特点。试验表明,起拔力P0与型钢垂直度、变形形状密切相关,由拔出力P与拔出长度H的特征曲线(图2)看出,P0在静止摩擦力变为动摩擦力后迅速减少,拔出型钢的P0应小于最大抗拔力Pm,若AH为型钢截面积、σs为型钢屈服强度,则
Pm0.7sAH
(8)
图1 劲性桩与H型钢压弯比较
图2 型钢拔出特征曲线
王健(1997)对两种土质三种断面组合形式的H型钢-水泥土组合梁进行抗弯试验,—5—
分析了组合梁受力和变形过程中不同的作用形式,并提出了水泥土贡献系数的经验公式。上海隧道股份有限公司[4]对起拔技术的研究主要是:减摩隔离材料的选定,型钢垂直度、水泥土的强度和起拔型钢的温度等对型钢起拔的影响,起拔装置的研制。搅拌桩体对型钢的适应性是SMW工法的关键。如果型钢与搅拌桩变形不协调,可造成桩体开裂、大量漏水、工程失败。研究表明,搅拌桩强度在空气中增加较快、在土中较慢。开挖过程中搅拌桩变形在土中即已发生,桩体强度较低、变形适应性较好;开挖出来后桩体强度迅速提高、变形已基本完成。大量工程实例证明,一般基坑计算变形在30mm左右时不会导致搅拌桩体大量开裂。
国外曾对SMW挡墙组成材料的力学特性和受力机理进行了大量试验研究[13],铃木健夫、国藤祚光(1994)对水泥土进行了室内实验研究;Yoshio Suzuki(1982)通过固结排水和不排水三轴压缩试验,对水泥掺入比15%的水泥土试样进行了研究;铃木健夫(1982)取现场养护的SMW墙体制作试件进行了抗弯试验研究;青木雅路等(1993)对某建筑13年前施工的SMW地下墙进行了耐久性调查试验。这些研究取得了不少实用性成果,为制定SMW工法设计施工标准或规范提供了依据。
国内一些人员将有限元应用于SMW工法围护结构分析,佘跃心等[14]用接触面单元模拟桩土界面,考虑周围建筑物荷载、施工荷载、施工降水的影响,探讨了FEM模拟原理,建立了二维平面有限元模型;王健[15]用Duncan-Chang模型模拟土、用有厚度接触面单元模拟接触面、用平面八节点等参单元模拟土、用梁单元模拟墙体、用一维杆单元模拟支撑,编制了相应程序FE-SMW1.0。SMW工法设计和施工中的存在问题
3.1 设计方面
(1)目前我国还没有一套完备的SMW围护结构设计规范或标准,整个设计过程只能参照有关资料,缺乏统一理论。从基坑结构计算可以看出,基坑整体稳定性分析采用上海市标准《基坑工程设计规程》,为总安全度表达方式,而围护结构局部构件检算采用极限状态表达方式。
(2)水泥土与型钢组合构件受力机理尚不十分明确,尤其是减摩剂采用使这种关
—6—
系变的更加复杂,型钢“全位”和“半位”布置时,组合构件整体刚度难以确定。用式(7)计算出的提高系数值与实测值相差较远, 而准确确定值对于计算墙体变位具有重要意义。
(3)水泥土抗压、抗剪强度设计值及H型钢与水泥土之间单位面积摩擦μf只能依据工程经验采用, 变形阻力的定量化很困难,给设计带来不明确因素。
(4)有限元法对SMW工法围护结构的研究还不充分,会碰到土层变形模量、支撑刚度和桩墙刚度等参数的选择问题。
3.2 施工方面
(1)SMW工法围护结构施工中,组合结构变形刚度相对较小,围檩对提高围护结构整体性起到很重要的作用,如何将围檩的施加方式与基坑开挖方法相结合是一个值得考虑的问题。
(2)基坑开挖所造成的SMW挡墙变形使型钢产生弯曲,减摩剂性能或施工质量等原因,都会致使H型钢的拔出存在困难,或拔出后较难重复使用,因此必须解决好型钢有效拔出问题。
(3)就目前施工机械能力和施工水平以及工程经验,围护结构形式对于基坑深度>14m的基坑应慎重采用,开挖深度超过12m,基坑变形明显增大。解决此瓶颈是进一步发展的关键问题。
(4)在基坑开挖过程中,SMW工法围护结构变形受水位变化的影响比较大,必须考虑周边的降水,以达到减少变形的目的。结束语
SMW工法围护结构在国外(尤其日本)应用很广泛,具有很高的经济效益,工程适应性也比较强。但是近几年来,SMW工法围护结构在上海等地区的应用情况却不容乐观,本文提出了部分问题,希望能抛砖引玉,重新引起广大工程科技人员对此工法的注意。
—7—
参考文献
[1] 仓恒芳.SMW工法在新模范马路地下人行过街通道基坑支护中的应用[J].江苏建筑,2002,86(3):48~51.[2] 张剑锋等.型钢水泥土复合搅拌桩(SMW工法)支护结构的应用[J].电力勘测,2000,27(3):4~7.[3] 归正等.SMW工法及其应用[J].建筑机械化,2000(2):49~51.[4] 傅德明.SMW围护桩在上海地区的开发和应用[J].江苏地质,2002,26(2):101~105.[5] 归正等.SMW工法机械及其改进[J].建筑机械,2000(6):26~28.[6] 钱玉林等.SMW支护结构及其经济分析[J].水利水电技术,2002,18(6):84~85.[7] 徐向辉.SMW围护结构设计[J].西部探矿工程,2002,76(3):112~115.[8] 郭传新.SMW工法及所用多轴式连续墙钻孔机[J].建筑机械,1999(4):45~47.[9] 黄均龙等.SMW工法四轴深层搅拌机研制与应用的工程实例[J].岩土工程界,2000,3(3):21~25.[10] 陈忠汉等.深基坑工程[M].北京:机械工业出版社,2003.211~217.[11] 丁克等.SMW工法围护结构的设计[J].江西水利科技,2002,28(3):129~134.[12] 张璞,柳荣华.SMW工法在深基坑工程中的应用[J].岩石力学与工程学报,2000,19(增):1104~1107.[13] 王健.劲性水泥土地下连续墙试验研究[J].建筑技术开发,2000,27(6):2~4.[14] 佘跃心等.基于有限元的SMW支护结构基坑开挖施工模拟[J].四川建筑科学研究,2002,28(2):26~28.[15] 王健.上海某基坑SMW围护的实测与分析[J].工业建筑,2001,31(2):27~30.—8—