第一篇:电力系统电压稳定性--现代电力系统分析课程报告
电力系统电压稳定性
现代电力系统分析课程结束后,我对于与本课程相关的电力系统电压稳定性较感兴趣,因而在本课程的报告中将围绕这方面的内容作相应论述。本报告中主要论述电力系统电压稳定性的研究背景,定义、分类,分析方法这几方面的内容。
1.电压稳定性的研究背景
自20世纪20年代开始电力工作者就已经认识到电力系统稳定问题的重要性,并将其作为系统安全运行的重要方面进行研究。近几十年来,世界各地发生了多起由于电力系统失稳导致的电力系统大面积停电事故,这些事故造成了巨大的经济损失和严重的社会影响,同时也反映出当前电力系统稳定性的研究不能满足实际需要的严酷事实。电力系统电压稳定性的研究在整个电力系统稳定性的研究中是发展较慢的一个分支。上世纪40年代,苏联学者马尔柯维奇等人最早注意到电压稳定问题,并提出了电压稳定判据,但直到七十年代末至八十年代初,这个问题才开始作为一个专门的课题进行研究。其原因是当时世界上一些大的电网相继发生了以电压崩溃为特征的电网瓦解重大事故,包括1978年法国电网事故、1983年瑞典电网事故、1987年东京停电事故及1996年美国西部电网的大停电等。电力系统电压稳定性涉及到发电、输电以及配电在内的整个电力系统。在90年代以前,电压稳定的研究主要集中在静态电压稳定方面,随着对电压失稳问题研究的深入,人们逐步认识到电压稳定问题的实质是一个动态问题,它与电力系统稳态以及系统中各元件的动态特性等都有密切的关系。电压控制、无功补偿与管理、功角(同步)稳定、继电保护和控制中心操作等都将对电力系统的电压稳定性有直接的影响。
电力系统特别是现代电力系统的电压稳定性是一个相当复杂的问题,迄今为止,电压稳定性问题从概念到分析方法、从失稳机理解释到相关模型建立还处于发展阶段,各个研究者只是从不同的侧面对电压稳定的定义和分类、分析方法等进行了不同程度的研究。下面将对电力系统电压稳定的定义、分类和分析方法作简要阐述。2.电压稳定性的定义和分类
电力系统稳定是一个统一的整体,其稳定性问题当然也应该是一个整体的概念,即从稳定性的观点看,运行中的电力系统只有两种状态,稳定或不稳定,但依据系统的失稳特性、扰动大小和时间框架的不同,系统的失稳可能表现为多种不同的形式。为识别导致电力系统失稳的主要诱因,以便对特定的问题进行合理的简化以及采用恰当的数学模型和计算分析方法,从而安排合理的运行方式和采取有效的控制策略,以提高系统的安全运行水平、规划和优化电网结构,研究人员通常都将电力系统稳定细分为功角稳定、频率稳定和电压稳定等不同的类型。电力系统电压稳定的定义及分类是电力系统稳定性研究中的基础问题,清晰理解不同类型的稳定问题以及它们之间的相互关系对于电压稳定性的研究以及电力系统安全规划和运行非常必要。
电力系统的两大国际组织:国际电气与电子工程师学会电气工程分会(Institute of Electrical and Electronic Engineers,Power Engineering Society,IEEE PES)和国际大电网会议(Conseil International des Grands RéseauxElectriques,CIGRE),曾分别给出过电力系统稳定性的定义,然而,随着电力系统的发展及电网规模的扩大,电力系统失稳的性态更加复杂。暂态稳定曾是早期电力系统稳定的主要问题,随着电网互联的发展、新技术和新控制手段的不断应用以及运行负荷水平越来越重,电压失稳、频率失稳和振荡失稳成为电力系统失稳的更常见现象。IEEE PES和CIGRE以前给出的定义已不完全准确,其分类也难以完全包含现在所有实际发生的电力系统失稳现象。深入理解电力系统不同稳定类型的定义、区分不同类型稳定性之间的相互关系以及理清国内外定义的区别和联系具有非常重要的意义。
2.1 电压稳定性的定义
电压稳定性的研究工作虽然己经持续了很多年,但对于电压稳定的确切定义,目前在国际学术界还没有一个统一的认识,下面就给出几种有影响力的定义。
Charles Concordia将电压稳定定义为:电力系统在合适的无功支持下维持负荷点电压在规定范围内的能力。它使得负荷导纳增加时,负荷功率也增加,功率和电压都是可控的。电压不稳定表示为负荷导纳增加时,负荷电压降低很多以致负荷功率降低或至少不增。C.W Taylor将电压失稳定义为:电压稳定的丧失,导致电压逐步衰减的过程。而电压崩溃则为:故障或扰动后的节点电压值已超出了可按受的范围。
P.Kunder给出的电压稳定性定义为:电力系统在正常运行或经受扰动后维持所有节点电压为可接受值的能力。电压失稳指:扰动引起的持续且不可控制的电压下降过程。电压崩溃则是指:伴随着电压失稳的一系列事件导致系统的部分电压低到不可接受的过程。
