2015年大数据发展情况调研报告

时间:2019-05-14 04:15:18下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2015年大数据发展情况调研报告》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2015年大数据发展情况调研报告》。

第一篇:2015年大数据发展情况调研报告

2015年大数据发展情况调研报告

2015年大数据发展情况调研报告

一、发展现状

(一)电子政务建设成效明显。我盟电子政务建设一直居于全国前列,电子政务专网上接自治区政府专网,带宽为155m,备用线路带宽为20m;向下已延 伸至各旗县市区政府,带宽为100m,主要用于开展公文交换、会务管理、应急管理、政法法制、政务信息和督查以及各部门业务等应用。2003年,xxxx 政务门户网站上线运营。2005年全国首家蒙文政府网站——xxxx蒙文政务门户网站正式开通。2007年,我盟对盟、旗县市(区)、苏木(乡镇)三级党 委、人大、政府、政协机关,盟、旗县市(区)两级党委、政府直属部门及盟、旗两级部分事业进行了集中建站,建立起了全盟三级政府网站群体系架构,政务网站 群实现了全覆盖。目前全盟纳入普查范围的各类政府网站共计519个。建立了盟、旗县市(区)、苏木(乡镇)、嘎查村“四级联动”行政审批服务体系,并全面 开展电子效能监察工作,对进入盟旗两级政务服务中心的行政审批项目,全部实行了实时监察监控。

(二)社会管理领域取得实质性进展。建立智能在线全员人口信息综合业务应用平台,将全盟117.91万人口信息数据全部录入全员人口信息数据库,实现 了全盟全员人口信息数据基本的全覆盖。建设“平安锡盟”社会治理数字化工程,以建设“三网三平台一张图”为基础,分别将社会公共监控资源、视频专网监控资 源、公安内网视频监控资源进行整合,实现了社会治理事前预防控制、事中指挥调度以及事后研判应用。

xx浩特市积极推进网格化管理,将城区内45个社区合理划分为180个网格单元,以网格为单位进行社会管理和服务。整合“户籍、住房、计生、就业、社 保、民政、党建、司法、流动人口”等各类基础信息,构建全市人口基础信息系统,初步实现人口信息从静态管控到动态管控,从单一管理到综合管理利用。xx浩 特数字城市指挥中心利用地理信息系统、全球定位系统以及遥感技术等手段,建立起统一的城市数字化信息共享、协调处置、监督实施的指挥平台。通过群众拨打12319服务热线、网上举报等渠道,受理园林绿化、环境保护、环境卫生、市容市貌、给水排水、私搭乱建、公共设施、集中供热、交通治安、户外广告、市场 建设等城市管理的多方面问题,共涉及锡市规划局、住建局、环保局、公安局、城管局等17个部门26个成员单位。

(三)民生服务领域发展步伐加快。积极推进教育、卫生、环保、农牧业等领域信息化平台建设工作。持续开展“三通两平台”工程,目前156所学校及相关 教育部门共计200多个单位已实现互联互通;搭建了区域卫生信息协同平台,累计为全盟95万城乡居民建立了健康档案,为全盟37个苏木乡镇卫生院和10个 社区卫生服务中心建立了医院信息管理系统,为242个嘎查村卫生室安装使用了嘎查村卫生室信息系统,实现了基本医疗、基本公共卫生和基本药物的电子化管 理;建成了污染源在线监控平台、空气质量自动监测系统、重污染天气预报预警系统、机动车尾气检测机构在线监控平台,形成了对全盟重点污染源的在线监控;建 立xxxx羊肉全产业链追溯体系综合服务平台,将肉羊养殖、屠宰加工、精加工、物流配送、销售五个环节信息集成,目前已累计为7413户牧户的161万只 羔羊建立可追溯档案,基本实现了“来源可追溯、去向可查证、责任可追究”。

(四)经济运行管理领域发展初具规模。为更好地监管市场,食药工商局为107192户市场主体建立电子档案信息。建立企业信用公示平台,截至10月,全盟已对90591户企业信用信息进行备案,备案率为84.53%。建设xxxx盟金财一期工程,覆盖所有财政性资金,辐射各级财政部门和预算单位,进一 步提高财政资金分配和使用的安全性、规范性和有效性。

(五)大数据应用初见端倪。建立中小企业公共服务平台,并实现与自治区枢纽平台的互联互通,目前,各旗县市(区)共有383户企业通过审核注册成功。建设xxxx盟蒙古文综合服务平台,蒙古族同胞可以利用手机查询国家政策、法规、综合新闻以及市场动态、农牧业补贴、气象、生活助手等内容。同时,由私人 投资建设的“锡盟信息港”、“xx123信息网”、“上都在线”等公共咨询服务平台建成运行,主要发布招聘、出租、家政、出售等咨询信息。此外,全盟已有 各类电子商务平台19个,包括大宗商品销售、农牧民赶集采购、团购、社区电商以及跨境电商等类别,特色鲜明,发展前景广阔。

二、存在问题

(一)数据共享程度低。全盟大数据建设缺乏统一规划和有力的领导,各个委办局信息系统基本都属于独立纵向系统,数据平台并未实现横向互通;数据资源整合力度不够,共享程度低,政府部门间重复建设现象严重。

(二)建设缺乏统一标准。目前,各平台数据采集的基本要素、数据的来源、数据采集的方法及要求没有统一标准,导致产生“信息孤岛”。

(三)网络基础设施建设有待完善。我盟地域辽阔,牧区人口居住比较分散,现有宽带网络无法满足牧区信息化需求,全盟移动通讯信号以覆盖面积计算嘎查村覆盖率不足60%,宽带不足30%,宽带网络基础设施建设规模仍有待提高。

(四)专业队伍建设有待加强。现有人员年龄结构断层,知识结构不合理,严重缺乏专业技术人才,因此迫切建立一支稳定的高素质、专业化信息建设队伍。

三、下一步工作重点

(一)高起点规划布局,建立我盟大数据中心。按照“顶层设计,分布实施”的原则,委托权威机构编制我盟大数据建设规划,对我盟大数据建设进行总体规划,并 研究出台具体技术实施方案,明确工作内容、时间节点,促进大数据建设工作顺利推进。高标准规划大数据中心,涵盖数据整合、共享与分析、网络服务、数据存储 及可视化运维等多方面内容,并在“两地三中心”进行容灾备份,保护数据的安全和业务连续性。逐步整合撤并各部门现有自建机房和设备,原则上各部门不再建设新的机房,实现资源集约化管理。

(二)推进数据信息资源共享,推动社会管理科学可控。在充分利用现有数据资源的基础上,进一步完善人口基础信息库、法人单位信息资源库、自然资源和空间地 理信息库和宏观经济数据库等核心数据库,完成数据资源整合与共享,实现部门间信息互联互通。建立大数据交换与共享平台,实现对数据集约化采集、网络化汇聚 及统一化管理,推动政府职能转变,提高政府服务效率。建立数据标准和统计标准体系,有计划、分层次地推进各领域的应用。

(三)做好商品追溯防伪系统平台项目。引进大连声鹭科技有限公司开发的商品追溯防伪系统平台建设项目,打造以“商品追溯防伪”为主题的互联网经济示范平台,并带动芯片封装和手持终端检测设备生产基地建设,逐步培养辐射全国的商品追踪防伪系统技术创新研发基地。成立创新研发中心,针对不同品类商品、不同包 装方式、应用场景,推进相关芯片应用和标准体系建立,并率先对我盟原产地白酒、食用油、食用盐等品牌产品提供商品追踪防伪示范服务。

(四)推动智慧社区、智慧旅游、智慧农牧业项目建设。进一步推动社区网格化管理,加强社区周边服务资源的集中整合,大力建设覆盖社区管理、社区服务、社 区安全、智慧家居、养老服务的智慧社区生活服务圈。结合我盟旅游产业发展现状,建立基于互联网的旅游信息服务体系、构建多部门信息共享、联动协调的智慧旅 游管理体系、应用多种营销手段打造特色旅游品牌,全面推动旅游业向智能化转型提升。推行农牧业养殖过程中的自动化、集成化、网络化管理,加大特色农产品品牌营销力度,鼓励农牧业电子商务发展。

