第一篇:淀粉塑料研究现状
毕业设计(论文)
淀粉塑料研究现状
Starch plastics Research
班级 高聚物111 学生姓名 杨 振 学号 1132403127 指导教师 杨 昭 职称 讲师
导师单位 材料工程系 论文提交日期 2013年1月7日
淀粉塑料研究现状
杨 振
徐工院高聚物111
徐州
221400
摘要:
发展淀粉降解塑料有利于节省石油资源、保护环境。国内外这方面的研究较多, 并且在技术的实用性方面也取得了较大进展。目前研究热点集中在3 个方向: 淀粉与其它可生物降解高分子的直接填充;对淀粉表面修饰使其能与合成高分子相容;在淀粉与合成高分子体系中加入增塑剂。虽然淀粉基可生物降解塑料在综合性能上还不能与合成高分子相比, 但由于淀粉的综合优势, 淀粉基可生物降解塑料的研究和发展极具潜力。
关键词:淀粉 降解塑料 环境污染 淀粉塑料
Starch plastics Research
Yang Chen The Xugong Institute polymer 111
Xuzhou
221400
Abstract:
Development of starch biodegradable plastic in favor of saving oil resources and protect the environment.More research in this area at home and abroad, and has made great progress in the practical aspects of the technology.Current research focus is concentrated in three directions: starch with other biodegradable polymer directly filled;modified starch surface so that it can be compatible with the synthetic polymer;adding plasticizers in starch and synthetic polymer systems.The starch-based biodegradable plastics in the overall performance can not be compared with the synthetic polymer, but great potential due to the comprehensive advantages of starch, starch based biodegradable plastics research and development.Key Words:Starch Degradable plastics
Environmental pollution
Starch plastics
引言
近10多年来,全球为应对石油资源日趋贫乏、油价不断飞涨以及环境污染、气候变暖日益严峻的资源、环境问题,引发了对可再生资源为原料的生物质材料的极大关注。目前已产业化生产的生物质塑料主要包括两大类,一类为以淀粉、植物纤维素等天然高分子为原料,经改性后单独或以不同比例与其它生物降解塑料或与普通塑料共混(或合金化),然后通过热塑料性加工制得可完全生物降解或部分生物降解塑料,如淀粉基塑料。另一类为以淀粉、糖蜜等可再生资源通过微生物或基因工程直接合成生物降解塑料,如聚羟基烷酸酯(PHA)等;或以淀粉、秸秆等农副产品为原料,通过发酵合成单体,再经化学合成生物降解塑料,如聚乳酸(PLA)等。
淀粉基塑料是当前技术较成熟、产业化规模较大、性价比较适中、市场占有率较高的一类生物质塑料。其性价比可与普通塑料PE相比拟,有利于推向市场,这为堆肥化处理用垃圾袋提供了可再生、可持续发展和生物降解的选择。
一、国内外现状分析
1、国外现状
塑料制品应用广泛, 但废弃物污染环境。国外于80 年代对塑料的生物降解开展了研究, 淀粉塑料的生物降解已开发成功并已工业化。
淀粉塑料分为两大类型: 淀粉填充型生物降解塑料和全淀粉或基本全淀粉的生物降解塑料.前者是在普通塑料中加入淀粉或改性淀粉和其他添加剂制成, 后者以淀粉为主要原料, 添加少量其他助剂经反应制成。国外概况
淀粉塑料在美国和加拿大都已商品化, 玉米淀粉塑料的重要用途之一是生产垃圾袋, 它是由43 写玉米淀粉和47 % 聚乙烯以及10 %各种助剂组成的。
2、国内现状
我国的地膜覆盖栽培技术虽然在70 年代才开始推广, 比国际上迟了20 年, 但发展迅速。19 8 0 年生产地膜0.25 万t , 覆盖面积16 67 公顷(2.5 万亩), 1 9 9 1 年生产约50 万t , 筱盖面积达46 万公顷(7 0 0 0 万亩), 预计到2 0 0 0 年, 我国地膜覆盖面积将达到6 67 万~ 1 0 0 0 万公顷(1 ~ 1.5 亿亩)。地膜栽培技术推广, 据测算可提高产量15 % ~ 20 % , 但由于地膜残留于土壤中, 污染严重, 据对北京近郊调查, 使用多年地膜筱盖的地上每亩残留地膜竟达2 3 kg , 使小麦减产20 % , 其他作物的减产幅度为8.3 % 一54.2% 不等, 且其残留膜缠绕在秸杆上被牲畜吃了患病甚至死亡。其他的塑料制品如快餐盒、塑料袋、各种容器残留也到处可见。
二、淀粉的性质及淀粉塑料降解分类
1、淀粉的基本性质
天然淀粉的高分子链间存在氢键, 分子间作用力较强, 因此, 溶解性差, 亲水而不易溶于水, 且加热不熔融, 300℃以后分解, 成型性能较差。为改善其加工工艺性能, 一般可通过打开淀粉链间的氢键, 使其失去结晶性的方法来完成。具体有两种方法, 一种是加热含水量大于90% 的淀粉, 在60~ 70 ℃ 间淀粉颗粒开始溶胀, 达到90℃以后淀粉颗粒崩裂, 高分子链间氢键被打开, 产生凝胶化;另一种是在密封状态下加热, 塑炼挤出含水量小于28%的淀粉。这种过程中淀粉可以熔融, 称为解体淀粉或凝胶化淀粉。这种淀粉与天然颗粒状淀粉不同, 因其加热可塑, 故称之为热塑性淀粉。其实, 解体淀粉与热塑性淀粉是有区别的, 从根源上说二者的区别主要是前者仍然具有结晶状的结构, 后者基本没有这种结构。图1 淀粉的分子结构
图1淀粉的分子结构
Fig.1 The molecular structure of starch 淀粉作为高分子物质, 其性质自然与分子量、支链以及直支链两种成分的比例有关。实验证明, 高直链含量的淀粉比较适合于制备塑料, 所得材料具有较好的机械性能。
2、淀粉塑料的分类
一般而言,依照其发展过程,淀粉降解塑料前后共经历了三个主要技术发展阶段,分别为第一阶段的填充型淀粉塑料、第二阶段的淀粉基塑料和第三阶段的全淀粉热塑性塑料。
(1)填充型淀粉塑料:此阶段的产品多由淀粉(约6~20wt%)与聚乙烯(PE)或聚丙烯(PP)等高分子的共混物制备,其最大缺点为产品的淀粉组成经降解后会留下一个不能再降解的塑料聚合物,因此此类塑料亦被称为淀粉填充型塑料或假降解塑料。
