天然气管道运行压力工艺参数

时间:2019-05-14 06:41:24下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《天然气管道运行压力工艺参数》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《天然气管道运行压力工艺参数》。

第一篇:天然气管道运行压力工艺参数

天然气管道运行压力工艺参数

高压管道运行压力:

A:2.5< P≤4.0MPa B: 1.6< P≤ 2.5MPa 次高压管道运行压力:A:0.8< P≤1.6MPa B: 0.4< P≤ 0.8MPa 中压管道运行压力:

A:0.2< P≤0.4MPa B: 0.01≤ P≤ 0.20MPa 低压管道运行压力:

P < 0.01MPa

天然气调压站(箱)现状运行压力工艺参数 次高压A调压站的进口压力:1.2~1.6MPa 次高压A调压站的出口压力:0.6~0.8MPa 次高压B调压站(箱)的进口压力:0.6~0.8MPa 次高压B调压站(箱)的出口压力:0.1~0.2MPa 中压B调压站(箱)的进口压力:0.1~0.2MPa 中压B调压站(箱)的出口压力:2100~2800Pa

XP—311A型可燃气体检测仪的使用:

零调节:先将转换开关由BATT转至(L)挡位置,待指针稳定,确认“0”如指针偏差于“0”时将“零”(ZERO)调节旋钮缓转,进行调节。调至“0”为止。(零调节须在L挡,必须在干净的空气中进行)

检测:1.先将转换开关转至(L)挡(0~10%LEL)或(H)挡(0~100%LEL)并将吸引关靠近所需要检测地点来测量。

2.感应到要测气体时,指针就会摆动,当指针稳定下来后,所指示的刻度便是气体的浓度。在检测气体时,先应转在(H)挡,如指针指示在10%LEL以下时,当即转换到(L)挡,以便读到更精确的数值。

3.XP—311A型具有报警功能,达到危险浓度(20%LEL)时则可以灯光及蜂鸣器鸣响告知。在使用时,如电池电量不足时,可以连续鸣响告知,故须更换电池。

4.检测完后,必须使仪器吸干净空气而使得指针回到“0”位置后方可关电源。

5.刻度是以三层计数形式从而可表示LEL、LPG、汽油之区别。LPG及汽油的指示是以体积浓度作为气体浓度从而可直接读出。

XP—314A型可燃气体检测仪的使用:

零调节:将转换开关置于“L”挡,在新鲜空气中,旋转“ZERO ADJ”钮调零。注意:应将转换开关置于“L”挡调零,放在“H”挡,无法调到准确的零点。检测:1.在调零稳定后,将转换开关置于“H”挡,用吸引管采气样进行检测,到指针稳定后,读取数值,如读值在10%(或30%)以下时,将转换开关改成“L”挡,以便读到更精确的数值。

2.当仪器用于检漏时要注意指示值将随着吸引管靠近泄漏点而增大,而离开泄漏点时则减小。如转换开关置于高浓度“H”挡不利于检漏时,应改放在“L”挡.

第二篇:LNG管道运行压力分析

LNG管道运行压力分析

张廷廷1 王佳2 王寿喜2

(1.中石化榆济管道分公司2.西安石油大学)

摘要:随着天然气输送工艺的多元化,液化天然气(LNG)在国内的发展迅猛增长。合适的运行压力对于LNG输气干线的安全、经济生产至关重要。本文简要介绍了输气干线首站设计压力的确定原则;以广东某LNG管道为例,借助PNS管网仿真软件,运用动态模拟方法确定管网在给定提气量下的最不利工况点和最低运行压力,从而确定管网的运行压力区间。关键词:广东LNG;PNS;管网动态仿真;最不利工况点;最低输送压力 [1]

Operation pressure analysis of LNG pipeline ZhangTingting1 WangJia2 WangShouxi2

(1.Sinopec Yu Ji branch pipeline2.XiAn shiyou University)