四、相关建议

(一)加强组织领导、强化政策扶持。行署尽快成立由主要领导任组长,行署常务副盟长、分管副盟长任副组长,有关部门、单位为成员单位的大数据发展推进 领导小组,领导小组下设办公室,并建议设在行业主管部门,保证工作有序推进。建立大数据建设发展专项资金,实行专款专用。

(二)依托智慧应用,加快产业发展。推动云计算、物联网、互联网与大数据等新一代信息技术产业集约集聚发展,加快新一代信息技术在政务、经济运行、社 会管理和民生服务领域的深化应用、共享应用和融合应用,培育一批具有自主产权、自主品牌的智能项目和智慧服务,切实提高居民幸福指数。

(三)夯实基础设施、强化信息安全。光纤网络实现百兆入户、千兆到楼、t级出口。进一步实施“宽带锡盟”战略,加快推进光纤入户到企、进村入园,推动4g网络对城区的深度覆盖,并进一步提高农村牧区网络覆盖面。完善网路安全保障体系,进一步加强信息安全测评认证体系、网络信任体系、信息安全监控体系及 容灾备份体系建设,建立网络和信息安全监控预警、应急响应联动机,增强信息采集、处理、传播和利用安全能力。

(四)加强人才引进、注重宣传推广。加快引进大数据领军人才、创业人才和掌握前沿技术的专业人才,落实好人才保障措施,推进大数据人才队伍建设。推进企业 与高校、科研院所的合作,实现科技人才交流、科研成果共享。依托我盟高校、园区和企业,联合建立各类智慧人才教育培训基地,提供教育、培训和考试等服务。建立xxxx智慧城市创新体验中心,积极推广大数据发展成果,提升城市活力的同时成为我盟招商引资、引智窗口。

第二篇:大数据学术会议报告

Big and Open Date :Challenges for Smart City

Victoria Lopez

Victoria Lopez任教于西班牙马德里Complutense大学,其在计算机软件,计算机应用技术,计算机网络,人工智能,管理科学与工程等领域颇有建树,此次学术会议是她在2014年信息学与计算进展国际会议上的关于大数据的一次学术会议报告,她的演讲题目是Challenges for Smart City,以智能城市为研究对象,阐述大数据在智能城市领域内面临的挑战,鞭辟入里,发人深省,引人深思。

据她介绍,在1800年,全球仅有2%的人口居住在城市,到了1950年,这个数字迅速攀升到了29%。到2025年,城市人口预计将增加到20亿。当前全世界范围内的城市化进程大大加剧了气候变化、资源短缺和交通拥堵等问题,为人类城市生活带来一定的挑战。但同时智能城市建设面临诸多挑战:一是概念不清、外延不明。没有考虑到物联网、云计算、三网融合、无线宽带等新一代信息技术应用,仍然采用以前的技术思路和模式。二是进一步加剧了业务系统的信息孤岛局面,条块分割问题是全球信息化建设的顽疾。三是信息网络安全问题继续受到冷落。大量应用到物联网、云计算等技术,其信息网络安全问题将会更多。

既是挑战又是机遇,虽然面临问题较多,但是在大数据这个领域中,理论性的预见已经在相关行业成功实现,例如车联网,车联网促城市交通转型,随着车联网等新兴产业的兴起,智能交通已为世界各国在高新技术发展中争夺的一个重要领域。它加快了城市交通向低碳绿色交通的转型,是智慧城市建设不可或缺的一部分。大数据助力交通智能化,据介绍,在目前的城市交通体系中,公交、地铁、出租车以及公共自行车为主要出行方式,通过GPS定位、视频监控以及超声波传感等技术,在单一某个领域,智能交通已经进行了初步开发。比如,在某些公交站,乘客已经能提前预知下一趟公交到来的时间,乘客在打车时,通过部分手机软件已经能够查询到周边的空出租车,这些均基于一定的数据采集和分析。

她的中心思想在于,云计算要建平台,要有庞大的数据中心做支撑,其上是重要的关键业务的运营和服务,而大数据就是构建在云平台上的一种‘杀手锏’的应用,云计算是一个全新的时代,和PC时代完全不同。如何将我们的文化,我们的技术和业务模式更快的转移到云计算,构建起生态系统将是最大的挑战。虽然很高兴已经有了一些发展,但是还需要相当长的过程才能实现。

从此次学术会议报告中我学到了如何听取报告的相关主旨和核心思想,在这次报告中也体会到了西方学者和本国学者思考问题的异同点,当然更需要的是加强英语学习能力和本专业的学习能力。

第三篇:大数据读书报告

大数据读书报告

网络13-1戴崇卓

大数据的概念

大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。

在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。

大数据的5V特点(IBM提出)

Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)、Veracity(真实性)。

大数据的意义

现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。阿里巴巴创办人马云来台演讲中就提到,未来的时代将不是IT时代,而是DT的时代,DT就是Data Technology数据科技,显示大数据对于阿里巴巴集团来说举足轻重。

有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是赢得竞争的关键。

大数据的结构

大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它

保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。

其次,想要系统的认知大数据,必须要全面而细致的分解它,我着手从三个层面来展开:

第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。

第二层面是技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。

第三层面是实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。

大数据的应用

洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。Google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。麻省理工学院利用手机定位数据和交通数据建立城市规划。

梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。

大数据的趋势

趋势一:数据的资源化

何为资源化,是指大数据成为企业和社会关注的重要战略资源,并已成为大家争相抢夺的新焦点。因而,企业必须要提前制定大数据营销战略计划,抢占市场先机。

趋势二:与云计算的深度结合

大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。

趋势三:科学理论的突破

随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。随之兴起的数据挖掘、机器学习和人工智能等相关技术,可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。

趋势四:数据科学和数据联盟的成立

未来,数据科学将成为一门专门的学科,被越来越多的人所认知。各大高校将设立专门的数据科学类专业,也会催生一批与之相关的新的就业岗位。与此同时,基于数据这个基础平台,也将建立起跨领域的数据共享平台,之后,数据共享将扩展到企业层面,并且成为未来产业的核心一环。

趋势五:数据泄露泛滥

未来几年数据泄露事件的增长率也许会达到100%,除非数据在其源头就能够得到安全保障。可以说,在未来,每个财富500强企业都会面临数据攻击,无论他们是否已经做好安全防范。而所有企业,无论规模大小,都需要重新审视今天的安全定义。在财富500强企业中,超过50%将会设置首席信息安全官这一职位。企业需要从新的角度来确保自身以及客户数据,所有数据在创建之初便需要获得安全保障,而并非在数据保存的最后一个环节,仅仅加强后者的安全措施已被证明于事无补。

趋势六:数据管理成为核心竞争力 数据管理成为核心竞争力,直接影响财务表现。当“数据资产是企业核心资产”的概念深入人心之后,企业对于数据管理便有了更清晰的界定,将数据管理作为企业核心竞争力,持续发展,战略性规划与运用数据资产,成为企业数据管理的核心。数据资产管理效率与主营业务收入增长率、销售收入增长率显著正相关;此外,对于具有互联网思维的企业而言,数据资产竞争力所占比重为36.8%,数据资产的管理效果将直接影响企业的财务表现。

趋势七:数据质量是BI(商业智能)成功的关键

采用自助式商业智能工具进行大数据处理的企业将会脱颖而出。其中要面临的一个挑战是,很多数据源会带来大量低质量数据。想要成功,企业需要理解原始数据与数据分析之间的差距,从而消除低质量数据并通过BI获得更佳决策。

趋势八:数据生态系统复合化程度加强

大数据的世界不只是一个单一的、巨大的计算机网络,而是一个由大量活动构件与多元参与者元素所构成的生态系统,终端设备提供商、基础设施提供商、网络服务提供商、网络接入服务提供商、数据服务使能者、数据服务提供商、触点服务、数据服务零售商等等一系列的参与者共同构建的生态系统。而今,这样一套数据生态系统的基本雏形已然形成,接下来的发展将趋向于系统内部角色的细分,也就是市场的细分;系统机制的调整,也就是商业模式的创新;系统结构的调整,也就是竞争环境的调整等等,从而使得数据生态系统复合化程度逐渐增强。