CIGRETF38.02.10在1993年的年度报告中指出:电压稳定性是整个电力系统稳定性的一个子集。一个电力系统在给定运行状态下是小扰动电压稳定的,只要任何小扰动之后,负荷附近的电压等于或接近于扰动前的值。一个电力系统在给定运行下遭受一个扰动后是电压稳定的,只要扰动后负荷附近的电压达到扰动后的一个稳定的平衡点值。而电压崩溃是由电压不稳定(也可能是角度不稳定)导致系统的相当大一部分负荷点电压很低的系统失稳过程。一个电力系统在给定的运行状态下,遭受一个给定的扰动而经受电压崩溃,只要扰动后负荷点附近的电压低于可接受的限制值。
根据我国《电力系统安全稳定导则》(DL 755-2001)给出的定义,电压稳定是指电力系统受到小的或大的扰动后,系统电压能够保持或恢复到允许的范围内,不发生电压崩溃的能力。
从以上几种定义,可以发现一些共性的东西,电压稳定性实际上是电力系统中的电能量在传输中保持平衡的一种反映,电压稳定性在很大程度上体现了系统运行的可靠性,同时,在电力市场条件下,电压稳定性也是表征电能这一商品质量好坏的一个主要指标之一,而且,电压稳定性与电力系统的各个子系统的运行中状态都有紧密的关系,电力系统的任何子系统出现故障都可能导致电压稳定性的改变,换句话说,电压稳定性是判断整个电力系统是否正常、安全运行的一个重要指标。
2.2 电压稳定性的分类
文献中可以见到的与电压稳定有关的术语主要有:静态电压稳定;暂态电压稳定;动态电压稳定;中长期电压稳定等,对它们的含义和所包含的范围,至今还没有一个统一的定义。关于电压稳定/失稳的分类,目前主要根据研究时间范畴、扰动大小和分析方法的不同对电压稳定/失稳进行相关分类。根据研究的时间范畴,将电压稳定分为暂态电压稳定、中期电压稳定和长期电压稳定:暂态电压稳定的时间范围为0-105,主要研究感应电动机和HVDC的快速负荷恢复特性引起的电压失稳,特别是短路后电动机由于加速引起的失稳或由于网络弱联系引起的异步机失步的电压失稳问题。中期电压稳定(又称扰动后或暂态后电压稳定)的时间范畴为1-5min,包括OLTC、电压调节器及发电机最大电流限制的作用。长期电压稳定的时间范畴为20-30min,其主要相关的因素为输电线过负荷时间极限、负荷恢复特性的作用、各种控制措施(如:甩负荷)等。
根据扰动大小的不同,参照功角稳定分类,P.Kunder和C.W Taylor将电压稳定分为小扰动电压稳定和大扰动电压稳定。小扰动电压稳定性指小扰动(如负荷的缓慢变化、传输线参数发生小的变化)之后系统控制电压的能力。小扰动电压稳定性可以用静态方法(在给定运行点系统动态方程线性化的方法)进行有效的研究。大扰动电压稳定性关心的是大扰动(如系统故障、失去负荷、失去发电机等)之后系统控制电压的能力。确定这种稳定形式需要检验一个充分长的时间周期内系统的动态行为,以便能捕捉到发电机磁场电流限制器等设备的相互作用。大扰动电压稳定性可以用包含合适模型的非线性时域仿真来研究。
根据研究的方法不同,有些学者将电压稳定向题分为三类,即静态电压失稳、动态电压失稳和暂态电压失稳。
静态电压失稳是指负荷的缓慢增加导致负荷端母线电压缓慢地下降,在达到电力系统承受负荷增加能力的临界值时导致的电压失稳,在电压突然下降之前的整个过程中发电机转子角度及母线电压相角并未发生明显的变化。
动态电压失稳是指系统发生故障后,为保证其功角暂态稳定及维持系统频率,除进行了网络操作外,也可能进行切机、切负荷等操作,由于系统结构变很脆弱或全系统(或局部)由于支持负荷的能力变弱,缓慢的负荷恢复过程导致的电压失稳。
暂态电压稳定问题是指电力系统发生故障或其他类型的大扰动后,伴随系统处理事故的过程中发电机之间的相对摇摆,某些负荷母线电压发生不可逆转的突然下降的失稳过程,而此时系统发电机间的相对摇摆可能并未超出使电力系统角度失稳的程度。另外,还有学者给出了电压稳定性的参考分类方法。他将电压稳定问题分为如下四类:(1)动态稳定:系统用线性微分方程描述,计及元件动态及调节器的动态作用,判别系统在小扰动下的电压稳定性。(2)静态稳定:对动态系统作进一步简化,即假定发电机在理想的调节下(如励磁调节器的作用,用暂态电势后的不变电势表示),负荷用静态电压特性表示,从而使系统可以用代数方程描述时,判断系统在平衡点处的电压稳定性。研究系统静态电压稳定的主要作用是确定系统正常运行和事故后运行方式下的电压静稳定储备情况。(3)暂态稳定:系统用非线性微分方程描述,计及元件的动态特性及调节器的动态作用,暂态稳定可以用来判别系统在大扰动下的电压稳定性。(4)电压崩溃:系统在遭受扰动(大干扰或小扰动)作用下,系统内无功功率平衡状态遭到破坏,依靠调节器和控制器的作用,仍不能使的功率平衡得到恢复,从而导致局部或者整个系统中各节点电压急剧下降的物理过程。
CIGRE 38研究委员会和IEEE电力系统动态行为委员会联合组成的工作组在2004年5月完成了一份报告中对电力系统稳定性进行了重新定义和分类。根据电力系统失稳的物理特性、受扰动的大小以及研究稳定问题必须考虑的设备、过程和时间框架,这份研究报告将电力系统稳定分为功角稳定、电压稳定和频率稳定三大类以及众多子类,所给出的电力系统稳定性分类框架如图1所示。
图1 电压稳定性分类
2.3 对电压稳定性定义和分类的评述