(2)淀粉基塑料:此阶段的产品使用聚乙烯醇等亲水性高分子与含量大于50%的淀粉高分子进行共混制备,藉由淀粉高分子和亲水性高分子间的物理和化学反应,此类材料具有较优异的生物可降解特性与可加工性,此类塑料亦被称为生质塑料。
(3)全淀粉热塑性塑料:利用改性方式使淀粉高分子的结构以无序化排列并具有热塑特性,在淀粉含量90% 以上的前提下,于高温、高压和高湿条件下制备全生物可降解塑料,因此全淀粉塑料是真正完全可降解的塑料。此外,虽然所有的塑料加工方法均可应用于淀粉塑料加工,但全淀粉塑料的加工却需要少量的水与高分子加工添加剂做为增塑剂(如甘油),研究发现,在进行全淀粉塑料加工时,添加20~30% 的水与甘油10~20% 当作增塑剂为最适宜条件。
三、淀粉塑料的性能
1、生物可分解特性
全淀粉热塑性塑料含有80% 的淀粉,其制作过程中额外添加的各类助剂亦具有生物可降解性,因此全淀粉塑料能在使用完后,于短时间内被光或微生物完全降解,全淀粉塑料经降解后生成二氧化碳和水,不会对环境造成任何污染。
2、热塑可加工特性
具有热塑特性的淀粉就像聚乙烯或聚丙烯等泛用塑料一样,可以重复进行塑化加工,全淀粉热塑性塑料可透过剪切速率的调节来调整黏度,以优化其加工性能,透过传统塑料的成形加工技术(如挤出、吹塑、流延、注塑等),可以得到各种淀粉塑料制品,淀粉生质合胶亦为近年来研究之主流。此外,研究显示,其机械物性如拉伸强度约为8~10Mpa、拉伸长度约为150~200%,可以满足一般塑料制品的需求;而以此类淀粉为基材之热可塑性高分子易受到来源种类与增塑剂所影响,如高直链淀粉因其结晶度较低,以及增塑剂对材料物性严重下降而影响其加工性,是故材料筛选与来源规格控管于此领域格外重要。
3、高经济价值
全淀粉热塑性塑料其原料成本较传统塑料低约20%,也较生物可分解塑料(如PLA 或PHB 等)减少50%以上,极具市场竞争力。
淀粉塑料的物理性质如表1
表1 淀粉塑料的物理性质
Tab.1 Physical properties of pure starch plastic
性能
指标 薄膜密度/(g·cm-3)
1.15 薄膜厚度/mm
0.4 光泽度/%
拉伸强度/MPa
7~10 断裂伸长率/%
180~260 撕裂强度/(N·mm-1)
四、淀粉塑料存在的问题
1、填充型塑料的降解性为达到标准
填充型塑料的降解性能尚不能完全达到满意的程度。大部分所谓的可生物降解淀粉塑料都是部分失重、裂成碎片, 虽然有菌落生长和力学性能降低等特征, 但均不能说明产品完全消失。尤其在淀粉填充型塑料中的PE、PVC 等均不能短时间内降解。因此该类产品应归属在淘汰行列。
2、价格不具有竞争力
国内外公认降解塑料比同类塑料产品的价格高50%以上, 其中能完全降解的高4~ 8 倍。
3、综合性能不高
淀粉基塑料力学性能一般可以与同类应用的传统塑料相比, 但其综合性能不令人满意。主要缺点是含淀粉的塑料耐水性都不好, 湿强度差, 遇水后力学性能显著降低, 而耐水性好是传统塑料在使用过程中的主要优点。在不同场合使用时也产生不同问题, 如主要在列车上使用的光/ 生物降解聚丙烯餐盒与聚苯乙烯泡沫餐盒相比, 显出质软、装热食品易变形, 因而实用性较差。而且这种餐盒比较费原料, 每个餐盒重量比聚苯乙烯泡沫塑料餐盒重1~ 2 倍。
4、评价方法不一致
由于生物降解塑料的发展较晚也较快, 各国都正在建立健全生物降解塑料的评价方法。由于世界各地的气候、土壤等自然因素迥异, 致使评价标准很难在短时间内达到统一。
五、淀粉塑料的发展
开发全淀粉热塑性塑料最常使用的方式即是针对天然淀粉进行物理处理或化学处理,经过处理后的淀粉高分子除具备优异的热塑加工性与自然降解特性之外,也带有传统塑料树脂的优异物理性质,与原来的淀粉基塑料比较,其优点有:
(1)绿色环保素材经全分解后形成二氧化碳及水;(2)经适当改性与高分子加工可下游产业之需求;(3)价格优势,淀粉取之自然、量多且来源充足,因此全淀粉热塑性塑料的成本低于淀粉基塑料和传统塑料。
我们也应看到,生物降解塑料的潜在市场是巨大的,目前适于使用降解塑料的包装、农用制品及一次性塑料用品约占塑料总产量的30%,全世界降解塑料市场估计为4 000万t,我国则为300万t,因而大家都希望完全降解塑料尽快工业化生产。
国内外众多科学家仍在不断努力,随着技术不断进步,现在已有多种完全降解的降解塑料问世,而且在进一步完善,而国内则研究甚少,有些还是空白,我们必须加强对真正完全降解的塑料研究。
阻碍它发展的首要问题是成本。就目前问世的完全降解塑料品种而言,成本降低可能性最大的要数全淀粉塑料,因为不管如何,它所需的原料淀粉是可再生资源,其单位价格远比传统塑料原料低,更不说与现在合成的可降解树脂比了。
现在对于可降解塑料的定义逐渐清晰化。所谓可降解塑料就是必需在废弃后短期内能百分之百降解为无害物质(如CO2和H 2O)的塑料。上文所述的淀粉直接填充型塑料不能完全降解, 因此它不能算作真正意义上的可降解塑料。降解塑料的研究还不成熟, 在发展过程中出现问题和争议是可以理解的。可降解塑料总体的发展趋势为: 根据不同用途,开发准时可控性环境降解塑料;开发高效价廉的各种功能性助剂, 进一步提高准时可控性、用后快速降解性和完全降解性;加强对全淀粉塑料(热塑性淀粉塑料)的研究;加速研究和建立系统的降解塑料的讲解实验评价方法和标准。作为可降解塑料的一个重要发展分支的全淀粉型塑料的发展优势在于: 淀粉在一般环境中就具备完全可生物降解性;降解产物对土壤或空气不产生毒害;开拓淀粉新的利用途径可促进农业发展。但是全淀粉塑料研究的程度不深, 显然这方面仍然有巨大的研究空间。
结论
淀粉塑料的开发应用,其主要优点是集实用性、经济性于一体,其原料来自可年年再资源,作为日益减少的石化资源的补充替代,对于摆脱对石化资源的长期依赖、缓解石化资源的供求矛盾有着十分重要的作用,也是当今各国寻求可再生资源替代不可再生资源,确保经济可持续发展的主要方向;另外,当前低碳经济已成为全球瞻目的热点和不可抗拒的发展潮流,淀粉基塑料垃圾袋作为PE塑料垃圾袋的替代品,每年可实现相当可观数量的碳减排。未来有机会逐步取代传统不可分解塑料之产品,减少塑料废弃物造成的白色污染及焚化处理时生成的废气污染。参考文献
[1]杨玉清,王佩璋, 王 澜.淀粉基生物降解塑料的研究现状[J].塑料工业,2005,33:28-30.[2]王宁,马涛淀粉基可降解塑料的研究现状与展望农产品[J].加工学刊2007,(1):43-45.[3] 陈庆,崔彪.全淀粉生物降解塑料技术研究现状[J].塑料工业, 2010(S1).[4]邱威扬, 邱贤华, 喻继文.国内生物降解淀粉塑料研究现状与展望[J].江苏化工,2003 ,31(4):1-3.[5]石雪萍1, 赵陆萍2, 叶朝阳淀粉类可降解塑料的现状与发展[J].延安大学学报(自然科学版),2004,23(4):55-58.[6]郭振宇胡世伟丁著明淀粉基降解塑料的研究进展[J].塑料助剂,2011,(6)[7]代丽.可降解淀粉塑料的研究现状轻工科技[J].2012,(9):41-43.[8] 徐秋兰,庞杰.淀粉塑料发展及其前景展望[J].粮食与油脂, 2004(04)[9]邱威扬.塑料淀粉研究进展[J].现代化工,1993,(12):15-22.[10]赫玉欣, 由文颖, 宋文生等.淀粉基生物降解塑料的应用研究现状及发展趋势.河南科技大学学报(自然科学版),2006,(1)