大数据的IT分析工具

大数据概念应用到IT操作工具产生的数据中,大数据可以使IT管理软件供应商解决大广泛的业务决策。IT系统、应用和技术基础设施每天每秒都在产生数据。大数据非结构化或者结构数据都代表了„所有用户的行为、服务级别、安全、风险、欺诈行为等更多操作‟的绝对记录。

大数据分析的产生旨在于IT管理,企业可以将实时数据流分析和历史相关数据相结合,然后大数据分析并发现它们所需的模型。反过来,帮助预测和预防未来运行中断和性能问题。进一步来讲,他们可以利用大数据了解使用模型以及地理趋势,进而加深大数据对重要用户的洞察力。他们也可以追踪和记录网络行为,大数据轻松地识别业务影响;随着对服务利用的深刻理解加快利润增长;同时跨多系统收集数据发展IT服务目录。

大数据分析的想法,尤其在IT操作方面,大数据对于我们发明并没有什么作用,但是我们一直在其中。Gartner已经关注这个话题很多年了,基本上他们已经强调,如果IT正在引进新鲜灵感,他们将会扔掉大数据老式方法开发一个新的IT操作分析。

第四篇:大数据课程报告

摘要

流形学习方法作为一类新兴的非线性维数约简方法,主要目标是获取高维观测数据的低维紧致表示,探索事物的内在规律和本征结构,已经成为数据挖掘、模式识别和机器学习等领域的研究热点。流形学习方法的非线性本质、几何直观性和计算可行性,使得它在许多标准的 toy 数据集和实际数据集上都取得了令人满意的结果,然而它们本身还存在着一些普遍性的问题,比如泛化学习问题、监督学习问题和大规模流形学习问题等。因此,本文从流形学习方法存在的问题出发,在算法设计和应用(图像数据与蛋白质相互作用数据)等方面展开了一系列研究工作。首先对流形学习的典型方法做了详细对比分析,然后针对流形的泛化学习和监督学习、表征流形的局部几何结构、构造全局的正则化线性回归模型、大规模数据的流形学习等几个方面进行了重点研究,提出了三种有效的流形学习算法,并和相关研究成果进行了理论与实验上的比较,从而验证了我们所提算法的有效性。

关键词:流形学习,维数约简,正交局部样条判别投影,局部多尺度回归嵌入

I

目录

目录.................................................................................................................................................II 第1章 研究背景.......................................................................................................................1

1.1 流形学习的研究背景...................................................................................................1 1.2 流形学习的研究现状...................................................................................................2 1.3 流形学习的应用...........................................................................................................4 第2章 流形学习方法综述.......................................................................................................5

2.1 流形学习方法介绍.......................................................................................................6 第3章 流形学习方法存在的问题...........................................................................................9

3.1 本征维数估计...............................................................................................................9 3.2近邻数选择.................................................................................................................10 3.3 噪声流形学习.............................................................................................................10 3.4 监督流形学习.............................................................................................................11 第4章 总结.............................................................................................................................11

II

第1章 研究背景

1.1 流形学习的研究背景

随着信息时代的到来,使得数据集更新更快、数据维度更高以及非结构化性等问题更突出。在科研研究的过程中不可避免地遇到大量的高维数据,这就需要一种技术能够使在保持数据信息足够完整的意义下从海量数据集中提取出有效而又合理的约简数据,满足人的存储需求和感知需要。流形学习这一非监督学习方法应运而生,引起越来越多机器学习和认知科学工作者的重视。而在海量的高维数据中,往往只有少量的有用信息,如果想快速高效的搜集到人们想要的、有用的那些少量信息且快速的处理信息,这就需要一些关键技术的支持,即是必须采用相应的降维技术。而流形学习正是在数据降维方面有着重要的贡献。然而,降维的过程与《矩阵分析》中的内容有着密切的关系。

基于流形的降维方法能充分利用数据中所隐藏的低维有价值信息,进一步提高检索性能。Seung从神经心理学的角度提出“感知以流形的形式存在,视觉记忆也可能是以稳态的流形存储”,为流形提供了与人类认识相关的理由。流形学习的方法主要有主成分分析(PCA)、多维尺度化(MDS)、基于局部切空间排列法(LTSA)和基于等度规映射(ISOMAP)、局部线性嵌入算法(LLE)、拉普拉斯特征映射(LE)等。另外,流形学习方法在人脸识别、图像处理、模式识别、计算机视觉、认知科学、人工智能、人机交互等众多学科中有着广泛的应用。

线性维数约简方法是通过在高维输入空间与低维子空间之间建立线性映射关系,把高维数据样本集投影到低维线性子空间。线性维数约简技术通常假设数据集采样于一个全局线性的高维观测空间。如果所要处理的数据集分布确实呈现出全局线性的结构,或者在一定程度上可以近似为全局线性结构,则这些方法能够有效地挖掘出数据集内在的线性结构,获得数据紧致的低维表示。在线性维数约简方法中,使用最广泛的算法有主分量分析(Principal Component Analysis, PCA)(Jolliffe, 2002;Turk and Pentland, 1991)和线性判别分析(Linear Discriminant Analysis, LDA)(Duda et al., 2001)。

主分量分析(PCA)主要是根据高维数据在低维空间重构误差最小的原则,来寻找一组最优的单位正交向量基(即主分量),并通过保留数据分布方差较大的若干主分量来达到降维的目的。然而,众所周知,由于 PCA 算法没有利用数据样本的类别信息,所以它是一种非监督的线性维数约简方法。与 PCA 算法不同,LDA 算法考虑到样本的类别信息,它是一种有监督的方法。基于各类样本服从高斯分布且不同类的协方差矩阵相同的假设,LDA 算法在 Fisher 准则下选择最优的投影向量,以使得数据样本的类间散度最大而类内散度最小。由于 LDA 算法利用了样本的类别信息,而样本的类别信息通常有助于改善识别率,因此 LDA 算法更适用于分类问题。

1.2 流形学习的研究现状

流形学习假定输入数据是嵌入在高维观测空间的低维流形上,流形学习方法的目的是找出高维数据中所隐藏的低维流形结构。经过十多年的研究与探索,人们提出了大量的流形学习理论与算法。经典的流形学习方法有等距特征映射算法(ISOMAP)(Tenenbaum et al., 2000)、局部线性嵌入算法(LLE)(Roweis and Saul, 2000;Saul and Roweis, 2003)、Laplacian 特征映射算法(Laplacian Eigenmaps,LE)(Belkin and Niyogi, 2002;Belkin and Niyogi, 2003)、Hessian特征映射算法(Hessian-based Locally Linear Embedding,HLLE)(Donoho and Grimes, 2003)、最大差异展开算法(Maximum Variance Unfolding,MVU)(Weinberger et al., 2005;Weinberger and Saul, 2004;Weinberger and Saul, 2006;Weinberger et al., 2004)、局部切空间排列算法(Local Tangent Space Alignment, LTSA)(Zhang and Zha, 2004)、黎曼流形学习算法(Riemannian Manifold Learning, RML)(Lin and Zha, 2007;Lin et al., 2006)和局部样条嵌入算法(Local Spline Embedding,LSE)(Xiang et al., 2006;Xiang et al., 2008)等。

Tenenbaum 提出的 ISOMAP 算法是多维尺度分析(Multidimensional Scaling, MDS)(Cox and Cox, 1994)在流形框架下的非线性推广,其核心思想是用测地距离代替欧氏距离来表征流形上数据点的内在几何关系。对于样本 点和它的近邻点之间的测地距离用它们之间的欧氏距离来代替;对于样本点和近邻点之外的点之间的测地距离用它们之间的最短路径来代替。Bernstein 等人证明了只要样本是随机抽取的,在样本集足够大且选择适当近邻参数k 时,近邻图上两点的最短路径可以逼近它们的测地距离(Bernstein et al., 2000)。当应用于内蕴平坦的凸流形时,ISOMAP 算法能够忠实地捕获数据内在的低维流形结构(De Silva and Tenenbaum, 2003)。