关于正确区分电压稳定和功角稳定问题,IEEE/CIGRE 给出的电力系统稳定性定和分类报告给出了如下的解释:功角稳定和电压稳定的区别并不是基于有功功率/功角和无功功率/电压幅值之间的弱耦合关系。事实上,对于重负荷状态下的电力系统,有功功率/功角和无功功率/电压幅值之间具有很强的耦合关系,功角稳定和电压稳定都受到扰动前有功和无功潮流的影响。区分这两种不同类别的稳定应当根据失稳发生时的系统主导变量类型来确定。
关于电力系统电压稳定性定义的理解一般没有太大的偏差。但对电压稳定分类的理解在学术界却存在较大的分歧,在北美的有关文献中,动态电压稳定的概念等同于小干扰电压稳定,指存在自动控制的情况下(特别是发电机励磁控制)的电压稳定性,以此与经典的没有励磁控制的静态稳定相区别;在欧洲的有关文献中,动态电压稳定常被用来指暂态电压稳定。结合我国的实际情况,作者以为“暂态电压稳定”在现有的文献中具有大扰动和短期限的确切语义,因而应当可以继续使用。在我国,电力行业标准DL 755-2001从数学计算方法和稳定预测的角度,将电压稳定分为静态电压稳定和大干扰电压稳定。对于大干扰电压稳定,既可以是由于快速动态负荷、HVDC 等引起的快速短期电压失稳,也可以是由慢动态设备如有载调压、恒温负荷和发电机励磁电流限制等引起的长过程电压失稳。因而,我国电力行业标准中关于大干扰电压稳定的分类IEEE/CIGRE的大干扰电压稳定分类是一致的。而我国电力行业标准中对于静态电压稳定的分类则与IEEE/CIGRE的小干扰电压稳定分类存在一定的差异。其实,人们对电压稳定分类认识的不统一,也从另一个侧面反应了对电压稳定性研究的不成熟性。
3.电压稳定性的分析方法
电力系统电压稳定性的分析方法概括起来可以分为以下几类:静态电压稳定、动态电压稳定及时域仿真。
3.1 静态电压稳定分析方法
3.1.1 灵敏度分析法
灵敏度分析法是以潮流方程为基础,从定性物理概念出发,利用系统中某些变量间的关系,通过计算在某种扰动下系统变量对扰动量的灵敏度来判别系统的稳定性的一种分析方法。灵敏度方法将灵敏度系数定义为系统状态变量对控制变量的导数,灵敏度系数变大时,系统趋向于不稳定;在灵敏度系数趋于无穷大时,系统将发生电压崩溃。对于不同的研究对象,可采用不同的状态变量,如需要监视电压,则可以采用电压灵敏度系数判据。在使用灵敏度法时,一般将控制变量取为负荷的变化量,通常将电压崩溃点定义为负荷的极限点。在潮流计算的基础上,灵敏度分析法只需少量的额外计算,便能得到所需要的灵敏度指标信息。由于该方法物理概念明确,计算方便,易于实现,因而在静态电压稳定分析中得到了广泛的应用。灵敏度法常用来判断系统的电压稳定性、确定系统的薄弱母线及确定无功补偿装置的有效安装位置等。3.1.2 潮流多解法
电力系统的潮流方程是一组二阶非线性方程,因而可能存在多个潮流解,理论上讲,对于一个N节点电力系统,系统的潮流方程组最多可能有 2n-1个解,并且这些解都是成对出现的。关于潮流多解数值计算的最初研究工作并不是始于电压稳定问题,而是产生于应用李雅普诺夫直接法判断功角暂态稳定性,直接法中一个重要的计算是确定与故障有关的临界不稳定平衡点的电力系统势能,因此除了正常条件下的潮流解外,还必须求出不稳定平衡点。通过电力系统潮流的多解性研究得出了许多有意义的结论,其中之一就是潮流方程解的个数随负荷水平的增加而成对减少,当系统的负荷增加到临近静态稳定极限时,潮流方程只存在两个解,这时潮流雅克比矩阵也接近于奇异,邻近的两个解关于奇异点对称,其中一个为正常高电压解,另一个为低电压解。进一步的研究表明,这两个潮流解对应的潮流雅克比矩阵行列式值的符号、电压无功控制灵敏度的符号、网络存储能量对频率变化灵敏度的符号正好相反,故而证明低电压解是不稳定解。当系统所能传送的功率到达极限时,这一对潮流解融合成一个解,此位置对应于PV曲线的鼻尖点,该处的潮流方程雅克比矩阵奇异,系统到达电压稳定极限状态。在重负荷情况下,如果某种干扰使系统由高电压解转移到低电压解,则电压失稳将会发生。该方法将潮流方程解的存在性与静态电压稳定性联系起来,通过研究潮流方程解的情况来判断系统的电压稳定性。在一定的假设条件下,用潮流多解法也能近似计算出最近的电压崩溃点。3.1.3 最大功率法
最大功率法将电力网络向负荷母线输送功率的极限运行状态作为静态电压稳定的极限运行状态,这种方法认为,当负荷的需求超过电力网络的极限传输功率时,系统将失去电压稳定。最大功率法常将节点有功功率最大值、无功功率最大值、或总负荷量最大值作为系统的稳定性判据。实际上,这类方法就是基于PV或QV曲线定义电压稳定的方法,它们往往将电网中的某节点或母线作为研究对象,通过一系列潮流计算,确定其 PV 或 QV 特性曲线,并根据无功储备准则或电压储备准则,确定所需的无功功率,其最大功率对应于曲线的顶点。最大功率法在本质上与其他许多静态电压稳定分析方法是一致的。不同的研究人员采用不同的方法来计算最大功率点。3.1.4 奇异值分解法