Abstract: With diversification of gas transport process, liquefied natural gas(LNG)in the development of domestic growth.The right operation pressure is very important for safety, economic production of LNG trunkline.This paper briefly introduces the gas main head design pressure to determine the principle,Take one of guangdong LNG pipelines as an example, with the aid of PNS network simulation software, using dynamic simulation to analyze network in a given gas lift under the most unfavorable conditions of point and minimum delivery pressure.With the aid of PNS pipeline network simulation, using dynamic simulation method to determine the most unfavorable conditions of point and the lowest operating pressure in a given gas lift under, so as to determine the operation of the system pressure interval.Key words: Guangdong LNG;PNS;Network dynamic simulation;The most unfavorable point;Minimum delivery pressure 广东 LNG概况

随着天然气输送工艺的多元化,液化天然气(LNG)在国内迅猛发展。特别是随着广东LNG输气管道工程、浙江LNG输气管道工程等一批新项目的筹建,LNG长输管道工程作为一种新型的管道输送工艺,有其独特性。

广东LNG项目是广东DP液化天然气有限公司的一个重点项目,为缓解我国东南沿海地区能源短缺的现状,1998年国务院批准进口液化天然气在广东先行试点,确定了广东LNG项目为我国首个引进LNG试点项目。1999年底,项目正式立项。2003年,广东LNG项目的可行性研究报告获国家批准[1]。

LNG长输干线承担着将气化后的天然气从LNG接收站安全输送给用户的任务,同时协调用户用气的断续性和不平衡之间的矛盾。确定不同工况下管网系统的最不利工况点并选择合适的运行压力,对于确保LNG长输管道的经济、安全生产至关重要。因此本文以广东DP LNG输气干线为例,通过管网仿真理论、方法和加拿大PipePlus Technology Ltd.(PPT)公司的管网仿真软件PNS 4.0确定示例管网的安全输送压力区间,设计技术上可行、经济上合理的运行方案。研究理论及方法

2.1 输气干线首站压力

确定输气干线首站的输送压力时,应充分考虑各下游用户(城市工业、民用和电厂用户等)在用气高峰月、高峰日的极端用气工况。一般采用仿真软件进行系统的动态模拟和水力分析,确定管网系统在某一提气量下的最不利工况点,进而确定用户用气最高峰工况下的最大和最小操作压力,以模拟操作压力为基础,再增加一定的设计余量,即可作为输气干线首站的压力[2]。

2.2 PNS管网仿真软件

本文示例中管道系统动态模拟和水力分析主要采用PNS(Pipeline Network Simulation)仿真模拟软件进行输气管道的动态模拟。PNS管网仿真软件根据管网各元件及系统的基本流动关系(质量、动量和能量守恒),建立管网流动模型,进行管网稳态和动态模拟,精确描述管网系统的水力、热力分布和变化趋势,以及各单元及其内部的流动特征及流体性质。该软件适用于任意结构和规模的管网,涵盖多种流体模型,可同时处理管网中气相、液相和多相流动。PNS对管网流动的准确描述为管网的规划、设计、操作、控制和优化提供可靠的依据。2.3 动态仿真数学模型

城市天然气管网系统具有分输点较多的特点,包括用户在内的管网系统运行存在一定的不确定性,如供气状态的变化、终端用户的用气状态的变化等,使得燃气管网系统在非稳态工况

下运行。因此,利用动态仿真模拟的方法分析城市天然气管网,成为非常必要的规划分析手段。

天然气在管网系统中的流动,遵从下列数学模型[3]。连续性方程:

A

动量方程: +wA=0 tx(1)

2wpwdzw2++=-g-txxdxd2

能量方程:

(2)

w2Qw2wA=Au++gz+wAh++gztt22x状态方程:

(3)=p,T热力学能方程:

焓方程: 式中:

(4)uup,T

(5)hhp,T

(6)A——管道横截面流通面积,m;——气体密度,kgm;t——时间,s;w——气体流速,ms;x——沿管道长度方向的坐标,m;p——气体的绝对压力,Pa;g——重力加速度,ms2;z——管道横截面处的高程,m;——管道摩阻系数;d——管道内径,mm;Q——在[0,x]管段上,管内气体流向周围环境的散热量,Jkg;h——气体的比焓,Jkg;T——气体的温度,K;u——气体的比热力学能,Jkg