ISOMAP 算法的主要缺点在于:① 对样本点的噪声比较敏感;② 对于具有较大曲率或稀疏采样的数据集,不能发现其内在的本征结构;③ 需要计算全体数据集的测地距离矩阵,因此算法的时间复杂度较高。围绕 ISOMAP算法,已经出现了许多相关的理论分析与研究工作。

Balasubramanian 等人对ISOMAP 算法的拓扑稳定性进行了深入探讨(Balasubramanian and Schwartz, 2002)。对于数据分布所在的低维流形具有较大的内在曲率情况,de Silva 和Tenenbaum 提出了保角等距特征映射算法(conformal ISOMAP)(De Silva and Tenenbaum, 2003)。为了减小 ISOMAP 算法的计算复杂度,de Silva 和 Tenenbaum提出了带标记的等距特征映射算法(Landmark ISOMAP)(De Silva and Tenenbaum, 2003)。

针对 ISOMAP 算法对于数据集噪声敏感的问题,Choi 等人通过观察图中的网络流提出了一种消除临界孤立点的方法以加强 ISOMAP 算法的拓扑稳定性(Choi and Choi, 2007)。在构建近邻图方面,Yang 提出通过构造k 连通图方式来确保近邻图的连通性,以提高测地距离的估计精度(Yang, 2005)。

2009 年,Xiang 等人提出了局部样条嵌入算法(LSE)(Xiang et al., 2006;Xiang et al., 2008)。Xiang 认为,对于嵌入在高维输入空间的低维流形,非线性维数约简的任务实际上是寻找一组非线性的复合映射,即由局部坐标映射(Local Coordinatization Mapping)与全局排列映射(Global Alignment Mapping)复合而成的兼容映射(Compatible Mapping)。在兼容映射的概念框架下,LSE 算法首先通过主分量分析计算每个样本点局部邻域在切空间上的投影获得该邻域所有样本的局部坐标,从而保持流形的局部几何结构信息;然后采用Sobolev 空间的一组样条函数把每个样本点的局部坐标映射成 全局唯一的低维坐标。它们均是利用每个样本的局部切空间来捕获流形的局部几何,样本点在切空间的投影来表示样本点的局部坐标。然而它们的主要区别在于全局排列,LTSA 算法是利用仿射变换来进行全局排列,而 LSE 算法是利用样条函数来获得全局唯一的坐标。因此相对于 LTSA 而言,LSE 算法能够实现更小的重构误差。LSE 算法的主要缺点在于:一是无法保持全局尺度信息;二是不能学习具有较大曲率的低维流形结构。除此,如何选择满足要求的样条函数也是一个值得考虑的问题。

不同流形学习算法的区别在于所尝试保持流形的局部邻域结构信息以及利用这些信息构造全局嵌入的方法不同,与以往的维数约简方法相比,流形学习能够有效地探索非线性流形分布数据的内在规律与性质。但是在实际应用中流形学习方法仍然存在一些缺点,比如本征维数估计问题、样本外点学习问题、监督流形学习问题和噪声流形学习问题等。为了解决这些问题,相关的算法也不断涌现出来。Freedman 等提出了一种基于简化单纯复形的流形重构方法来自动估计流形的本征维数(Freedman, 2002)。

为了解决样本外点学习问题,研究人员分别在流形学习的线性化、核化和张量化等方面作了有益的探索(Yan et al., 2007)。Geng 等将样本的类别信息融入到 ISOMAP 算法,提出了一种用于可视化和分类的有监督的等距特征映射算法(S-ISOMAP)(Geng et al., 2005)。Zhang 等提出了一种基于局部线性平滑的流形学习消噪模型(Zhang and Zha, 2003)。这些方法的提出在一定程度上缓解了目前流形学习方法中存在的一些问题,但是还需要进一步充实和完善。

1.3 流形学习的应用

目前,流形学习方法的应用可归纳为以下几个方面:

1)数据的可视化。流形学习方法在高维数据的可视化方面有了广泛的应用。人不能直接感知高维数据的内部结构,但对三维以下数据的内在结构却有很强的感知能力。由于流形学习方法可以发现高维观测数据中蕴含的内在规律和本征结构,而且这种规律在本质上不依赖于我们实际观测到的数据维数。因此我们可以通过流形学习方法 对高维输入数据进行维数约简,使高维数据的内部关系和结构在低于三维的空间中展示出来,从而使人们能够直观地认识和了解高维的非线性数据的内在规律,达到可视化的目的。

2)信息检索。随着多媒体和网络技术的迅猛发展,图像和文本信息的应用日益广泛,对规模逐渐庞大的图像和文本数据库如何进行有效的管理已成为亟待解决的问题。灵活、高效、准确的信息检索策略是解决这一问题的关键技术之一。这些图像和文本信息呈现出高维、大规模、非线性结构,利用流形学习方法来处理这些信息,在大大降低时间和空间计算复杂度的同时,能够有效地保留这些信息在原始高维空间的相似性。

3)图像处理。流形学习给图像处理领域提供了一个强有力的工具。众所周知,图像处理与图像中物体的轮廓以及骨架等密切相关。如果我们把图像中物体的轮廓以及骨架等看成是嵌入在二维平面中的一维流形或者由一组一维流形构成,那么显然流形学习方法凭借其强大的流形逼近能力可以应用于图像处理领域。

第2章 流形学习方法综述

流形学习方法作为一种新兴的非线性维数约简方法,主要目标是获取高维观测数据的低维紧致表示,探索事物的内在规律和本征结构,已经成为数据挖掘、模式识别和机器学习等领域的研究热点。本章首先探讨了流形学习的基础性问题,即高维数据分析的流形建模问题;然后依据保持流形几何特性的不同,把现有的流形学习方法划分为全局特性保持方法和局部特性保持方法,并介绍了每一类方法中有代表性的流形学习算法的基本原理,对各种流形学习算法进行性能比较和可视化分析,最后就流形学习方法普遍存在的本征维数估计、近邻数选择、噪声流形学习、样本外点学习和监督流形学习问题等进行了分析和讨论。2.1 流形学习方法介绍

流形学习的定义:流形是局部具有欧氏空间性质的空间。假设数据是均匀采样于一个高维欧氏空间中的低维流形,流形学习就是从高维采样数据中恢复低维流形结构,即找到高维空间中的低维流形,并求出相应的嵌入映射,以实现维数约简或者数据可视化。它是从观测到的现象中去寻找事物的本质,找到产生数据的内在规律。

流形学习用数学语言描述是:令Yyi且: Y是一个光滑的嵌套,其中D >> d。那么流形学习的目标是基于上的一个给定被观测数据集合xi去恢复Y与,也就是在Y 中随机产生隐藏的数据yi,然后通过 映射到观测空间,使得xifyi。

从流形学习的定义中可以看出,这是一个把数据从高维映射到低维的过程,用到了线性变换,当然少不了矩阵的分解及其基本运算。2.1.1 多维尺度分析(Multidimensional Scaling, MDS)

多维尺度分析(Multidimensional Scaling, MDS)是一种经典的线性降维方法,其主要思想是:根据数据点间的欧氏距离,构造关系矩阵,为了尽可能地保持每对观测数据点间的欧氏距离,只需对此关系矩阵进行特征分解,从而获得每个数据在低维空间中的低维坐标。

DDDxx设给定的高维观测数据点集为YU,i,观测数据点对i,Tyj间的欧氏距离为ijxiyj,传统MDS 的算法步骤如下:

a)首先根据求出的两点之间的欧氏距离

ij构造n阶平方欧式距离矩阵Aij2 nn。b)将矩阵A进行双中心化计算,即计算

B1HAH2(其中H 为中心化eeTHIn,将矩阵H左乘和右乘时称为双中心化)矩阵。

c)计算低维坐标Y。即将B奇异值分解,设B的最大的d个特征值diag1,2,...,dYUT。

u1,u2,...,ud则d维低维坐标为,对应特征向量,U虽然作为线性方法,MDS在流形学习中不能有效发现内在低维结构。但是从这一基本的算法中我们可以清楚的看出矩阵分析在流形学习研究中的应用。在这个MDS算法中,运用到了矩阵中的线性空间变换、矩阵特征值和特征向量的计算、矩阵的中心化计算、矩阵的奇异值的分解等相关知识点。想象一下,如果没有这些知识点做基础,这些算法如何进行。2.1.2 等距特征映射(ISOMAP)