从物理概念上讲,电压稳定临界点是指系统到达最大功率传输的点,而从数学概念上讲,电压稳定临界点对应于系统潮流方程雅克比矩阵奇异的点。当系统的负荷接近其极限状态时,潮流雅可比矩阵接近奇异,因此,可以用潮流方程雅克比矩阵的最小奇异值反映雅可比矩阵奇异的程度,用作电压稳定性的衡量指标,反映当前工作状态接近临界状态的程度,并研究静态电压稳定问题。随着系统运行状态的变化,电压最易失稳模式可能随之改变,因此,必须计算出一定数目的最小特征值及其特征向量。特征值分析法就是通过计算降阶的潮流雅克比矩阵的少量最小特征值及特征向量来识别系统的电压稳定情况,进行优化调控,从而增强系统的电压稳定性的一种方法。特征值分析法、模式分析法以及奇异值分析法之间的关系比较密切,它们都是通过分析潮流方程雅克比矩阵,揭示某些系统特征、识别系统失稳模式,由于电压和无功的强相关性,这些方法往往可以通过分析降阶雅可比矩阵来突出重点。为了进一步发挥特征值分析法、奇异值分析法的作用,研究人员提出使用特征值和奇异值对系统变量的一、二阶灵敏度的计算方法,这在电压稳定裕度的近似计算、故障选择等方面有较好的应用。3.1.5 崩溃点法
崩溃点法也称为直接法,是一种较好的能直接计算电压稳定临界点的方法。该方法用非线性方程组描述电压稳定临界点的特性,并从数学上保证该方程组在临界点处可解,通过解方程组得到电压稳定极限值。使用崩溃点法的好处是可以得到与潮流方程雅克比矩阵零特征值对应的左右特征向量这一副产品。这些特征向量在识别电压稳定的薄弱位置和确定有效的控制行为,以避免电压崩溃是非常有用的。
上述几种方法都是静态电压稳定分析中较多采用的方法,其共同点是基于潮流方程或经过修改的潮流方程,在当前运行点处线性化后进行分析计算,本质上都把电力网络的潮流极限作为静态电压稳定的临界点,所不同之处在于所采用的求取临界点的方法以及使用极限运行状态下的不同特征作为电压崩溃的判据。
3.2 动态电压稳定分析方法
3.2.1 小扰动分析法
小扰动分析是电力系统稳定性分析的一般性方法,同样适用于电压稳定分析。小扰动电压稳定实际上是一种李雅普诺夫意义下的渐近稳定,它可以计及与电压稳定问题有关的各元件的动态,其实质在于将所考虑的动态元件的微分方程在运行点处线性化,通过分析状态方程特征矩阵的特征根来判断系统的稳定性和各元件的作用。许多文献在电压稳定研究中考虑了发电机及励磁系统、OLTC、无功补偿设备及负荷的动态。
3.2.2 非线性动力系统的分岔理论分析法
高阶电力系统的动态特性可以用与系统参数有关的非线性微分-代数方程组描述,如式(1)所示:
(1)
式中: f 代表系统,如发电机、励磁器、负荷和控制系统的动态特性;g为系统的潮流方程;X为系统的状态变量,如发电机电势、转子变量、励磁调节器变量等;Y为除状态变量以外的其他变量,如母线电压的大小和角度;参数p为系统参(系统拓扑结构、电感、电容、变比等参数)和操作参数(如负荷功率、发电量等)。
对于每一组确定的系统参数值p,系统的平衡点X*是式(2)的解。
*ìïf(X,Y,p)=0(2)í*ïîg(X,Y,p)=0系统在该平衡点的稳定性由式(1)在平衡点的展开式决定。
(3)
对于系统的结构性稳定问题,有三种分岔点,分别是:(1)鞍结分岔SNB:在这个分岔点上,两个平衡点重合然后消失,此时雅可比矩阵有一个零特征值。(2)Hopf分岔:在该分岔点上,雅可比矩阵的一对共轭复特征值穿过虚轴。(3)奇异诱导分岔SIB:在该分岔点上,gy奇异。3.2.3 使用本地测量数据的分析法
前面所讨论的方法都是属于全电网集中控制的方法,需要获得系统中所有节点的数据。由于任何集中控制的方法都会遇到数据传输的可靠性问题,近年来,一些使用局部直接测量量进行电压稳定分析的方法也得到了较多重视。可以利用单个节点的本地测量数据(母线电压和负荷电流)进行电压稳定性分析,它将与该节点相连的外部系统进行戴维南等效,由多次测量得到的本地数据通过曲线拟合求出外部戴维南等效电路,通过比较节点电压与戴维南等效电源电压的大小来判别电压稳定性。在考虑恒功率负荷时,发生电压崩溃的条件为节点电压在戴维南等效电压方向上的投影为电源等效电压的一半;在采用ZIP负荷模型时,电压失稳的条件为PV曲线与负荷曲线相切。
电压稳定问题本质上是一个动态问题,系统中的发电机及其励磁控制系统、OLTC、无功补偿设备等元件和负荷的动态特性对电压稳定都有重要影响。因而只有计及了这些因素的动态电压稳定分析才能准确反映系统的电压稳定状况。采用小扰动分析法进行研究时,由于电压稳定问题考虑的时间范围很大,从几秒钟至几十分钟,几乎涉及电力系统中所有机电和动力设备的动态,这给完全意义下的小扰动分析造成了困难。由于电力系统本质上是非线性动力系统,随着非线性科学理论研究的进展,研究人员逐步把能分析非线性作用的新方法引入电压稳定研究中,如中心流形理论、分岔理论和混沌理论等,其中使用最多的是分岔理论。当前的研究一般局限于低维、简单模型系统和周期性小扰动,并引入了很多假设。分岔理论在电压稳定中的进一步应用有待更多研究人员的努力和非线性动力学理论的新突破。基于本地测量数据进行电压稳定分析的方法,间接考虑了元件的动态特性,同时这些方法足够简单因而可以方便地实际应用。不过它们的使用范围有限,只能用于单个节点或母线上,在实际应用中可作为集中控制方案的补充。