致谢
大学生活一晃而过,回首走过的岁月,心中倍感充实,当我写完这篇毕业论文的时候,有一种如释重负的感觉,感慨良多。首先诚挚的感谢我的论文指导老师-------老师,她在忙碌的教学工作中挤出时间来审查、修改我的论文。还有教过我的所有老师们,你们严谨细致、一丝不苟的作风一直是我工作、学习中的榜样;他们循循善诱的教导和不拘一格的思路给予我无尽的启迪。感谢三年中陪伴在我身边的同学、朋友,感谢他们为我提出的有益的建议和意见,有了他们的支持、鼓励和帮助,我才能充实的度过了三年的学习生活。
第二篇:淀粉塑料研究进展
得分:_______
南 京 林 业 大 学
研究生课程论文
2013 ~2014
学年
第二
学期
课 程 号: 课程名称: 论文题目: 学科专业: 学
号: 姓
名: 任课教师:
73414 生态环境科学
热塑性淀粉材料的研究进展与应用 材料学 3130161 王礼建 雷文
二○一四 年 五 月 热塑性淀粉材料的研究进展与应用
王礼建
(南京林业大学理学院,江苏 南京210037)
摘要:淀粉与其他生物降解聚合物相比,具有来源广泛,价格低廉,易生物降解的优点因而在生物降解塑料领域中具有重要的地位。本文介绍了淀粉的基本性质、塑化和塑化机理,以及增强体在热塑性淀粉中的应用现状和进展,并对市场应用现状和目前淀粉塑料存在的不足等方面进行了相关的分析。
关键字:淀粉塑料;塑化;增强;市场应用
Research progress and application of thermoplastic starch
materials
WANG Li-jian(College of Science, Nanjing Forestry University, Nanjing 210037, China)Abstract: Starch has an important status in the biodegradable plastics’ area compared with other biodegradable polymer, because it has a lot of advantages such as a wide range of sources, low cost and easy to be broken down.In this thesis, introduces the basic properties of starch, plastic and plasticizing mechanism, as well as reinforcement application status and progress of the thermoplastic starch, and reinforcement application status and progress of the thermoplastic starch.Aspects of the application and the current status of the market and the presence of starch plastics were insufficient correlation analysis.Key words: Starch plastics;plasticizers;enhanced;market applications 1 淀粉的基本性质
淀粉以葡萄糖为结构单元,分子链呈顺式结构,一般分为直链淀粉和支链淀粉两种。直链淀粉是以α-1,4-糖苷键连接D-吡喃葡萄糖单元所形成的直链高分子化合物,而支链淀粉是在淀粉链上以α-1,6-糖苷键连接侧链结构的高分子化合物,分子量通常要比直链淀粉的大很多。通常玉米淀粉中直链淀粉占28%,分子量大约为(0.3~3×106),占72%的支链淀粉分子量则可以达到数亿[1-2]。
淀粉是一种多羟基化合物,每个葡萄糖单元上均含有三个羟基。分子链通过羟基相互作用形成分子间和分子内氢键,因此淀粉具有很强的吸水性。淀粉与水分子相互结合,从而形成颗粒状结构,因此淀粉具有亲水性,但不溶于水,从而大量存在于植物体中。
淀粉是一种高度结晶化合物,分子间的氢键作用力很强,淀粉的糖苷键在150℃时则开始发生断裂,因此其熔融温度要高于分解温度。热塑性淀粉的塑化
2.1 热塑性淀粉的塑化机理
淀粉分子含大量羟基,分子间及分子内部氧键作用很强,对其直接加热,升至理论熔融温度之前,淀粉便开始分解,即淀粉颗粒内的平衡水因升温会而丢失,导致淀粉的分解(通常天然淀粉水分含量约为9%~12%)。淀粉的热塑性增塑就是使淀粉分子结构无序化,形成具有热塑性能的淀粉树脂。其机理就是在热力场、外力场和增塑剂的作用下,淀粉分子间和分子内氢键被增塑剂与淀粉之间较强的氢键作用所取代,淀粉分子活动能力得到提高,玻璃化转变温度降低。增塑剂的加入破坏了淀粉原有的结晶结构,使分子结构无序化,实现由晶态向非晶态的转变,从而使淀粉在分解前实现熔融,淀粉表现出热塑性[3]。2.2 热塑性淀粉的塑化剂
塑化剂的作用是降低材料的熔体黏度,玻璃化转变温度及产品的弹性模量,但不改变被增塑材料基本的化学性质。被塑化的淀粉颗粒状结构变小(球晶尺寸变小)甚至消失,球晶结构受到破坏,只剩少数片晶分散于非晶态连续相中。同时,淀粉分子间和分子内的氧键作用被削弱破坏,分子链扩展力提高。淀粉在塑化过程中伴随有二级相变过程一玻璃化相变,淀粉的玻璃化转变温度降低,在分解前可实现微晶熔融,长链分子开始运动,分子间产生相对滑动,并由双螺旋构象变为无规线团构象,聚合物变得有粘性,柔韧,从而使淀粉具有热塑加工的可能性。
热塑性淀粉常用的塑化剂有:水,多元醇(丙三醇,乙二醇,丙二醇,山梨醇等),酰胺类(尿素,甲酰胺,乙酰胺等),高分子类(聚乙烯醇,聚乙二醇等)。
(1)水
水是淀粉加工中最常用的塑化剂。由于水的存在,使淀粉颗粒在加工过程中发生一系列不可逆转转变,通常将这些变化称为凝胶化或糊化。此时可观察到淀粉颗粒发生吸水,膨胀,无定形化,双折射等现象[4],使淀粉在高温高剪切条件下转变成热塑性淀粉。
Biliaderis [5]发现,淀粉的溶融温度依赖于水分的含量。一方面,水分的含量要能在淀粉降解前对结晶产生足够的破坏,另一方面,水分也不能过多,以免造成熔体粘度低和材料的低模量。另外,水分过低,加工过程中发生热降解,离模膨胀加剧。熊汉国[6-7]以水,丙三醇等小分子为塑化剂,发现塑化淀粉的结晶峰数急剧减少,说明淀粉结晶区被塑化剂破坏,淀粉中无定形成分增加,淀粉转变为具有热塑性的高分子材料。他认为水是淀粉最有效的塑化剂,其用量达淀粉质量的15wt%。而Mwootton和A.C.Eliasson认为:使小麦淀粉凝胶化的最小水分含量为33%左右[8]。