(1)基本思想:Tenenbaum等人提出的等距特征映射算法(ISOMAP)是建立在多维尺度分析(MDS)基础上的一种非线性维数约简方法。ISOMAP算法利用所有样本点对之间的测地距离矩阵来代替MDS算法中的欧氏距离矩阵,以保持嵌入在高维观测空间中内在低维流形的全局几何特性。算法的关键是计算每个样本点与所有其它样本点之间的测地距离。对于近邻点,利用输入空间的欧氏距离直接得到其测地距离;对于非近邻点,利用近邻图上两点之间的最短路径近似测地距离。然后对于构造的全局测地距离矩阵,利用MDS算法在高维输入空间与低维嵌入空间之间建立等距映射,从而发现嵌入在高维空间的内在低维表示(Tenenbaum et al., 2000)。

(2)算法流程 <1>构造近邻图G

<2>计算最短路径

<3>计算 d 维嵌入(3)算法分析 ISOMAP算法是一种保持全局几何特性的方法,它的低维嵌入结果能够反映出高维观测样本所在流形上的测地距离。如果高维观测样本所在的低维流形与欧氏空间的一个子集是整体等距的,且与样本所在流形等距的欧氏空间的子集是一个凸集,那么ISOMAP算法能够取得比较理想的嵌入结果。但是当流形曲率较大或者流形上有“孔洞”,即与流形等距的欧氏空间的子集非凸时,流形上的测地距离估计会产生较大的误差,导致嵌入结果产生变形。

从算法的时间复杂度来看,ISOMAP算法有两个计算瓶颈(De Silva and Tenenbaum, 2003)。第一个是计算n×n 的最短路径距离矩阵DG。当使用Floyd算法时,计算复杂度为O(n3);若采用Dijkstra算法,可将计算复杂度降低到O(kn2log n)(k 为近邻数大小)(Cormen, 2001)。第二个计算瓶颈源于应用MDS时的特征分解。由于距离矩阵是稠密的,所以特征分解的计算复杂度为O(n3)。从中我们可以看出,随着样本个数n 的增大,ISOMAP算法计算效率低下的问题会变得十分突出。2.1.3局部线性嵌入(LLE)

1、基本思想

与ISOMAP和MVU算法不同,局部线性嵌入算法(LLE)是一种局部特性保持方法。LLE算法的核心是保持降维前后近邻之间的局部线性结构不变。算法的主要思想是假定每个数据点与它的近邻点位于流形的一个线性或近似线性的局部邻域,在该邻域中的数据点可以由其近邻点来线性表示,重建低维流形时,相应的内在低维空间中的数据点保持相同的局部近邻关系,即低维流形空间的每个数据点用其近邻点线性表示的权重与它们在高维观测空间中的线性表示权重相同,而各个局部邻域之间的相互重叠部分则描述了由局部线性到全局非线性的排列信息(Roweis and Saul, 2000)。这样就可以把高维输入数据映射到全局唯一的低维坐标系统。

2、算法流程

LLE算法的基本步骤分为三步:(1)选择邻域(2)计算重构权值矩阵W(3)求低维嵌入Y

3、算法分析

通过前面算法描述我们不难发现,LLE算法可以学习任意维具有局部线性结构的低维流形。它以重构权值矩阵作为高维观测空间与低维嵌入空间之间联系的桥梁,使得数据点与其近邻点在平移、旋转和缩放等变化下保持近邻关系不变。而且LLE算法具有解析的全局最优解,无需迭代。在算法的计算复杂度上,选择邻域的计算复杂度为O(Dn2),计算重构权值矩阵的计算复杂度为O((D+k)k2n),求解低维嵌入Y 的计算复杂度为O(dn2)。因此与ISOMAP和MVU算法相比,LLE算法的计算复杂度要小得多。

但LLE算法也存在一些缺点:① 由于LLE算法只是保持局部近邻的重构权值关系,并不是保持距离关系,因此,LLE算法通常不能很好的恢复出具有等距性质的流形。② LLE算法希望样本集均匀稠密采样于低维流形,因此,对于受噪声污染、样本密度稀疏或相互关联较弱的数据集,在从高维观测空间到低维嵌入空间的映射过程中,可能会将相互关联较弱的远点映射到局部近邻点的位置,从而破坏了低维嵌入结果。

第3章 流形学习方法存在的问题

流形学习相对于传统的线性维数约简方法来说,它能够更好地发现高维复杂非线性数据内在的几何结构与规律。但其各种算法本身还存在着一些普遍性的问题,比如本征维数估计问题、近邻数选择问题、噪声流形学习问题、泛化学习问题和监督学习问题等。本小节将对这些问题进行简要的分析和讨论。

3.1 本征维数估计

本征维数估计是流形学习的一个基本问题(赵连伟 et al., 2005)。本征维数一般被定义为描述数据集中所有数据所需要的自由参数(或独立坐标)的最小数目。它反映了隐藏在高维观测数据中潜在低维流形的拓扑属性。在非 线性维数约简过程中,本征维数估计的准确与否对低维空间的嵌入结果有着重要的影响。如果本征维数估计过大,将会保留数据的冗余信息,使嵌入结果中含有噪声;相反如果本征维数估计过小,将会丢失数据的有用信息,导致高维空间中不同的点在低维空间可能会交叠。因此,设计稳定可靠的本征维数估计方法将有助于流形学习算法的应用和性能的改善。

目前现有的本征维数估计方法大致分为两大类:特征映射法和几何学习法(Camastra, 2003)。特征映射法包括全局 PCA 方法(Bennett, 1969)、局部 PCA 方法(Bruske and Sommer, 1998;Fukunaga and Olsen, 1971)和多维尺度分析方法(Cox and Cox, 2000),它主要利用了数据分布的本征特征是数据的局部特征的基本思想,对局部数据进行特征分解,选取对应特征值最大的特征向量作为本征特征。显然,这类方法所估计的本征维数大小在很大程度上取决于数据的局部邻域划分和阈值的选择,因此特征映射方法不能提供本征维数的可靠估计。几何学习法主要基于最近邻距离(Nearest Neighbor Distances)或分形维(Fractal Dimension)(Camastra, 2003)来探索数据集所蕴含的几何信息,这类方法通常需要充足的样本数,因此,对于样本数少、观测空间维数较高的情况,经常会出现本征维数欠估计的情况。

3.2近邻数选择

流形学习探测低维流形结构成功与否在很大程度上取决于近邻数的选择(Zeng, 2008),然而在构造近邻图时如何选择一个合适的近邻数是一个公开的问题。如果近邻数选择过大,将会产生“短路边”现象(“short-circuit” edges),从而严重破坏原始流形数据的拓扑连通性。

3.3 噪声流形学习

当观测数据均匀稠密采样于一个理想的低维光滑流形时,流形学习方法可以成功地挖掘出其内在的低维结构和本质规律。但是在实际应用中,我们经常发现高维采样数据由于受各种因素的影响,一般总是存在着噪声和污染,这将势必影响流形学习算法的低维嵌入结果。3.4 监督流形学习

现有的流形学习方法多数用于无监督学习情况,如解决降维与数据可视化等问题。当已知数据的类别信息,如何利用这些信息有效地改进原始流形学习算法的分类识别能力是监督流形学习所要解决的问题。从数据分类的角度来看,人们希望高维观测数据经过维数约简后在低维空间中类内差异小而类间差异大,从而有利于样本的分类识别。原始的流形学习算法都是无监督学习过程,一些引进监督信息的改进算法纷纷被提出来(Li et al., 2009;Zhao et al., 2006)。这些方法的基本思想是利用样本的类别信息指导构建有监督的近邻图,然后利用流形学习方法进行低维嵌入。尽管这些方法能够获得较好的分类结果,但是这种通过类别属性构建的近邻图往往会被分割成多个互不相连的子图,而不是一个完整的近邻图,这就给原始流形学习算法的最终应用带来了很大的不便。