姓名:于炎娟 现代电力系统分析课程报告
学号:20***
第二篇:大学本科生电力系统电压稳定性试题
大学本科生电力系统电压稳定性试题
(附试题答案)
一、单项选择题(每题4分,共28分)在每小题后备选答案中有一个是符合题目要求的,请将其代码填写在相应的括号内,错选、多选或未选均无分。
1、分析简单电力系统并列运行的暂态稳定性采用的是()。
A、小干扰法;
B、分段计算法;
C、对称分量法。
2、不计短路回路电阻时,短路冲击电流取得最大值的条件是()。
短路前空载,短路发生在电压瞬时值过零时;
B、短路前带有负载,短路发生在电压瞬时值过零时;
C、短路前空载,短路发生在电压瞬时值最大时。
3、电力系统并列运行的暂态稳定性是指()。
A、正常运行的电力系统受到小干扰作用后,恢复原运行状态的能力;
B、正常运行的电力系统受到大干扰作用后,保持同步运行的能力;
C、正常运行的电力系统受到大干扰作用后,恢复原运行状态的能力。
4、对于旋转电力元件(如发电机、电动机等),其正序参数、负序参数和零序参数的特点是()
A、正序参数、负序参数和零序参数均相同;
B、正序参数与负序参数相同,与零序参数不同;
C、正序参数、负序参数、零序参数各不相同。
5、绘制电力系统的三序单相等值电路时,对普通变压器中性点所接阻抗的处理方法是()。
A、中性点阻抗仅以出现在零序等值电路中;
B、中性点阻抗以3出现在零序等值电路中;
C、中性点阻抗以出现三序等值电路中。
6、单相接地短路时,故障处故障相短路电流与正序分量电流的关系是(A)。
A、故障相短路电流为正序分量电流的3倍;
B、故障相短路电流为正序分量电流的倍;
C、故障相电流等于正序分量电流。
7、对于接线变压器,两侧正序分量电压和负序分量电压的相位关系为(C)
A、正序分量三角形侧电压与星形侧相位相同,负序分量三角形侧电压与星形侧相位也相同;
B、正序分量三角形侧电压较星形侧落后,负序分量三角形侧电压较星形侧超前
C、正序分量三角形侧电压较星形侧超前,负序分量三角形侧电压较星形侧落后。二、判断题(下述说法是否正确,在你认为正确的题号后打“√”,错误的打“×”,每小题3分,共12分)
1、快速切除故障有利于改善简单电力系统的暂态稳定性。()
2、中性点不接地系统中发生两相短路接地时流过故障相的电流与同一地点发生两相短路时流过故障相的电流大小相等。()
3、电力系统横向故障指各种类型的短路故障()
4、运算曲线的编制过程中已近似考虑了负荷对短路电流的影响,所以在应用运算曲线法计算短路电流时,可以不再考虑负荷的影响。()
三、简答题
(每题15分,共60分)
1、二次电压控制的目的是什么?
2、为什么说感应电动机负荷是在电力系统电压稳定性评估中的一个重要设备?
3、采取抑制长期不稳定性校正措施的目的是什么?
4、在稳定性研究中所采用的建模方法通常依赖的假设是什么?
大学本科电力系统电压稳定性试题答案
选择题
1.B
2.A
3.B4、C5、B6、A7、C
判断题
1.√
2、×
3、√
4、√
简答题
答:(1)确保主导点电压在一个特定整定值上;(2)使每台发电机的无功输出正比于它的无功容量。
答:(1)它是在1s的时间框架内的一个快速恢复复合;(2)它是一个低功率因数负荷,具有很高的无功功率需求;(3)当电压较低或机械负荷增加时,它趋于停转。
3、答:(1)恢复长期平衡(足够快,以至于这个平衡是吸引的;(2)避免短期动态的短期-长期不稳定性;(3)阻止系统恶化;
4答:(1)忽略变压器电压;(2)通常的速度变化相对于w。很小;(3)电枢电阻非常小;(4)忽略电磁饱和。
第三篇:大学本科生电力系统电压稳定性试题
大学本科生电力系统电压稳定性试题
(附试题答案)
一、单项选择题(每题4分,共28分)在每小题后备选答案中有一个是符合题目要求的,请将其代码填写在相应的括号内,错选、多选或未选均无分。
1、分析简单电力系统并列运行的暂态稳定性采用的是()。
A、小干扰法;
B、分段计算法;
C、对称分量法。
2、不计短路回路电阻时,短路冲击电流取得最大值的条件是()。
短路前空载,短路发生在电压瞬时值过零时;
B、短路前带有负载,短路发生在电压瞬时值过零时;
C、短路前空载,短路发生在电压瞬时值最大时。
3、电力系统并列运行的暂态稳定性是指()。
A、正常运行的电力系统受到小干扰作用后,恢复原运行状态的能力;
B、正常运行的电力系统受到大干扰作用后,保持同步运行的能力;
C、正常运行的电力系统受到大干扰作用后,恢复原运行状态的能力。
4、对于旋转电力元件(如发电机、电动机等),其正序参数、负序参数和零序参数的特点是()
A、正序参数、负序参数和零序参数均相同;
B、正序参数与负序参数相同,与零序参数不同;
C、正序参数、负序参数、零序参数各不相同。