但是Loercks[9]认为,热塑性淀粉挤出过程中,若淀粉中水的质量分数≥5%,生成的是解体淀粉而非热塑性淀粉,解体淀粉的结构未完全破坏,材料变脆且无可伸缩性,不能用于制备降解塑料。Loerkcks以疏水性可生物降解聚合物(脂肪族,脂肪族聚醋与芳香族聚酷等)作塑化剂加入淀粉溶体,均勻混合并制成淀粉母料,发现疏水性可生物降解聚合物作为增塑剂,可避免在热塑性淀粉溶体中有可迁移,使淀粉在溶融-塑炼过程中形成热塑性淀粉而非解体淀粉。他同时指出,天然淀粉转变为热塑性淀粉有两个关键因素:1.原淀粉与塑化剂混合时,需将原淀粉溶点降至制止淀粉分解温度以下;2.淀粉应充分干燥,以抑制解体淀粉的形成。
尽管水对于生成热塑性淀粉所起到的塑化作用还需进一步研究,但根据GBT/2035-1996中热塑性塑料的定义:在塑料整个特征温度范围内,能够反复加热软化和反复冷却硬化,且在软化状态采用模塑,挤塑或二次成型,通过流动能反复模塑为制品的塑料,称为热塑性塑料。所以在这里仍可把淀粉中水的质量分数≥5%时制备的材料称为热塑性淀粉。
(2)多元醇
水作塑化剂时对温度控制要求较高,而小分子量的多元醇同样可以替代水的作用,所以人们通常用沸点更高的多元醇作为淀粉塑化剂。王佩章[10]对淀粉热塑机理进行了研究,分别使用甘油,乙二醇,聚乙烯醇,山梨醇四种增塑剂制备热塑性淀粉。他认为釆用适当含羟基的高分子量增塑剂和低分子量增塑剂混合增塑,利于提高制品的力学性能。在对于玉米淀粉,木薯淀粉以及可溶性淀粉三种淀粉的塑化研究中发现,直链淀粉比支链淀粉更易塑化及与树脂混合。于九皋[11]用单螺杆挤出机制备了淀粉与多元醇混合物,并研究了其力学性能和流变性能,发现随多元醇的分子量增大及经基数的增加,其塑化能力下降。小分子量的乙二醇和丙三醇比分子量略大的木糖醇和甘露醇分子更易运动,因此可更有效地渗入淀粉分子链间,对淀粉分子间氧键作用破坏更大。而大分子的木糖醇和甘露醇,由于每个分子所含经基数太多,虽与淀粉分子间作用力也较强,但渗透作用远不如乙二醇和丙三醇。通过计算共混物的粘流活化能△Eη辨别分子链柔性大小,发现木糖醇共混物的△Eη=225.1kg/mo1,两三醇共混物的△Eη=122.5kg/mol,后者分子链的刚性明显小于前者。热塑性淀粉的增强
热塑性淀粉材料耐水和力学性能的不足,限制了应用范围,近年来研究表明,加人增强体形成热塑性淀粉复合材料,其耐水和力学性能可得到很好的改善。增强体为复合材料中承受载荷的组分[12]。目前,用于增强热塑性淀粉的增强体主要有有机纤维和无机矿物两大类材料。3.1 有机纤维增强热塑性淀粉
有机纤维密度小、比强度高、韧性好,是理想的增强材料[13],主要包括天然纤维和合成纤维。3.1.1 天然纤维
天然纤维的结构比较复杂,一般主要由纤维素、半纤维素、木质素和果胶四种高分子聚合物组成。纤维的机械性能取决于纤维含量和微纤丝角。当纤维作为强化剂时,我们希望纤维中纤维素含量较高,微纤丝角较小。纤维的品质和其他特性还有纤维的生长条件、纤维的大小、成熟度及纤维的提前方法有关。天然纤维在自然环境中容易吸潮,其缺点就是在含水量高时的耐久性和形状稳定性较差。
马晓飞等[14]在尿素/甲酰胺混合体系(增塑剂:玉米淀粉质量比为3:10)的UFTPS中加入微棉绒纤维(长度大约12mm),一步挤出成型。微棉绒纤维的加入可以有效提高UFTPS的力学性能、耐水性和热稳定性。纤维质量分数从0%增加到20%时,拉伸强度提高了3倍,达到15.16 MPa,而断裂伸长率则从105%降到了19%。另外实验还指出,纤维含量在15%以下,样品具有很好的加工性能。Romhany等[15-16]采用跨层级亚麻纤维(平均纤维直径在68μm)增强TPS,研究其拉伸断裂行为,使用的含量分别为20%、40%、60%,在亚麻纤维为40%之前,随纤维含量增加,复合材料的拉伸性能是提高的,当亚麻纤维含量为40%时,拉伸强度是纯TPS的3倍。用声发射的方法研究样品内部缺陷成长和断裂行为,指出主要由亚麻纤维的含量和排列方式决定。3.1.2 合成纤维
目前,用合成纤维来增强热塑性淀粉的例子比较少,这主要是因为多数合成纤维降解性能差,而热塑性淀粉本身是要取代传统石油塑料的应用,减少污染。Jiang等[17]采用原位聚合法将聚乳酸(PLA)纤维化后来增强热塑性淀粉,得到的复合材料耐水性能和力学性能均有很大提高,且PLA为可降解材料,被认为是具有很强的经济竞争力的高效复合材料。
3.2 无机矿物材料增强热塑性淀粉
无机矿物材料由于共价键结合力强,具有质坚硬,抗压强度高,耐热性好,熔点较高等优点,且化学稳定性较强[18],在热塑性淀粉中加入无机矿物材料来增强体系的力学性能和耐水性已被广泛研究。Huang等[19]使用乙醇胺改性和柠檬酸活化的蒙脱土来增强甲酰胺/乙醇胺混合增塑剂增塑的FETPS,制备纳米复合材料,从X射线衍射(WAXD)可以看到,蒙脱土改性后层间距离由1.0lnm增加到了2.08 nm,FETPS可以很好地分布在层间。当改性后的蒙脱土含量为5%时,该纳米复合材料的拉伸应力达到7.5MPa,拉伸应变为85.2%,而纯的FETPS的这两项值分别为5.6MPa和95.6%。同样的改性MMT也用来增强尿素/乙醇胺混合增塑剂增塑的UETPS[20],效果类似。Schmitt等[21]用未改性埃洛石纳米管(HNT)和苯扎氯铵改性的埃洛石纳米管(MHNT)来增强热塑性小麦淀粉TPWS,埃洛石纳米管具有100—120 nm的外径和60~80nm的内径,长度平均在500—1200 nm。埃洛石纳米管的加入轻微地增强了ST的热性能,分解温度移向高温。不管是改性或未改性的埃洛石纳米管,添加后,拉伸性能显著增强,同时还不破坏纳米复合材料的延展性。
3.3 其他增强材料
其他增强材料有粉煤灰[22]、羧酸盐多壁碳纳米管[23]、纳米SiO2[24]、海藻酸钠[25]、壳质素[26]等均可使热塑性淀粉材料的力学性能和耐水性能得到改善。
粉煤灰是燃烧煤粉的副产品,却也可以用来增强热塑性淀粉,对于甘油增塑的GTPS而言,粉煤灰能使其拉伸强度从4.55 MPa增加到12.86 MPa,同时杨氏模量增加6倍。当含量超过20%时,效果开始下降。羧酸盐多壁碳纳米管的添加量在1.5%以下时,具有较好的增强效果,且该体系具有一定的导电性能;当含量超过1.5%时,易发生团聚,甘油在一定程度上可以抑制团聚,但效果有限。纳米SiO2,的加入可以和淀粉形成很好的相互作用,用酶分解淀粉,纳米SiO2/TPS体系有效减缓了淀粉的分解的速度,同时分解程度也得到减小。1%的海藻酸钠加入可以降低挤出机的加工温度,明显提高TPS的杨氏模量,体系的力学性能主要由海藻酸钠的含水量决定。0.1%-10%的壳质素添加可有效提高复合材料的拉伸性能和耐水性,这是由于壳质素的刚性和相对淀粉的低亲水性。市场应用现状