第4章 总结

流形学习是一个具有基础性、前瞻性的研究方向,其研究成果和技术已经立即应用于模式识别、计算机视觉、图像处理等相关领域。如高维数据的可视化、可听化;基于内容检索的模型;视频中三维对象的跟踪和检测;从静态二维图像中进行三维对象的姿态估计和识别;二维和三维对象的形状重构;从运动中构建结构、从阴影中成形等。此外流形学习还应用于自然语言处理、基因表达分析等生物信息处理领域,特别是在基因表达分析中,用于检测和区分不同的疾病和疾病类型。

尽管流形学习的算法和应用在过去的几年中已经取得了丰硕的成果,但是由于其数学理论基础较为深厚复杂,以及多个学科之间交叉融合,所以仍有许多亟需研究和解决的问题,尤其在下述几个方面:

1.目前已有很多流形学习算法,但很多算法只是建立在实验的基础之上,并没有充分理论基础支持,所以我们一方面要进一步探索能够有效学习到流形局部几何和拓扑结构的算法,提高流形投影算法的性能,另外更重要的是要不断完善理论基础。

2.各支几何都是研究空间在变换群下的不变性,微分几何亦是如此。而很多情况下我们正需要这种不变性,所以研究局部样本密度、噪声水平、流形的正则性、局部曲率、挠率结构的交互作用对流形学习的研究有积极促进作用。

3.统计学习理论得到充分发展并逐渐成熟,流形学习理论在其基础上发展自然可以把统计学中有用的技术应用于流形学习中,如流形上的取样和Monte Carlo估计、假设检验,以及流形上关于不变测度的概率分布密度问题,都值得进一步研究。

4.目前大部分学习算法都是基于局部的,而基于局部算法一个很大缺陷就在于受噪声影响较大,所以要研究减小局部方法对于噪声和离群值的影响,提高学习算法鲁棒性及泛化能力。

5.谱方法对噪声十分敏感。希望大家自己做做实验体会一下,流形学习中谱方法的脆弱。

6.采样问题对结果的影响。

7.一个最尴尬的事情莫过于,如果用来做识别,流形学习线性化的方法比原来非线性的方法效果要好得多,如果用原始方法做识别,那个效果叫一个差。也正因为此,使很多人对流形学习产生了怀疑。

8.把偏微分几何方法引入到流形学习中来是一个很有希望的方向。这样的工作在最近一年已经有出现的迹象。

参考文献

[1] R.Basri and D.W.Jacobs.Lambertian reflectance and linear subspaces.IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(2):218–233, 2003.[2] R.Vidal.Subspace clustering.IEEE Signal Processing Magazine, 28(2):52–68, 2011.[3] J.Shi and J.Malik, “Normalized cuts and image segmentation,” IEEE Transactions Pattern Analysis Machine Intelligence, 22(8):888–905, 2000.[4] G.Liu, Z.Lin, S.Yan, J.Sun, Y.Yu, and Y.Ma.Robust recovery of subspace structures by low-rank representation.IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1):171–184, 2013.[5] E.Elhamifar and R.Vidal.Sparse subspace clustering: Algorithm, theory, and applications.IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(11):2765–2781, 2013.[6] Y.Wang, Y.Jiang, Y.Wu, and Z.Zhou.Spectral clustering on multiple manifolds.IEEE Transactions on Neural Networks, 22(7):1149–1161, 2011.[7] B.Cheng, G.Liu, J.Wang, Z.Huang, and S.Yan, Multi-task low rank affinity pursuit for image segmentation, ICCV, 2011.[8] C.Lang, G.Liu, J.Yu, and S.Yan, Saliency detection by multitask sparsity pursuit, IEEE Transactions on Image Processing, 21(3): 1327–1338, 2012.

第五篇:2017-2022年贵州省大数据产业深度调研报告

2017-2021年贵州省大数据产业发

展预测及投资咨询报告

▄ 核心内容提要

【出版日期】2017年4月 【报告编号】

【交付方式】Email电子版/特快专递

【价

格】纸介版:7000元

电子版:7200元

纸介+电子:7500元

▄ 报告目录

第一章 贵州省大数据产业发展基础

第一节、自然生态优势

一、气候环境优良

二、地理结构稳定

三、能源资源充足

四、能源结构适宜

第二节、宏观政策保障

一、加快大数据产业发展政策

二、大数据产业行动计划

三、大数据人才培养政策

第三节、宏观经济支持

一、经济总量持续增加

二、工业发展基础良好

三、固定资产投资提升

四、产业结构调整优化

第四节、信息化基础建设支撑

一、宽带贵州

二、物联网产值

三、云计算发展

第五节、电子信息产业推动

一、区域产业规模

二、区域产业特征

三、区域产业集群

四、区域产业问题

五、产业发展方向

第二章 2014-2016年贵州省大数据产业发展现状

第一节、大数据产业链结构

一、大数据源

二、大数据管理技术

三、大数据应用

四、大数据载体

第二节、大数据产业业态分析

一、大数据核心业态

二、大数据关联业态

三、大数据衍生业态

第三节、2014-2016年贵州省大数据产业SWOT分析

一、优势(Strengths)

二、劣势(Weaknesses)

三、机会(Opportunities)

四、威胁(Threats)