5、绘制电力系统的三序单相等值电路时,对普通变压器中性点所接阻抗的处理方法是()。
A、中性点阻抗仅以出现在零序等值电路中;
B、中性点阻抗以3出现在零序等值电路中;
C、中性点阻抗以出现三序等值电路中。
6、单相接地短路时,故障处故障相短路电流与正序分量电流的关系是(A)。
A、故障相短路电流为正序分量电流的3倍;
B、故障相短路电流为正序分量电流的倍;
C、故障相电流等于正序分量电流。
7、对于接线变压器,两侧正序分量电压和负序分量电压的相位关系为(C)
A、正序分量三角形侧电压与星形侧相位相同,负序分量三角形侧电压与星形侧相位也相同;
B、正序分量三角形侧电压较星形侧落后,负序分量三角形侧电压较星形侧超前
C、正序分量三角形侧电压较星形侧超前,负序分量三角形侧电压较星形侧落后。二、判断题(下述说法是否正确,在你认为正确的题号后打“√”,错误的打“×”,每小题3分,共12分)
1、快速切除故障有利于改善简单电力系统的暂态稳定性。()
2、中性点不接地系统中发生两相短路接地时流过故障相的电流与同一地点发生两相短路时流过故障相的电流大小相等。()
3、电力系统横向故障指各种类型的短路故障()
4、运算曲线的编制过程中已近似考虑了负荷对短路电流的影响,所以在应用运算曲线法计算短路电流时,可以不再考虑负荷的影响。()
三、简答题
(每题15分,共60分)
1、二次电压控制的目的是什么?
2、为什么说感应电动机负荷是在电力系统电压稳定性评估中的一个重要设备?
3、采取抑制长期不稳定性校正措施的目的是什么?
4、在稳定性研究中所采用的建模方法通常依赖的假设是什么?
大学本科电力系统电压稳定性试题答案
选择题
1.B
2.A
3.B4、C5、B6、A7、C
判断题
1.√
2、×
3、√
4、√
简答题
答:(1)确保主导点电压在一个特定整定值上;(2)使每台发电机的无功输出正比于它的无功容量。
答:(1)它是在1s的时间框架内的一个快速恢复复合;(2)它是一个低功率因数负荷,具有很高的无功功率需求;(3)当电压较低或机械负荷增加时,它趋于停转。
3、答:(1)恢复长期平衡(足够快,以至于这个平衡是吸引的;(2)避免短期动态的短期-长期不稳定性;(3)阻止系统恶化;
4答:(1)忽略变压器电压;(2)通常的速度变化相对于w。很小;(3)电枢电阻非常小;(4)忽略电磁饱和。
第四篇:电力系统分析课程总结
电力系统分析课程总结
本课程是“电气工程及其自动化”专业电力方向的一门学科基础必修课。通过对本课程的学习,使学生较全面了解电力系统的基本原理和分析方法,为今后从事电力工程设计、运行和维护打下良好的基础。课程教学基本要求是掌握电力系统稳定性分析;电力系统故障分析;发电厂及变电所一、二次系统;电力系统无功功率和电压调整分析;电力系统的有功功率和频率调整;电力系统经济性;电力系统的静态稳定;电力系统的暂态稳定;接地和接零概念等电力系统基本理论和知识。掌握以下基本技能输电线路和变压器参数计算;电压和功率分布计算;短路电流计算;常见电力系统继电保护装置整定和计算;电气设备和导线选择。应具有的基本能力具有参加电力工程设计、运行、维护工作所必需的理论知识和技能,为进一步更深入学习和实践打下基础。
“《电力系统分析》重点课程”课题于2005年申请并获得批准后,课题组成员经常组织教学研究的讨论和经验交流,如:集体备课,相互观摩、听课,在教学实践中结合我校特点和实验室条件编写了习题集和实验指导书,并发表了多篇教学改革的论文。经过多方面的努力,在教务处等许多部门的帮助下,圆满地完成课题所提出的优秀课程中期任务。
经过对电气工程及其自动化专业01级、02级、03级及专升本ZB03级、ZB05级等多届学生的教学实践,课题研究取得了令人满意的成果。
电力系统分析课程是高等学校电气类专业的一门重要技术基础课,它涉及的基础理论和知识面较广,在同类课程中占有十分重要的地位,该专业是我校新设置专业,目前《电力系统分析》课程已经达到合格课程标准。电力系统分析课程主要介绍了电力系统的基本计算和稳态、暂态分析方法,主要内容有 电力系统潮流计算、电压调整、频率调整、短路电流计算、暂态稳定、静态稳定和提高稳定的措施、电力系统的一次系统、二次系统、一次设备的选择。《电力系统分析》是电气工程及其自动化专业的主干课程,是电气工程及其自动化专业硕士研究生入学必考的专业课,也是学习后续专业课《高电压技术》、《发电厂电气部分》、《继电保护》的重要理论基础,同现代电力电子技术、现代控制理论等领域密切相关,因此本课程的内容也随着相关技术的发展而不断更新和发展。因此,本课程的建设具有非常重要的意义。《电力系统分析》课程组共有教师有5人,人员构成为:查丛梅副教授、李燕斌讲师、徐其迎讲师、裴素萍助教,是一支结构合理的教学梯队,其中有的教师具有10年以上讲授《电力系统分析》课程的经历。《电力系统分析》课程组统一安排课程的教学、科研以及相关的学生实验、答疑、批改作业等任务。青年教师均通过岗前培训并有专人指导,传、帮、带效果显著。课程组的教师们治学严谨,教学效果良好,普遍受到学生们的好评。学生评教均为85分以上。师资队伍中具有硕士学位教师三人,有一人为在读博士研究生,还有一人正在攻读硕士研究生。