近年来,国内外生物降解塑料蓬勃发展,逐渐呈现出取代传统塑料的趋势。淀粉基生物降解塑料广泛应用于人们生产生活的各个方面,如包装材料,农用地膜等。目前欧美国家已经建立起了万吨级的生产线。意大利Novanmont公司是世界最先开发淀粉基生物降解塑料的国家,其中淀粉/聚乙烯醇、淀粉/聚己内酯生物降解塑料已有多年历史,主要用途为包装材料,堆肥袋,卫生用品,一次性餐具,农用地膜等,市场规模从2001年的24kt增长到2003年的120kt。美国 Warner-Lambert公司生产的商品名为“Noven”的生物降解材料,以糊化淀粉为主要原料,添加少量可生物降解的添加剂如聚乙烯醇,经螺杆挤出机加工而成的热塑性淀粉复合材料,淀粉含量达90%以上,并具有较好的力学性能。美国Air Product & Chemical 公司开发了“Vinex”品牌,它是以聚合度较低的聚乙烯醇与淀粉共混,具有水溶性、热塑性和生物降解性,近年来受到了极大的重视。日本合成化学工业公司也开发出商品名为“Ecomate AX”的具有热塑性、水溶性和生物降解性的淀粉基树脂,该树脂引入具有热塑效果分子结构的乙烯醇共聚物,可在挤塑、吹塑、注塑等工艺下成型。
加拿大 EPI 公司开发的氧化-生物降解塑料添加剂技术应用于传统聚烯烃塑料制品,不改变或影响塑料传统加工制造过程。TDPA-PE购物袋样品以LDPE和 LLDPE 为基础,聚合物分子分解成氧化分子碎片,暴露或埋藏于土壤,或与成熟堆肥混合,在设定的时间内,可生物降解成 65%-75%的矿化物质(由微生物把碳转化成二氧化碳)以及10%-15%细胞生物量。
淀粉基塑料及淀粉与BDP共混物是我国积极开发的产品,研制而的单位相当多。主要研发单位有中科院理化所,长春应化所,江西科学院,北京理工大学和天津大学等。已经进行中试的单位有广东上九生物降解塑料有限公司,浙江天示生态科技有限公司等。
中科院长春应化所研制的淀粉基生物降解薄膜,采用独特的三元增塑体系制成,淀粉含量60%以上,机械性能(厚度20-50μm,断裂强度12-30MPa,断裂伸长率50-250%)与同等厚度的PE薄膜相当,适用于购物袋、垃圾袋、杂物袋等。
江苏九鼎集团近期内开工建设“两万吨生物可降解塑料项目”。九鼎集团聘请中科院专家担任技术指导和总工程师,3年试验和攻关完成了一系列科研课题,生物可降解塑料生产技术取得重大突破,在国内首次具备完全工业化生产能力,今后3年内可以形成年产2万吨生物可降解塑料生产能力。热塑性淀粉塑料存在的主要问题
虽然热塑性淀粉早己有人用不同的方法进行了研制,而且应用于食品工业,但用于制造塑料却是在近期,全淀粉热塑性塑料是20世纪90年代的新型材料。然而其推广应用还存在一些问题。
(1)降解性能:填充型和淀粉共混聚烯烃塑料型的主要成分为合成树脂,不能完全降解,只是使材料整体力学性能大幅度降低进而崩馈成碎片或呈网架式结构,且其碎片更难以收集处理。比如将其用于农用地膜,聚稀轻产物仍残留于土壤中,长期累积会导致农业大量减产。此外,还存在降解速度低于堆积速度,产品降解速度的人为控制性不好等问题。
(2)使用性能:目前,国内外研制的全淀粉塑料强度大多不如现行使用的通用塑料,主要表现在耐热性和耐水性差,物理强度不够,仅适于制造一次性使用的是传统塑料在应用中的最大优点。
(3)成本价格偏高:全降解塑料的价格比传统塑料制品高3~8倍,尽管目前的生物降解塑料中,全淀粉塑料是最有可能与普通塑料价格持平的,但国内外的淀粉降解塑料价格仍比普通塑料高许多,使推广受到限制。美国Novon International公司,円本谷物淀粉公司,円本住友商事会社,意大利Ferruzzi公司和Novamont公司等已宣布研制成功全淀粉降解塑料[w(淀粉)=90~100 %],能在1~12个月内实现完全生物降解,不留任何痕迹,无污染,能够用于制造各种薄膜,容器和垃圾袋等。由于价格原因,现阶段只能作为医用材料,高级化妆品以及美国海军出海食品用的容器。而对环境影响较大的垃圾袋,一次性餐具,一次性包装袋及农用膜等材料,热塑性淀粉塑料目前还难以涉足。展望
生物降解塑料无论从地球环境保护,或开发取之不尽的可再生资源的角度来看,还是从合成功能性高分子和医用生物高分子的高科技产品的角度来看,都充分显示了其重要意义,符合可持续发展战略的要求,前景看好。
参考文献:
[1] 王佩璋, 王澜, 李田华.淀粉的热塑性研究[J].中国塑料, 2002, 16(4): 39-43.[2] 刘娅, 赵国华 , 陈宗道等.改性淀粉在降解塑料中的应用[J].包装与食品机械, 2003, 21(2): 20-22.[3] 孙炳新, 马涛.全淀粉热塑性生物降解材料研究进展[J].食品工业科技, 2008, 29(9): 283-285.[4] Walia P S, Lawton J W, Shogren R L.Mechanical Properties of Thermoplastic Starch/Poly(hydroxyl ester ether)Blends: Effect of Moisture During and After Processing[J].Journal of Applied Polymer Science, 2002, 84: 121-131.[5] Biliaderis C G, Maurice T J, Vose J R.Starch gelatinization phenomena studied by differential scanning calorimetry[J].J.Food Sci.1980, 1669-1680.[6] 熊汉国等.淀粉的塑化机理及其在生物降解餐具上的应用研究[J].食品科学.2001, 22.[7] 熊汉国,曾庆想,潭军,等,淀粉的塑化及其生物降解餐具性能研究[J].中国粮油学报, 2002, 17(2): 55-58.[8] Wootton M, Bamunuarachchi A.Application of differential scanning calorimetry to starch gelatinization Effect of heating rate and moisture level[J].Starch/Starke, 1999, 31: 262-264.[9] Loercks J R, Pommeranz W E, Schmidt H E, etal.Biodegradable polymeric mixtures based on thermoplastic starch [P].US:6235815, 2006.[10] 王佩章, 王澜, 李华.淀粉的热塑性研究[J].中国塑料, 2002, 16: 39-43.[11] 于九皋, 郑华武.淀粉与多元醇共混物性能的研究[J].天津大学学报, 1999, 32: 141-144.[12] 张晓明,刘雄亚,纤维增强热塑性复合材料及其应用[M].北京:化学工业出版社,2007:59-82.
[13] 鲁博, 张林文, 曾竟成.天然纤维复合材料[M].北京: 化学工业出版社, 2005: 16-80.