式(1)~(6)组成的方程组通常称为气体管流的基本微分方程,这个方程组包括p、T、、w、u、h这6个未知数,从求解微分方程通解的角度看,这个方程封闭,可以求解出管道任意断面和任意时间的不稳定流的气体流动参数,通过在一定条件下的简化,可以通过隐式差分发、有限元法、边界元法等线性化数值分析方法求解得非线性偏微分方程组的近似解。由于隐式差分法可以选取较大的时间步长,这样在计算较大规模的管网时,可以在保证计算精度的前提下,大大缩短计算时间,因此,目前较为流行的气体仿真模拟软件都按照隐式差分法进行动态仿真。

DP LNG输气干线管网模型及分析

利用PNS管网仿真软件进行广东DP LNG燃气管网的运行压力分析,可按下述步骤进行。

3.1 管网模型边界条件分析

文中所用广东DP LNG示例管网,以CTJ首站为起点,FS末站为终点共计16个用户。首站最大输出压力为8.6MPag(表压),以各用户2012年5月8高峰日小时用气量,作为模型中流量控制参数的边界条件。3.2 建立PNS动态仿真模型

利用PNS管网仿真软件,根据管道工程系统图和相关参数(管径、管长、壁厚等)建立管网拓扑模型。并将首站不同时段的压力(绝对压力)和各用户的小时用气量作为边界条件输入模型,即可用仿真软件模拟高峰日高压管网系统的运行工况。DP LNG输气管道的PNS模型由50条管道和51个节点(其中包括16个用户:城市门站或电厂等)组成,见图 5。

图 1DP管网模型

图中箭头方向流体在管道中的流动方向,图形最左边节点为秤头角首站,最右边节点代表FS末站,红色节点代表用户,其余节点为连接点;绿色管道代表流体流动方向与箭头方向一致,黑色管道表示管道中流量为零。3.3 动态模及并分析

针对图1所示的DP LNG动态仿真模型,依据2011年7月5日的用户高峰用气量,进行静、动态仿真模拟。运用动态仿真理论,控制首站进站压力(8.7MPa),其余节点和用户控制流量,经仿真模拟得出秤头角首站的输送量和门站、电厂等用户的厂站压力。图 5为前湾用户的实测值、ATMOS模拟值和PNS模拟值的动态对比图。

图 2前湾用户压力模拟对比

由上图及运行数据分析可知:PNS和ATMOS的仿真模拟值都与实测值拟合程度较好。PNS与实测值间的平均相对偏差为0.6246%,最大相对偏差为0.9884%;PNS与ATMOS的运行结果之间的平均偏差为0.68%,充分说明PNS计算结果精度的可靠性。3.3.1 不利工况点分析

确定管网的运行压力要考虑到用户的极端用气工况,即在最不利工况点(各用户小时最低压力最低)达到不利工况时系统仍能满足用户的压力需求,以保证用户正常用气,管网系统的正常运行。因此确定管网系统的最不利工况点对于管道运行压力的选择是非常必要的。

根据广东DP天然气有限公司提供的2012年二期新建用户的下游用户高峰日提气量,经动态模拟得各用户在24小时内的动态压力值,经过excel表拟合比较,知FS末站为管网系统的最不利工况点,最不利工况时为23时。图 5为首站输送压力为8.7MPa时各用户在24小时内的最低压力曲线,由图可以明显看出最不利工况点为FS末站。

图 3首站输送压力为8.7MPa时用户压力

3.3.2 输送压力的选择

根据2.1中所述的运行压力的确定原则,以及最不利工况点的压力下限(5.0MPa)确定管网系统的首站输送压力区间。

当首站输送压力为8.6MPag时,模拟得出FS末站的最低压力为5.23MPa,为了寻找首站的最低允许输送压力,则依次降低首站的输送压力:8.68Mpa、8.65Mpa、8.63Mpa和8.61Mpa,直至FS末站的相对压力<5.1MPa,分别对管网系统进行动态仿真模拟,得出不同输送压力下FS末站的压力,如图 5所示。