《电力系统分析》课程的中文教材采用杨淑英主编,中国电力出版社出版的《电力系统概论》,这本教材是普通高等教育“十五”规划教材。课程教学中推荐教学参考书为《电力系统工程基础》,熊信银主编,华中科技大学出版社;电力系统分析》(上册),诸骏伟主编,水利电力出版社;《电力系统分析》(下册),夏道止主编,水利电力出版社;《电力系统分析》,孟祥萍、高燕,高等教育出版社。
本课程有自编配套的习题集、实验指导书和选用的参考教材等教学辅助材料。并在教学实践中编写了完整的教学课件,可供网上学习和课外辅导使用。
《电力系统分析》课程理论性强,不易理解,加强本课程的实验环节有助于加深对理论知识的理解,通过对本课程的学习,使学生了解并掌握电力系统组成、分析、计算、及选择设备等方面的知识,培养学生分析问题与解决问题的能力。通过实验教学环节,使学生了解并掌握电力系统分析基本实验的原理和方法,初步掌握对电力系统分析进行一般操作的动手能力和对实验数据的分析能力,既能帮助学生增强感性认识,加深理解,强化系统概念,又能培养学生自己动手操作,独立思考的习惯,使之进一步提高分析问题与解决问题的能力。我们结合长沙同庆电气信息有限公司的TQDB—Ⅲ多功能微机保护与变电站综合自动化实验培训系统和华中科技大学电力自动技术研究所的WDT—Ⅱ电力系统综合自动化实验台整理编写了电力系统综合实验指导书,作为实验参考。实验室基本满足教学大纲和实验大纲要求的实验教学条件,实验开出率达到100%。
考核方式一直是教育模式和教学方法的指挥棒,有什么样的考核方式必然会有什么样的教学方法,而长期以来一直凭借期末考试一张卷的模式作为评价学生学习情况是导致应试教育的根源,在面向素质教育、培养高素质创新型人才的今天,必须从应试教育的模式中解脱出来,强调和加强学生的综合能力的培养。在考核方式上我们进行了必要的改革,将考试成绩分为平时成绩、考试成绩。平时成绩占20%,主要包括学习态度、课堂参与情况、出勤情况、学习主动性、完成作业、课程实验及运用所学专业知识解决问题的能力等。考试成绩占80%,采用自编试题库A、B卷同时统一命题,不仅A、B卷的试题不出现重复,而且3年内,试题不重复率达到70%。在命题中,分为基本要求部分和提高部分,前者占三分之二,主要考核学生掌握基本知识的情况;后者占三分之一,重在考核学生的综合分析能力。在考试后,采用流水评卷的方式,按照评分标准严格阅卷,真实客观地打分。在试卷评阅后,科学地对考卷情况进行分析研究,分析学生对课程内容的理解和掌握程度,为调整下一学的课堂教学内容和进度提供必要的参考信息。通过05-06-2学期教学实践,学生考试成绩分布基本合理,最高分人数最低分人数都很少,大部分学生成绩都集中在七、八十分,60-69分人数稍显多,试卷中失分较多的题目有第六大题、计算题的第一小题和第三小题,第一小题为基本概念题,但书上没有类似的题目,有一定综合性,本题为7分,平均失分为3—4分,反映出学生综合应用知识的能力还有些欠缺。第三小题为综合性题目,基本涵盖了教材第三章的内容,计算量较大,相当多的同学能够列出计算公式,但基本计算能力差,不能得出正确的计算结果,反映了学生的基本计算能力和知识应用能力不够扎实。
《电力系统分析》课程有齐全的教学文件和教学档案,并且一直是严格执行教学大纲和教学计划。
目前,学生获取知识的能力较过去相比有明显的提高,特别是在实践能力、人际交往沟通能力和对社会的适应能力提高等诸方面较为显著。尚显不足的是,自学能力不强,应用知识的能力相对较弱,因此,如何提高课堂教学和实验教学效果,激发学生学习知识的兴趣和热情,提高学生用所学过的知识去分析问题、解决问题的能力,要求我们要去大胆实践和逐步完善。
课堂教学是理论教学的主体,直接关系到教学质量的高低。以基本概念、基本方法为主线,由浅入深地引出要点;因材施教,根据不同层次的学生适当调整讲课内容和深度;将电力系统的最新研究成果和动态介绍给学生等等,都是我们在课堂教学中一贯努力做到的。为提高教学效果和水平,我们在课程内容设计上做了大量工作。课程建设小组成员对各章的基本内容都进行了深入剖析,找出其关键内容、重点和难点。课后要求学生阅读参考书和做一些概念性强的习题,这样可以使学生巩固对课堂上所学知识的理解和掌握,同时对学生也有一定的约束力和督促作用。而教师则可通过课堂练习和课后作业的信息反馈,了解学生对已学内容的理解和掌握情况,并依此及时纠正学生在对基本概念和方法理解上的偏差、调整课堂教学的进度。另外,我们加强了网络课堂建设,充分利用校园网络和网络教学多媒体课件进行网上辅助教学。
课程组经常开展教研活动。近年来,开展的教研活动所涉及的内容有:《电力系统分析》课程教学体系和教学内容与方法的改革、教材建设、实验室建设、多媒体教学研究与建设等,并在2005年9月从事电力系统分析课程教学的教师参加了“全国电力工程及其自动化教育教学研讨年会”,收获非常大,使我们更加明确了努力的方向。由于改进了教学方法,优化了知识结构,对学生严格要求,使学生增长了知识,开阔了眼界,培养了学生运用基本理论分析和解决实际问题的能力,因此在历届、各层次的教学过程中均受到学生的好评,取得了良好的教学效果。历届考研的学生在这门课程上都取得了很好的成绩。