[14] MA Xiaofei, YU Jiugao, KENNEDY J F.Studies on the properties of natural fibers-reinforced thermoplastic starch composites[J].Carbohydr Polym, 2005, 62: 19-24.[15] ROMHANY G, KOCSIS J K, CZIGANY T.Tensile fracture and failure behavior of thermoplastic starch with unidirectional and cross-ply flax fiber reinforcements[J].Macromol Mater Eng, 2003, 288: 699-707.[16] ROMHANY G, CZIGANY T, KARGER.Determination of J-R Curves of thermoplastic starch composites-containing crossed quasi-unidirectional flax fiber reinforcement[J].Compos Sci Technol, 2006, 66: 3179-3187.[17] JIANG Long, LIU Bo, ZHANG Jinwen.Novel high-strength thermoplastic starch reinforced by in situ poly(1actic acid)fibrillation[J].Macromol J, 2009, 294: 301-305.[18] 周达飞.材料概论[M].北京:化学工业出版社, 2001, 45-46.[19] HUANG Mingfu, Yu Jiugao, MA Xiaofen, et a1.High performance biodegradable thermoplastic starch—EMMT nanoplastics[J].Polymer, 2005, 46: 3157-3162.[20] HUANG Mingfu, YU Jiugao.Structure and properties Of thermoplastic corn/ starch-montmorillonite biodegradable composites[J].J Appl Polym Sci, 2006, 99: 170-176.[21] SCHMITY H, PRASHANTHA K, SOULESTIN J, et a1.Preparation and properties of novel
melt—blended
halloysite
nanotubes/wheat
starch nanocomposites[J].Carbohydr Polym, 2012, 89: 920-927.[22] MA Xiaofei, YU Jiugao, WANG Ning.Fly ash—reinforced thermoplastic starch composites[J].Carbohydr Polym, 2007.67: 32-39.[23] LIU Zhanjun, ZHAO Lei, CHEN Minnan, et a1.Effect of carboxylate multiwalled carbon nanotubes on the performance of thermoplastic starch nanocomposites[J].Carbohydr Polym, 2011, 83: 447-451.[24] ABBASI Z.Water resistance,weight loss and enzymatic degradation of blends starch/polyvinyl alcohol containing Si02 nanoparticle[J].J Taiwan Inst Chem Eng, 2012, 43: 264-268.[25] SOUZA R C R, ANDRADE C T.Processing and properties of thermoplastic starch and its blends with sodium alginate[J].J Appl Polym Sci, 2001, 81: 412-420.[26] ROSA R C R S, ANDRADE C T.Effect of chitin addition on injection molded thermoplastic corn starch[J].J Appl Polym Sci, 2004, 92: 2706-2713.
第三篇:可降解塑料的研究利用现状
可降解塑料的研究利用现状
摘要:本文简介了白色污染的现状、危害及目前处理废旧塑料的方法,重点介绍了可降解塑料的研究现状,并分析了可降解塑料存在问题、发展方向及前景。关键词:可降解塑料 白色污染 现状 前景
1.白色污染的现状、危害及目前处理废旧塑料的方法
塑料自问世以来,以其优异的性能和低廉的成本,在各个领域得到广泛的应用。随着经济的发展,人民生活水平的提高,塑料制品的需求量也日益增加,而塑料带来的“白色污染”也越来越严重。开发降解塑料是治理城乡废弃物对环境污染的一个重要途径。当前各国都急切需要降解塑料及分解材料,因此降解塑料及分解材料将成为一种最具有巨大市场潜力和生态效益的环保新型材料。
1.1“白色污染”的现状
塑料作为一种新型材料,以质轻、防水、耐用、生产技术成熟、成本低的优点,需求量呈逐年增长趋势。仅就中国而言,塑料产量从1975年的1.4万t激增到2001年的1401万t,预计2005年将达到2500万t。随着塑料产量的不断增加,废弃塑料制品也同比例增多。近年来,在国民经济高速发展的同时,人们的生活方式也由“节俭型”向“消费型”转变,一次性塑料制品的使用量更是大幅增加,以杭州为例,600万人口每月仅一次性塑料包装袋的使用量就达800t。由于最初人们对废旧塑料引起的环境危害缺乏认识,将大量的废旧塑料制品随意抛弃,从而引发了严重的“白色污染”问题。1.2“白色污染”的危害 1.2.1破坏臭氧层
在生产一次性发泡塑料餐具的过程中,所使用的发泡齐会严重破坏大气臭氧层。.1.2.2破坏土壤结构
残留在土壤中的不可降解塑料制品会使土壤板结成块,阻碍农作物吸收营养和水分,导致农产品产量下降。1.2.3危害人体健康 食品包装用的塑料制品,多为聚苯乙烯的二聚体和三聚体,易被食物吸收转而拢乱人和动物的荷尔蒙分泌,损害生育能力。当受热达65℃时,塑料制品会释放出大量毒素,严重损害人体的肝脏、肾脏及中枢神经系统。【1】 1.3目前处理废旧塑料的方法
目前处理废旧塑料的方法主要有:填埋处理、焚烧处理、再生利用和再资源化、用可降解塑料代替现有塑料。但在治理塑料污染过程中存在这多种困难,比如:回收以及分类较为困难,废弃的塑料与其他生活垃圾混在一起,造成废弃塑料的污染以及收集工作困难,增大了回收成本;缺乏专用回收设施,限制了回收塑料再次加工的质量和种类;回收焚化后产生的有毒气体造成二次污染等一系列问题。【2】 2.可降解塑料的研究现状