图 4FS末站24小时用气量

图 5不同输送压力下FS末站24小时内最低压力

由图 5可知,当首站输送压力为8.61MPa时,FS末站的最低压力达5.07745MPa(<5.1MPa绝对压力)。因此可近似确定首站输送的安全压力区间为:8.70~8.61MPa(绝对压力),综合考虑其他因素,针对示例管网在该工况下确定经济、安全、可行的运行方案。结论及建议

通过借助PNS管网仿真软件对广东DP LNG管网系统在某一工况下进行静、动态模拟及分析,可得出以下几点结论:

1)通过将PNS计算精度与ATMOS模拟值和实测值的对比,验证了PNS的高度可靠性,足以借助PNS的模拟结果对管网提供可靠的运行方案;

2)根据2011年5月8日的小时用气量,对管网系统进行5组输送压力下的静动态模拟得出该工况下的最不利点为FS末站,最不利工况时为23时;

3)该管网系统的安全输送压力区间为: 8.70 Mpa~8.61Mpa,在该压力基础上综合考虑其他影响因素,则可确定管网的经济运行压力。

管网系统运行压力的选择是在上下游一体化的情况下,管道输送企业进行的局部调节措施,只有上游气田或LNG接收站等气源、管道以及用户协调运行,才能发挥整个链条的最大作用[4]。因此,建立从生产到最终用户的快速、有效的协调机制是保证天然气链条正常运行的关键。

参考文献

[1] 余洋.关于我国天然气调峰方式的思考.[J].石油规划设计.2007,18(4):8~11.[2] 李强.关于LNG 输气干线的调峰浅谈.[J].天然气与石油.2004,22(3):30~34.[3] 冷绪,林肖尉,孙立刚,孙瑛.动态模拟在燃气环网储气调峰设计中的应用.[J].油气储 运.2001,2 0(6)16~19.[4] 张筱萍,施纪卫.LNG在靖西管道输气调峰中的应用.[J].石油工业技术监督.2005(5):37~38.作者简介:张廷廷,硕士研究生,现工作于中石化榆济管道分公司。1987年生,2013年毕业于西安石油大学大学油气储运专业,主要从事多相流、油气集输与处理技术研究以及油气管网仿真等。

电话:***;Email:309418391@qq.com

第三篇:天然气公司压力管道隐患自查报告(最终版)

XXX天然气开发有限公司

XXX天然气开发有限公司2014年6月

自查报告

企业简介

XXX天然气开发有限公司(简称XX天然气)位于XX市XX区XX中路,成立于2005年12月,是XXX石油集团下属企业。是集城市管道天然气、压缩天然气(CNG)生产、运输、利用一体化,跨地区经营的天然气公司,是XX石油集团最具成长性的核心业务之一,加快发展天然气业务,符合国家能源消费结构调整方向,也是推进绿色发展的现实途径。公司充分发挥资源优势和管网调运优势,强化产运销储衔接,天然气销量持续保持较快增长,市场供应保障能力明显增强。公司发挥集中调控管理优势,优化产运销资源配置,确保管网安全平稳高效运行,建立了全方位的抢维修和应急支援体系。

2008年经XX市政府、市发改委批准,与XX市建设局签订了民用天然气准入书,获得XX市XX区南部区域的特许经营权。目前供应范围内的天然气城市中压管网等基础设施已建成投产,可满足区域内居民、商业及压缩天然气用户的用气,是天津市最大钢铁民营企业——天津达亿钢铁有限公司投资控股企业。

公司注册资金贰仟万元,拥有从事天然气的专业职工队伍约150余人,下设总经理一名、常务副总经理一名、副总经理一名、财务总监一名;公司分工明确,成立了油气管理中心、安全生产监察部、综合办公室、市场开发部、客户服务部、工程技术部、管网运行部、维修抢险队、计划财务部以及信息工程部。公司拥有4座汽车加气站、5座加油站,同时拥有CNG钢瓶车及危货运输车队。XXX天然气开发有限公司目前主要从事城市生活用气、工业用气

和CNG压缩天然气领域,主要致力于天然气分销、储运销售、输配站、加气站工程建设、天然气管网建设、运营管理。投资范围包括中压长输管线、天然气门站、城镇市政管网、居民用户、公福及工业用户,供气能力达1亿标准立方每年。