第四节、2014-2016年贵州省大数据产业发展态势

一、产业发展历程

二、产业运行特征

三、资源集聚效应

四、国际合作状况

五、商业模式创新

第五节、2014-2016年贵州省大数据产业运行规模

一、产业发展规模

二、业态业务收入

三、企业发展规模

四、项目招商规模

第六节、贵州省大数据产业发展效益分析

一、产业集聚效应

二、社会经济效益

三、品牌效应显著

第七节、贵州省大数据产业商业模式探索分析

一、数据银行模式探索

二、数据存款模式探索

三、数据贷款模式探索

第八节、贵州省大数据产业发展存在的问题及策略分析

一、产业发展存在的问题

二、产业发展瓶颈分析

三、产业发展策略分析

第九节、贵州省大数据产业未来发展方向

一、行业发展趋势

二、未来政策导向

三、企业布局方向

四、应用市场趋势

第三章 2014-2016年贵州省绿色数据中心建设成果

第一节、绿色数据中心发展进程优势

一、基础设施完备

二、产业应用领先

三、绿色效益明显

第二节、绿色数据中心产业生态优势

一、政策环境配套

二、产业链条齐备

三、网络支撑有力

四、人才基础坚实

第三节、绿色数据中心发展典型案例

一、贵安信投-富士康绿色隧道数据中心

二、中国典型云计算贵州信息园

三、中国移动(贵州)数据中心

四、中国联通(贵安)云计算基地

第四节、绿色数据中心发展总结及预测

一、绿色数据中心发展总结

二、绿色数据中心发展预测

第五节、大数据呼叫中心发展进程

一、产业发展状况

二、产业发展规模

三、产业发展目标

四、人才培养政策

第四章 2014-2016年贵州省大数据交易平台建设成果

第一节、贵阳大数据交易所介绍

一、交易所概况介绍

二、交易所业务定位

三、交易所交易时间

四、交易的数据类型

五、交易的产品定价

六、产品交易规模

七、数据星河战略

八、交易所发展战略

第二节、贵阳众筹金融交易所

一、交易所概况介绍

二、交易所众筹模式

三、交易所发展现状

四、交易所发展目标

第三节、贵阳现代农业大数据交易中心

一、交易所概况介绍

二、交易所经营范围

第四节、大数据交易所的意义

一、对大数据交易行业具有引导意义

二、对加入交易所及联盟会员的意义

第五章 2014-2016年贵州省云上贵州大数据建设成果

第一节、云上贵州平台

一、平台介绍

二、发展现状

三、发展规模

四、发展目标

第二节、电子商务大数据应用

一、产业发展状况

二、产业发展规模

三、产业发展目标

四、产业发展路径

五、产业发展方向

六、农业电商平台

第三节、智慧旅游大数据应用

一、基础技术支撑

二、产业发展现状

三、培育企业规模

四、区域发展规模

五、智慧旅游云应用

六、产业发展策略

七、产业发展前景

八、产业发展空间

第四节、智慧城市大数据应用

一、产业发展现状

二、产业发展规模

三、产业合作状况

四、各区域建设状况

第五节、电子政务大数据应用

一、产业发展地位

二、产业发展成效

三、产业发展重点

四、产业发展策略

第六节、智能交通大数据应用

一、产业发展阶段

二、产业发展现状

三、产业发展路径

四、产业发展目标

第七节、工业大数据应用

一、传统工业现状

二、贵州工业云平台

三、贵州工业云智能

四、贵州工业云定位

五、大数据助推效果

六、工业云发展现状

第八节、食品安全大数据应用

一、食品安全云发展意义

二、食品安全云顶层设计

三、食品安全大数据发展成果

四、食品安全大数据发展展望

第九节、智慧环保大数据应用

一、“环保云”项目背景

二、贵州环境信息化现状

三、环保大数据建设现状

四、环保大数据发展展望

第十节、智慧物流大数据应用

一、智慧物流现状

二、智慧物流云

三、产业发展目标

第十一节、智慧金融大数据应用

一、产业发展目标

二、产业发展现状

三、产业发展策略

第十二节、智慧医疗大数据应用

一、产业合作状况

二、大数据云健康平台

三、产业发展规划

5.13 创新创业大数据应用

5.第一节、创新创业政策

5.第二节、众创空间规模

5.第三节、大数据创业孵化园

5.第四节、创新创业孵化现状

5.第五节、大数据商业模式大赛

5.第六节、创新创业发展机遇

第六章 2014-2016年贵州省大数据产业园发展分析

第一节、贵州大数据综合试验区

一、试验区主要任务

二、试验区发展优势

三、试验区发展目标

四、试验田发展意义

第二节、贵安新区电子信息(大数据)孵化园

一、产业园发展概况

二、产业园发展规模

三、典型企业项目分析

第三节、中关村贵阳科技园

一、园区发展概况

二、园区发展定位

三、园区发展目标

四、园区规划布局

五、空间布局结构

第四节、贵安新区高端装备制造产业园

一、产业园发展概况

二、产业园总产值

三、产业园发展规划

第五节、贵州省电子商务产业园区

一、贵州淘宝生态城

二、白云电商产业园

三、京东贵州馆

第六节、其他大数据相关产业园分析

一、大数据产业技术创新试验区

二、贵阳国际大数据创新中心

三、贵州台商电子产业园

四、数据小镇

第七章 2014-2016年贵州省重点城市大数据产业发展分析

第一节、贵阳市

一、大数据产业发展概况

二、大数据企业发展规模

三、相关产业的发展规模

四、云岩区大数据产业布局

五、高新区大数据产业现状

六、花溪区大数据产业规划

第二节、贵安新区

一、大数据产业发展历程

二、大数据产业发展概况

三、大数据产业发展规模

四、大数据产业应用状况

五、大数据创新创业态势

六、大数据发展路径分析

七、大数据产业招商规模

第三节、遵义市

一、大数据产业发展规模

二、大数据项目合作现状

三、区域大数据产业发展

四、人才产业基地落地生根

五、助推大众创业万众创新

六、遵义软件园建设规模

七、大数据产业发展措施

第四节、铜仁市

一、大数据产业发展成果

二、大数据产业应用现状

三、农村电商大数据平台

四、电子商务产业的升级

五、大数据招商项目规模

六、大数据呼叫中心建设

七、大数据产业发展策略

第五节、六盘水

一、大数据产业发展规模

二、大数据产业园的建设

三、大数据产业招商规模

四、大数据产业应用状况

第六节、黔南州

一、大数据产业发展优势

二、大数据产业发展成果

三、大数据产业培育项目

第八章 2014-2016年贵州省重点大数据企业经营分析

第一节、贵州海誉科技股份有限公司

一、企业发展概况

二、大数据业务进展

三、企业竞争优势

四、2014年海誉科技经营状况分析

五、2015年海誉科技经营状况分析

六、未来发展展望

第二节、贵阳朗玛信息技术股份有限公司

一、企业发展概况

二、医疗大数据业务

三、经营效益分析

四、业务经营分析

五、财务状况分析

六、未来前景展望

第三节、贵州高新翼云科技有限公司

一、企业发展概况

二、产品及服务

三、产品解决方案

四、企业发展现状

第四节、贵州泛亚信通网络科技有限公司

一、企业发展概况

二、主营业务分析

三、企业发展现状

第五节、贵阳中电高新数据科技有限公司

一、企业发展概况

二、大数据业务分析

三、大数据业务现状

第六节、其他大数据相关企业

一、贵州轩通大数据科技有限责任公司

二、贵州华畅智慧城市科技产业有限公司

三、贵州华耀科创科技有限公司

四、贵州翔明科技有限责任公司

五、贵州纬度科技发展有限公司

六、贵阳讯鸟公司

第九章 2016-2020年贵州省大数据产业投资分析

第一节、贵州省大数据产业投资机遇分析

一、国家战略机遇

二、结构调整机遇

三、技术创新机遇

四、产业创新机遇

第二节、贵州省大数据产业需求分析

一、大数据分析需求

二、数据处理外包服务

三、大数据市场需求前景

第三节、贵州省大数据产业投资机会分析

一、数据交易市场投资机会

二、大数据产业链投资机会

三、应用领域市场投资机会

第四节、贵州省大数据产业投资风险分析

一、市场技术竞争风险

二、数据安全风险

三、人才短缺风险

四、投资风险急剧增加

第五节、贵州省大数据产业投资策略建议

一、分阶段打造“三大中心”

二、构建可持续发展能力

三、坚持做好品牌宣传

第六节、2016-2020年贵州省大数据产业预测分析

一、2016-2020年贵州省大数据电子信息产业规模预测

二、2016-2020年贵州省大数据产业规模预测 附录

附录一:《贵州省大数据发展应用促进条例》 附录二:《贵阳市大数据产业行动计划》

附录三:贵州省大数据产业发展应用规划纲要(2014-2020年)附录四:《关于加快大数据产业发展应用若干政策的意见》

▄ 公司简介

中宏经略是一家专业的产业经济研究与产业战略咨询机构。成立多年来,我们一直聚焦在“产业研究”领域,是一家既有深厚的产业研究背景,又只专注于产业咨询的专业公司。我们针对企业单位、政府组织和金融机构,提供产业研究、产业规划、投资分析、项目可行性评估、商业计划书、市场调研、IPO咨询、商业数据等咨询类产品与服务,累计服务过近10000家国内外知名企业;并成为数十家世界500强企业长期的信息咨询产品供应商。

公司致力于为各行业提供最全最新的深度研究报告,提供客观、理性、简便的决策参考,提供降低投资风险,提高投资收益的有效工具,也是一个帮助咨询行业人员交流成果、交流报告、交流观点、交流经验的平台。依托于各行业协会、政府机构独特的资源优势,致力于发展中国机械电子、电力家电、能源矿产、钢

铁冶金、嵌入式软件纺织、食品烟酒、医药保健、石油化工、建筑房产、建材家具、轻工纸业、出版传媒、交通物流、IT通讯、零售服务等行业信息咨询、市场研究的专业服务机构。经过中宏经略咨询团队不懈的努力,已形成了完整的数据采集、研究、加工、编辑、咨询服务体系。能够为客户提供工业领域各行业信息咨询及市场研究、用户调查、数据采集等多项服务。同时可以根据企业用户提出的要求进行专项定制课题服务。服务对象涵盖机械、汽车、纺织、化工、轻工、冶金、建筑、建材、电力、医药等几十个行业。

我们的优势

强大的数据资源:中宏经略依托国家发展改革委和国家信息中心系统丰富的数据资源,建成了独具特色和覆盖全面的产业监测体系。经十年构建完成完整的产业经济数据库系统(含30类大行业,1000多类子行业,5000多细分产品),我们的优势来自于持续多年对细分产业市场的监测与跟踪以及全面的实地调研能力。

行业覆盖范围广:入选行业普遍具有市场前景好、行业竞争激烈和企业重组频繁等特征。我们在对行业进行综合分析的同时,还对其中重要的细分行业或产品进行单独分析。其信息量大,实用性强是任何同类产品难以企及的。