通过对《电力系统分析》的课程建设和教学改革实践,取得了一定的成果,主要体现在以下几个方面。
1、我们有非常明确的教学思路,既从课程的体系出发,以系统结构→系统分析→综合设计作为课程主线,突出电力系统分析与设计的共性规律和基本方法,在课程教学和毕业设计中强调工程背景,注重理论联系实际,突出能力的培养。
2、《电力系统分析》课程是学习后续专业课的重要理论基础,在整个电气工程及其自动化专业课程体系中有承上启下的作用,通过学生对后续专业课的学习,例如《高电压技术》、《发电厂电气部分》、《继电保护》等课程都反映出学生对电力系统分析的基础知识掌握的比较好。
3、我们正在开发《电力系统分析》网络课堂,在网络中,学生可以利用网络的交互性、检索性等特点来选择自己需要的内容进行独立学习。基于此,我们已经将教学大纲、教案、习题等教学内容制成网络版,从而建立一套自主的,有选择的学习机制,让学生在课余时间,在网上进行学习,激发其学习的主动性,创造性。
4、我们编写了习题集,习题与考核是引导学生学习、检查教学效果、保证教学质量的重要环节,也是体现课程要求规范的重要标志。我们编写的习题注重基本概念,强调基本训练,贴近应用实际,能激发学生的学习兴趣。
5、在教学过程和毕业设计中,我们注重新型计算机软件(如:MATLAB)在电力系统中的应用,了解和掌握电力系统新技术和新方向的发展。学生创新意识和应用能力得到加强,有些学生在毕业找工作期间备受用人单位的青睐,他们在新的岗位上,能够很快适应工作, 表现出良好的科研能力。
6、电气工程及其自动化专业考取研究生人数逐年增加,历届考研的学生在这门课程上都取得了很好的成绩。
7、在教学实践中,积极总结教学经验和教学方法,发表了多篇教学改革论文。
第五篇:电力系统分析课程学习体会
电力系统分析体会
电力系统分析是电力系统专业最重要的专业课,如果没有学过电力系统分析,可以说不能算是电力系统专业的学生。电力系统分析这门课,无论是在本科还是硕士阶段,都是必修课。在本科阶段,各高校常用的一般是3个版本教材: 1 陈珩、李光琦老师编写的电力系统稳态、暂态分析 2 何仰赞老师编写的电力系统分析上、下册 3 韩祯祥老师编写的电力系统分析 我本科时候用的是何仰赞老师的这个版本,由于何老师的这个版本没有分暂稳态,所以老师当时是选择性的上的。个人感觉何老师的书课后习题难度较大,例如上册的习题5-
7、8-
5、8-12。特别是8-12,此题是一道复故障的计算题,个人建议大家如果真的打算做,最好选一个精神状态比较好的时候,本题的计算量很大。潮流和稳定计算都集中在下册,因此,和上册相比,下册的习题难度更大。要想在本科电力系统分析的学习阶段全部笔算一遍,几乎是不可能的。难题包括:11-
3、12-
8、17-
7、18-
3、18-6等。个人建议大家可以选择不做第10章和第19章(第1题如果愿意,可以做一下)的习题。目前课后习题的答案已出,论坛的电子图书库有电子版下载。书中留些零星的错误,但影响很小。不知道是否是因为这套教材的课后习题较难,清华电力系统专业考博,指定这套书为参考教材。这套教材的故障分析部分应该是三套通用教材里最好的。但是,我觉得它的潮流计算部分,讲的不好。尤其是NR法、PQ分解法部分,讲的太少了。比前面的简单潮流计算部分讲的少多了。并且没有讲直流潮流法。课后习题的牛-拉法计算也较为简单。个人认
为这个部分不如韩祯祥老师编写的好。大家在学习PQ分解法潮流计算的时候,应该自觉把韩老师书上的那道IEEE-5节点的例题好好做做,韩老师是严格按照BX法处理节点导纳矩阵的。在学习这套教材的稳定计算时,有一点我想提醒大家,就是何老师的书在静态稳定性部分用的是4阶模型。而李光琦老师的教材用的是3阶模型。个人的建议是,大家在推导的时候,应该把3阶模型推导出来,不要只将计及阻尼作用的2阶模型推导出来就觉得了事了。至于4阶模型,我认为只要能看懂就行,不必推导。当然,如果同学们感觉自己学有余力,可以尝试推导一下。在学习暂态稳定性时,数值解法应该主要学习一下改进欧拉法,方便和研究生电力系统分析衔接。
我在学习这套教材时,最痛苦的地方是在第3章,同步电机的基本方程部分。何老师的书在前面的推导部分,d轴是超前q轴的(这和其他的电力系统分析教材都不一样)。但是在本章最后一节的推导中,何老师又把q轴超前d轴了。因此,我当时学的一头雾水。当时抱着得过且过的心态,没有再去推导。但是由于这部分的基础没打好,导致在学习稳定性计算时,上课都听不懂了,汗....大家一定要接受我的教训,把前面的基础打牢。个人认为park变换这章大家最好用其他的教材看,不要用何老师的这套书。由于本人本科阶段没有用其他两个版本的书,所以不便说自己的看法,希望采用这两套教材的同学说说自己的体会。