降解塑料是一个新产业。目前国外主要生产降解塑料的有美、日、德、英等国,品种主要有光降解、光/生物降解、水解降解和完全生物降解塑料等。其中光降解技术较为成熟,而完全生物降解塑料的研究开发最为活跃;但其回归自然仍需一定周期和特定条件,特别是由于其技术较复杂、价格高昂,尽管美、日、西欧等发达国家已建成千吨级甚至万吨级的工业化装置,仍难以进入量大、面广的一次包装材料和地膜等市场,目前主要用于医用卫生器材和高附加值包装材料。
我国降塑的研究开始于20世纪70年代后期,80年代也仅有少数单位进行实验室研究,90年代才掀起研究开发的热潮。初期主要集中在农地膜的研究和开发,90年代中期研究开发的热点转向塑料餐具、包装袋、垃圾袋,这一时期已开发出部分技术经济上较好的产品,并推向市场,但产品较多地投向市场是90年代后期,到目前为止,降解农用塑料地膜已处于示范应用阶段,包装材料及制品已处在市场推广阶段。
降解塑料的种类有: 光降解塑料、生物降解塑料、光/生物双重降解塑料。其中具有完全降解特性的完全生物降解塑料和具有双重降解特性的光/生物降解塑料是目前研究的主要方向。【3】
2.1 光降解塑料 2.1.1 共聚型光降解塑料 由美国杜邦公司开发的聚乙烯(PE)和乙烯基酮共聚而成的聚合物,可增强PE塑料的光降解性,称为Guillet共聚物。含5%(质量分数)羰基的Guil-let共聚物,商品名为Ecolyte[1]。后来,发展出聚丙烯(PP)、聚苯乙烯(PS)、聚氯乙烯(PVC)、聚对苯二甲酸乙二醇酯(PET)和聚酰胺(PA)等含羰基的共聚物[2],都具有光降解性。在欧美等国,PE光降解膜已用作地膜、食品袋和垃圾袋。2.1.2 添加型光降解塑料
其制备方法是在高分子材料中添加光敏剂和其它助剂。由光敏剂吸收光后产生自由基,促使高分子材料发生氧化反应以达到分解。典型的光敏剂有芳香酮、芳香胺、乙酰丙酮铁、2-羟基-4-甲基苯乙酮肟铁、硬脂铁、二烷基二硫代氨基甲酸铁和二茂铁衍生物等。由英国阿斯顿大学的Geral Scott和以色列塑料技术大学的Dan Gillead合作开发的一种可实现光敏控制的光降解聚合物,其商品名为Plas-tigone[3-4]。据文献报道[5],中科院上海有机化学研究所研制了长链烷基二茂铁衍生物及胺烷基二茂铁衍生物两个系列光敏剂;中科院长春应用化学研究所已研制成功了一种以铁合物Fe(F)x和Fe(I)x为光敏剂的光降解PE薄膜;福州市塑料研究所研制成功了二烷基二硫代氨基甲酸铁(FeDRC)光敏剂及其光降解PE薄膜。添加型光降解塑料的研究开发较早,技术比较成熟,其产品已广泛应用于农业及包装等领域。2.2 生物降解塑料
近几年来生物降解塑料发展较快,其消费量占塑料消费总量的1%,仅2000年生物降解塑料的消费量约在400万~500万t左右。生物降解塑料,按生物降解过程可分为完全生物降解塑料和生物崩环塑料两类;其制备方法可分为:生物发酵法、化学合成法和天然高分子共混。2.2.1 完全生物降解塑料
完全生物降解塑料在细菌或其水解酶作用下,最终分解成CO2及水等物质,回归环境,被称为“绿色塑料”。2.2.1.1 生物发酵法
主要用于生产脂肪族聚酯类聚合物,如聚羟基丁酸酯(PHB)、聚羟基戊酸酯(PHV)、PHB和PHV的共聚物(PHBV)、聚乳酸(PLA)、聚羟基丁酸酯、聚羟基乙酸及其共聚物等。但由于发酵法降解聚合物成本太高,而未被广泛应用。目前,脂肪族聚酯类聚合物大都用化学合成法生产。2.2.1.2 化学合成法
化学合成法可降低降解聚合物生产成本,是最终把降解塑料推向市场的有效方法。目前,用化学合成的聚合物主要有聚己内酯(PCL)、聚琥珀酸丁二酯(PBS)、脂肪族聚酯/芳香族聚酯共聚物(CPE)、脂肪族聚酯/氨酯共聚物、脂肪族聚酯互聚物等。
PCL由ε-己内酯经开环聚合而得,是一种热塑性结晶型聚酯,熔点为80℃,可在2000℃以上加工,且与多种聚合物有较好的相容性。另外,低相对分子质量的PCL二元醇可以用作生物降解聚氨酯的原料,PCL与PHB共混,也可制备生物降解塑料。PBS由缩合反应合成,熔点为113℃,但其降解速度较慢。可将己二酸与PBS共聚,或将羟烷基二羟酸用作PBS的二元酸成分共聚,以提高降解性。
为了改善脂肪族聚酯的耐热性和机械性能等物性,开发了芳香族与脂肪族聚酯的交替共聚物CPE。CPE的脂肪酶降解性随芳香族聚酯配比的增加而降低。研究表明,CPE中的芳香环可使CPE链具有刚性,这是使CPE的脂肪酶降解性降低的主要原因。脂肪族聚酯/氨酯共聚物可由脂肪族聚酯与氨酯进行酯交换反应制得。该类聚合物与脂肪族聚酯相比,是一种新型生物降解塑料。2.2.1.3 天然高分子共混
利用化学合成高分子混入具有生物降解性的天然高分子(如淀粉、甲壳素、木质素、纤维素及动物胶等),以使产品具有降解性,这是近年来开发的热点。主要品种有PHB/PCL、糊化淀化/PCL、糊化淀粉/PHBV及天然橡胶/PCL共混制品[5]。这类塑料可完全生物降解,通过共混可提高其耐热性,改善物性和耐水性,降低成本,可望成为通用生物降解塑料。2.2.2 生物崩环塑料
生物崩环塑料属于不完全生物降解塑料,是在聚烯烃通用塑料中混入具有生物降解性物质,使其丧失力学性能,在一定条件下,此类塑料能通过堆肥化获得与生物降解塑料同样的效果。此类塑料的主要优点是可使用通用塑料的加工工艺和设备,从而可降低生产成本;缺点是降解不完全,不能完全消除对环境的污染。此类塑料主要有淀粉类和脂肪族聚酯类两种。淀粉类生物崩环塑料是淀粉与通用塑料的共混物,目前,对该类塑料的争议较多,对其降解性和使用安全性尚需进一步研究。通用塑料的加工和使用性能良好,但不易降解,如能确认共混物在被微生物分解解体后,能和腐殖质一起稳定地存在于土壤中,不对土壤结构造成破坏,就这一点而言,此类塑料较完全生物降解塑料更优越,其用途将会不断扩大[5]。2.3 光/生物降解塑料
光—生物降解塑料具有光及生物降解双重性是当前世界降解塑料的主要研究方向之一。国外开发的主要品种有美国Ecostar International公司的E-costar plus母粒;美国Ampact公司的PolygradeⅢ产品和美国ADM公司的Poly clean产品;法国CL-EX-TRAL公司的聚烯烃/磷化催化型聚合物[7]。我国开发的光—生物降解塑料主要是光—生物降解地膜现已基本满足要求,并正在开发其它领域所需产品。
3.存在问题与今后发展方向
3.1存在问题
降解塑料作为一种治理塑料废弃物的全新技术途径,经过多年研究开发,目前已取得令人满意的进展,但也存在一些问题困:(l)生物降解高分子材料的价格高,不易推广应用,如我国在铁路上推广的降解聚丙烯快餐盒比原用的聚苯乙烯泡沫快餐盒价格高50一80%。
(2)使用性能尚不尽如人意。目前国内外公布的各种品牌淀粉塑料,力学性能一般。
(3)降解高分子材料的降解控制问题有待于解决。准确的时控性和用后完全、快速降解离实用要求还有相当大的差距,特别是填充型淀粉塑料,其大部分根本不可能在1年内降解。
(4)高分子材料的生物降解性评价方法有待完善。由于降解塑料的降解性能制约因素很多,因此降解到底意味着什么,其降解时间是否应有所定义,降解产品是什么,这些问题均未能达成共识,其评价方法和标准更是五花八门。3.2发展方向