内容全面、数据直观:报告以本最新数据的实证描述为基础,全面、深入、细致地分析各行业的市场供求、进出口形势、投资状况、发展趋势和政策取向以及主要企业的运营状况,提出富有见地的判断和投资建议;在形式上,报告以丰富的数据和图表为主,突出文章的可读性和可视性。报告附加了与行业相关的数据、政策法规目录、主要企业信息及行业的大事记等,为业界人士提供了一幅生动的行业全景图。

深入的洞察力和预见力:我们不仅研究国内市场,对国际市场也一直在进行职业的观察和分析,因此我们更能洞察这些行业今后的发展方向、行业竞争格局的演变趋势以及技术标准、市场规模、潜在问题与行业发展的症结所在。我们有多位专家的智慧宝库为您提供决策的洞察这些行业今后的发展方向、行业竞争格局的演变趋势以及技术标准、市场规模、潜在问题与行业发展的症结所在。

有创造力和建设意义的对策建议:我们不仅研究国内市场,对国际市场也一直在进行职业的观察和分析,因此我们更能洞察这些行业今后的发展方向、行业

竞争格局的演变趋势以及技术标准、市场规模、潜在问题与行业发展的症结所在。我们行业专家的智慧宝库为您提供决策的洞察这些行业今后的发展方向、行业竞争格局的演变趋势以及技术标准、市场规模、潜在问题与行业发展的症结所在。

▄ 最新目录推荐

1、智慧能源系列

《2017-2021年中国智慧能源前景预测及投资咨询报告》 《2017-2021年中国智能电网产业前景预测及投资咨询报告》 《2017-2020年中国微电网前景预测及投资咨询报告》 《2017-2020年中国小水电行业前景预测及投资咨询报告》 《2017-2020年中国新能源产业发展预测及投资咨询报告》 《2017-2020年中国太阳能电池行业发展预测及投资咨询报告》 《2017-2020年中国氢能行业发展预测及投资咨询报告》 《2017-2020年中国波浪发电行业发展预测及投资咨询报告 《2017-2020年中国潮汐发电行业发展预测及投资咨询报告》 《2017-2020年中国太阳能光伏发电产业发展预测及投资咨询报告》 《2017-2020年中国燃料乙醇行业发展预测及投资咨询报告》 《2017-2020年中国太阳能利用产业发展预测及投资咨询报告》 《2017-2020年中国天然气发电行业发展预测及投资咨询报告》 《2017-2020年中国风力发电行业发展预测及投资咨询报告》

2、“互联网+”系列研究报告

《2017-2021年中国互联网+广告行业运营咨询及投资建议报告》 《2017-2021年中国互联网+物流行业运营咨询及投资建议报告》 《2017-2021年中国互联网+医疗行业运营咨询及投资建议报告》 《2017-2021年中国互联网+教育行业运营咨询及投资建议报告》

3、智能制造系列研究报告

《2017-2021年中国工业4.0前景预测及投资咨询报告》 《2017-2021年中国工业互联网行业前景预测及投资咨询报告》

《2017-2021年中国智能装备制造行业前景预测及投资咨询报告》 《2017-2021年中国高端装备制造业发展前景预测及投资咨询报告》

《2017-2021年中国工业机器人行业前景预测及投资咨询报告》 《2017-2021年中国服务机器人行业前景预测及投资咨询报告》

4、文化创意产业研究报告

《2017-2020年中国动漫产业发展预测及投资咨询报告》 《2017-2020年中国电视购物市场发展预测及投资咨询报告》 《2017-2020年中国电视剧产业发展预测及投资咨询报告》 《2017-2020年中国电视媒体行业发展预测及投资咨询报告》 《2017-2020年中国电影院线行业前景预测及投资咨询报告》 《2017-2020年中国电子竞技产业前景预测及投资咨询报告》 《2017-2020年中国电子商务市场发展预测及投资咨询报告》 《2017-2020年中国动画产业发展预测及投资咨询报告》

5、智能汽车系列研究报告

《2017-2021年中国智慧汽车行业市场前景预测及投资咨询报告》 《2017-2021年中国无人驾驶汽车行业市场前景预测及投资咨询报告》 《2017-2021年中国智慧停车市场前景预测及投资咨询报告》 《2017-2021年中国新能源汽车市场推广前景及发展战略研究报告》 《2017-2021年中国车联网产业运行动态及投融资战略咨询报告》

6、大健康产业系列报告

《2017-2020年中国大健康产业发展预测及投资咨询报告》

《2017-2020年中国第三方医学诊断行业发展预测及投资咨询报告》 《2017-2020年中国基因工程药物产业发展预测及投资咨询报告》 《2017-2020年中国基因检测行业发展预测及投资咨询报告》 《2017-2020年中国健康服务产业发展预测及投资咨询报告》 《2017-2020年中国健康体检行业发展预测及投资咨询报告》 《2017-2020年中国精准医疗行业发展预测及投资咨询报告》 《2017-2020年中国康复医疗产业深度调研及投资战略研究报告》

7、房地产转型系列研究报告

《2017-2021年房地产+众创空间跨界投资模式及市场前景研究报告》 《2017-2021年中国养老地产市场前景预测及投资咨询报告》 《2017-2021年中国医疗地产市场前景预测及投资咨询报告》 《2017-2021年中国物流地产市场前景预测及投资咨询报告》 《2017-2021年中国养老地产前景预测及投资咨询报告告》

8、城市规划系列研究报告

《2017-2021年中国城市规划行业前景调查及战略研究报告》 《2017-2021年中国智慧城市市场前景预测及投资咨询报告》

《2017-2021年中国城市综合体开发模式深度调研及开发战略分析报告》 《2017-2021年中国城市园林绿化行业发展前景预测及投资咨询报告》

9、现代服务业系列报告

《2017-2021年中国民营医院运营前景预测及投资分析报告》 《2017-2020年中国婚庆产业发展预测及投资咨询报告》

《2017-2021年中国文化创意产业市场调查及投融资战略研究报告》 《2017-2021年中国旅游行业发展前景调查及投融资战略研究报告》 《2017-2021年中国体育服务行业深度调查与前景预测研究报告》 《2017-2021年中国会展行业前景预测及投资咨询报告》 《2017-2021年中国冷链物流市场前景预测及投资咨询报告》 《2017-2021年中国在线教育行业前景预测及投资咨询报告》 《2017-2021年中国整形美容市场发展预测及投资咨询报告》 《2017-2021年中国职业教育市场前景预测及投资咨询报告》 《2017-2021年中国职业中介服务市场前景预测及投资咨询报告》

下载2015年大数据发展情况调研报告word格式文档
下载2015年大数据发展情况调研报告.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    大数据发展管理工作经验做法

    大数据发展管理工作经验做法一是加强组织领导,调整大数据发展领导体制。将X国家大数据(X)综合试验区筹建工作领导小组调整为区大数据发展协调推进领导小组,负责领导X国家大数据(X......

    促进大数据发展行动纲要

    《促进大数据发展行动纲要》 高为主要特征的数据集合,正快速发展为对数量巨大、来源分散、格式多样的数据进行采集、存储和关联分析,从中发现新知识、创造新价值、提升新能力......

    大数据产业发展应用思考

    加快贵州大数据产业发展应用的思考 当前,对于贵州省来讲,大数据产业的发展,既是新时期全省经济社会建设的崭新内容,也是政府部门电子政务管理的一项重要工作。在全国和全省经济......

    税务数据质量调研报告

    随着计算机技术的广泛应用,依靠计算机进行数据管理,已被愈来愈多地运用到社会各个领域。计算机处理数据的准确快捷,不仅使人们在工作中节省了大量的人力和时间,而且为人们生活、......

    税务数据质量调研报告

    税收收入核算数据工作调研 随着计算机技术的广泛应用,依靠计算机进行数据管理,已被愈来愈多地运用到社会各个领域。计算机处理数据的准确快捷,不仅使人们在工作中节省了大量的......

    大数据公司可行性报告

    云端大数据产业发展可行性报告 一、大数据概念 "大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 "......

    大数据时代读书报告

    这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。《 大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对......

    大数据平台分析报告

    密级:内部公开 环境数据中心 大数据平台分析 Big data platform analysis SOFTWARE PRODUCT聚光科技(杭州)股份有限公司 内部资料 注意保密 目 录 1. 大数据背景...................