XXX天然气公司经过多年的运营,赢得了当地政府和居民的一致好评。截止目前,公司拥有3万余居民用户及配套的公服用户、商业用户。公司拥有天然气门站1座,汽车加气母站一座,汽车加气站4座,加油站4座,日供应压缩天然气的能力可达到30万方,管线铺设120公里。现已门站为辐射中心,形成高效的市场网络和巨大的潜在用户市场。

XXX天然气开发有限公司气在未来的发展中将配合国家“西气东输”和发展西部油气田的大战略,加大投资力度,抓住机遇不断发展壮大。公司还致力于转变为以城市输气管网建设投资为主的投资管理运营商,成为更具市场竞争力的城镇天然气运营公司。

自查项目及检查结果

(一)管理机构

公司下设工程技术部,负责公司各压力管道工程的监管和验收工作;管网运行部负责公司辖区内各压力管道的日常检查和维护工作,安全监察部负责组织公司的安全大检查,并协助和督促公司有关部门和各基层单位对事故隐患及时整改并制定防范措施。

(二)管理制度

公司现有现实可行的安全管理制度共计35项,每年会对各管理制度进行评审和修订。由综合管理部组织员工对各项安全管理制度的学习,由安全监察部负责监督各项安全管理制度的执行情况。

(三)操作规程

公司现有现实可行的操作规程共计35项,每年会对各管理制度进行评审和修订。由综合管理部组织员工对各项操作规程的学习,由安全监察部负责监督各项操作规程的执行情况。

(四)安全检查

管网运行部设专业管网巡线人员,每天对辖区内压力管道进行安全巡检,对于发现的安全隐患及时上报整改。安全监察部除了对巡线人员的巡检工作,隐患整改工作进行监督检查外,每年会例行组织各项专项检查,节前安全检查,综合性安全检查,确保各项安全工作做到实处。

(五)应急救援

公司的应急救援预案中专设压力管线事故的救援预案,每年由安全监察部牵头,对应急救援预案进行演练并总结评审。公司既定于2014年6月25日左右进行中压管线抢修作业的演练,届时会进一步提高公司对中压管线的应急救援能力。

(六)存在的问题及解决方案

公司现有的4580米钢制次高压管线因工艺陈旧,使用年限过高,存在安全隐患,我公司已将相关情况上报有关部门,届时会对此段管线进行改造。

XXX天然气开发有限公司二〇一四年六月十日

第四篇:天然气管道运行模拟及仿真技术研究

天然气管道运行模拟及仿真技术研究

1011202045 蔡永军 科学计算选讲结课论文

为了预测天然气管道运行状态,制定合理的管输计划,更好的配置设备开机,天然气管道输送过程中需要进行工况模拟及仿真。实际工作中需要建立压缩机、阀门等设备的模型,确定管段的控制方程、气体的状态方程,针对给出的初始条件和边界条件,筛选确定天然气管网数学模型的离散方法与非线性方程组的求解算法寻找合理的非线性方程的求解算法,得到合理的数值解。

1天然气管道仿真数学模型 1.1管段的控制方程

对于管道中的任意管段,经过适当的简化可以用下列公式来描述: 连续性方程:

A运动方程:

(A)0

(1)tx()(.A)P2AAAgsin()A

(2)

txx2D能量方程:

((hPA22))(A.(hx22))tAPAgsin()Dk1(TTW)x(3)

式中:A——管道的横截面积,m2;

ρ——流体密度,kg/m3; t——时间,s; x——坐标,m; u——速度,m/s; P——压力,Pa; θ——管道倾角,rad; λ——水力摩阻系数; D——管道内径,m; T——流体温度,k;

k1——流体至管壁的换热系数; h——比焓;

Tw——管壁的温度,k。1.2 阀门控制方程

阀门控制方程如下:

MdwMup0MupPdw)Pdw0

(4)Cg(Ph1h2式中: Mup——阀门入口质量流量,kg/s;

Mdw——阀门入口质量流量,kg/s Cg——阀门系数;