为使降解塑料技术在已取得较大成就的基础上有更大的发展,从发展趋势看来,有以下几个方面的问题值得在今后进行深人的探讨和研究:(l)利用纤维素、淀粉、甲壳素等天然高分子材料制取生物降解塑料,进一步开发改良天然高分子的功能与技术。(2)利用分子设计、精细合成技术合成生物降解塑料。
(3)采用生物基因工程,利用绿色天然物质制造降解高分子材料,如纤维素、菜油、桐油、松香等天然物质。
(4)通过微生物的培养获得生物降解塑料。寻找能合成高分子塑料的微生物,通过现有方法及基因工程的手段提高其生产性。
(5)可降解塑料改性也是一个重要的方面。通过淀粉或纤维素等可降解的高聚物对通用型聚合物(如聚乙烯和聚丙烯等)进行共混改性或接枝改性,可制备一种光一生物共降解塑料薄膜。
可降解塑料的发展是一项长期工作,需国家政策、法律、资金扶持以及科研与企业界两方面的互动。企业的活力决定了可降解材料产业的活力,而科研力量的强弱决定了可降解材料产业的层次。如何整合资源,在新形势下求得共赢,是该行业需要破解的问题。【4】 3.3发展前景
据预测,2005年中国将产生难以回收利用的塑料废弃物350万吨,若部分以可降解塑料替代,则可减轻其对环境的污染程度。2005年中国塑料包装材料需求量将达到500万吨,其中难以回收的废弃物产生量达150万吨;中国所需地膜,加上育苗钵、农副产品保鲜材料等预计需求量达100万吨;一次性日用杂品和医疗材料中的一部分也是难以回收或不宜回收利用的塑料,预计其需求量达100万吨。若将其中的50%用可降解塑料替代,则可降解塑料的需求量达到175万吨,其市场前景良好。【5】
参考文献:
【1】宿志弘,邢华.我国白色污染及防治对策研究[J].中国环境管理,2004,(2).【2】苗少娟.大麦虫Zophobas morio的生物学特性及其对塑料降解作用的研究[D].西北农林科技大学: ,2010.【3】李星 刘东辉 黄云华.我国可降解塑料的现状和发展趋势
环卫科技网 2010-07-19 【4】史吉平,杜风光,闫德冉,董青山,张龙,.我国可降解塑料研究与生产现状[J].上海塑料,2006,(2)【5】钱伯章,朱建芳.可降解塑料的应用现状和发展趋势[J].上海化工,2004,(10)
第四篇:淀粉聚丙烯复合材料研究要点
淀粉/聚丙烯复合材料研究
随着“白色污染”的日趋严重及人们环保意识的不断提高,可生物降解的环境友好材料越来越受到人们青睐,淀粉(ST)由于其广泛的来源,低廉的价格被认为是最具发展前景的生物降解材料之一,使得ST改性聚丙烯(PP)的研究也备受关注。由于ST与PP相容性差,严重阻碍了PP/ST复合材料的发展与应用,为了开发出低成本、性能优良的PP生物降解塑料,迫切需要找出一条简便易行制备环境友好材料的方法。为此,本论文开展了这方面的研究,主要内容如下:首先,对ST进行改性,采用双螺杆挤出机共混挤出,制备了PP/ST复合材料,并对材料的性能进行表征。测试结果表明采用物理法改性ST对PP/ST体系强度与韧性都有一定改善,当改性剂(硅烷偶联剂、单甘酯)用量大于1.0wt.%时效果较明显,硅烷偶联剂(KH550、KH570)、单甘酯(GMS)处理ST,体系拉伸强度分别提高了19%、22%和12.8%,缺口冲击强度分别提高了21%、26%、16%;复合材料断面SEM照片表明两相相容性得到一定程度提高,ST在PP基体中的分散性得到改善;复合材料TGA曲线发现材料热稳定性稍微有所提高。采用化学方法改性的ST对PP/ST复合材料强度与韧性都有较大提高,氧化、醋酸酯化、氧化酯化双变性改性ST,复合材料拉伸强度分别提高了约25%、20.5%、26%,冲击强度分别提高了26.4%、30%、24.6%;TGA表明,材料起始分解温度降低。其次,以过氧化二异丙苯(DCP)为引发剂,马来酸酐(MAH)、甲基丙烯酸缩水甘油酯(GMA)为接枝单体,苯乙烯(St)为接枝共单体,对PP进行了熔融接枝改性。利用静态水接触角、单体接枝率、衰减全反射傅立叶变换红外光谱法(ATR-FTIR)对接枝PP进行分析表征。研究结果表明,添加极性单体可有效降低制品表面水接触角;共单体St的加入降低了水接触角和提高了单体接枝率。当DCP、GMA和St用量分别为0.3wt.%、6.0wt.%和3.0wt.%时,制的接枝PP(PP-g-(GMA-co-St))的单体接枝率最高为3.24%,比单独使用3.0wt.%GMA时提高了约2.5%。最后,我们采用接枝PP(PP-g-(GMA-co-St))作为PP/ST体系的相容剂,考察接枝PP对PP/ST复合材料性能的影响。实验结果表明,接枝PP的加入比未加相容剂体系力学性能和热稳定性能有了明显的提高,当接枝PP的加入量为15wt.%时,复合材料的拉伸强度提高了50%,缺口冲击强度提高了约70%。SEM分析结果表明,接枝PP的加入提高了体系两相的相容性,ST和PP之间已经没有了明显的相界面,基本上形成了均一体系。同时,我们也研究了在引发剂DCP存在下,使用GMA/St作为PP/ST体系的相容剂,通过双螺杆挤出“一步法”接枝就地增容,实现了ST的热塑化及ST与PP的复合,并对复合材料性能进行了表征。实验结果发现GMA/St“一步法”就地增容PP/ST与加入接枝PP相容剂具有相似的效果,当GMA含量为2.0wt.%时拉伸强度为33.54 MPa,缺口冲击强度为5.08 KJ/m2,分别比不加相容剂体系提高了约50%和79%。“一步法”挤出简化了工序,节约了人力和时间成本。
【关键词相关文档搜索】: 材料学;淀粉;聚丙烯;熔融接枝;复合材料;性能
【作者相关信息搜索】: 湖南大学;材料学;陈宪宏;杨华军;
第五篇:小麦淀粉生产现状与关键技术
新乡市豫丰粮食加工有限公司-小麦淀粉, 小麦淀粉批发, 小麦淀粉制造, 小麦淀粉加工
小麦淀粉生产现状与关键技术
来源:新乡市豫丰粮食加工有限公司
我国是小麦生产大国,小麦年产量一亿吨左右,多年来小麦淀粉的生产没有引起足够的重视,造成这种情况的原因主要有如下几种:(1)小麦一直是人们的口粮,所以我国的小麦加工规模较小、工艺落后;(2)小麦蛋白的黏度较大,烘干困难,不利于工业化生产;(3)由于小麦加工工艺落后,生产过程中的污水不易治理,环境污染严重;(4)占小麦生产成分很大一部分的B-淀粉质量较差,只能用饲料,淀粉收率低,无形中造成了资源的浪费。
近年来,在国家相关产业政策的带动下,我国小麦淀粉工业得到长足的发展。特别是新的技术、新工艺的引进,使小麦深加工有了技术支撑,一些具有较高开发创新能力,技术先进、规模较大的大中型企业相继投产,小麦副产品得到充分的利用,促进了行业的快速发展。
小麦淀粉的工艺技术发展至今,方法种类繁多,主要方法为水洗工艺和离心分离工艺。
目前我国应用的水洗工艺主要为马丁法和改良马丁法。2000年莲花集团投资2.0亿元全套引进芬兰斯达泰克公司和荷兰道尔公司的生产线,采用离心分离工艺,技术装备居世界领先水平,解决了长期以来高质量谷朊粉依靠国外进口,价格昂贵的问题。新工艺的引进标志着我国小麦加工技术进入了世界先进行列。离心分离工艺具有以下特点:
(1)密闭式管道工艺,保证了生产的卫生标准;
(2)连续化全自动生产工艺,提高了生产效率;
(3)新鲜水用量少,减轻了环保压力;
(4)谷朊粉的质量得到很大的提高。
主要工艺流程及主要设备如下:
为了配合该工艺的顺利实施,可以对生产废水分类收集、个别处理。高浓度废水采用浓缩——喷雾干燥——加工成饲料的生产工艺;低浓度废水采用厌氧——好氧的生物处理,保证了污水的达标排放。
本文首发小麦淀粉加工