Pup——阀的入口压力,Pa;

Pdw——阀的出口压力,Pa。1.3压缩机控制方程

简化后的压缩机控制方程如下

2a1(n2n)bn1()Qc1Q20n0MdwMupMfuel

m1TdwTupm式中:——压缩机压比;

m——多变压缩指数;

n——压缩机的实际转速,rpm; n0——压缩机的额定转速,rpm; a1, b1, c1——系数;

Q——给定状态下的体积流量,m3/s; 1.4 理想调节阀阀控制方程

理想调节阀控制方程如下:

5)

(MdwMup0Pdwc

(6)h1h22气体的状态方程

采用BWRS气体状态方程,如下:

PRT(B0RTA0C0D0E0d2)(bRTa)3234TTTT

(7)

3dc(a)62(12)exp(2)TT式中:P——系统压力,KPa;

T——系统温度,K;

ρ——混合气体密度,Kmol/m3;

R——气体常数,8.3143KJ/(Kmol.K)。

A0、B0、C0、D0、E0、a、b、c、d、α、γ为方程的是一个参数,根据(8)确定。

1/21/2A0xixjA0iA0i(1kij)i1nj1nnB0xiB0ii1n1/21/23C0xixjC0C(1k)i0iiji1nj1n1/21/24D0xixjD0iD0i(1kij)ni1j1nnEx1/21/250ixjE0iE0i(1kij)i1j1n3axia1/3ii13nbx1/3ibii13cnx1/3icii13dnx1/3idii1

3nxi1/3ii13nx1/3iii1式中:xi、xj——混合气体中i和j组分的摩尔分数;

kij——为i、j组分间的交互作用系数。3气体的焓方程

气体的焓方程如下:

hh0(B0RT2A4C05D0T206E0T3T4)12(2bRT3a4dT)215a(6a7dT)5

c2242T2(32)exp()]4 管道周边的热力模型

管道的有效土壤厚度采用等效圆筒法,传热半径由下式计算:8)9)

((2H2H2R2R1R1((()1)1)0.(10)

DD式中:R2-R1——土壤厚度,m;

R1——从管道中心至土壤层的半径,m; H——至管道中心的实际埋深,m; D——管道直径,m。

管道和周围环境的瞬态热力模型计算式如下:

k(rTr)r/rCpTt

(11)

式中:k——周围环境导热系数;

r——传热半径; Tr——r处的气体温度; Cp——气体定压比热; Tt——t时刻的气体温度。

单位管长热流量由下式表示。通过该公式计算管壁在任意节点的温度。

2k2(TwT0)k1D(TTw)

(12)

ln((R2R1)/R1)式中:k2——管壁至土壤换热系数;

K1——流体至管壁换热系数; Tw——管壁温度; T0——R2处的温度; T——气体温度。水力摩阻系数计算式

管段控制方程涉及的水力摩阻系数λ采用F.Colebrook-White公式计算,该公式表达如下:

1/1.73852log10(2e/D18.574/(*Re))

(13)

式中,e/D——管道粗糙度和内径的无因次比;

Re——雷诺数。6控制方程的离散化

由管道控制方程与气体状态方程组成的非线性偏微分方程组,一般不能得出管流气体基本变量的解析解,因此有必要应用计算数学的方法求解偏微分方程组的数值解。本专题中选用中心隐式差分法对控制方程进行离散化。确定采用的基本变量为气体的密度(ρ)、速度(u)和温度(T)。6.1离散形式

引进变量φ,φ代表三个流动基本中的任意一个。在时间步长为Δx , 空间步长为Δt 的情况下,以空间i和时间网格点t采用中心隐式差分格式,则有以下离散形式:

对于基本流动变量:

1kkkk1ii1ii1

4基本流动变量对时间的一阶偏导数:

k1ikik1kt11ii2t

基本流动变量对空间的一阶偏导数:

1kki1i1k1ikix2x

基本流动变量对时间的二阶偏导数:

2(k1k2k1k2kk1k2i2kii)2(i12ki1i1)(i22i2t2i2)162t基本流动变量对空间的二阶偏导数:

2(k1k1k1i22ki1ki)2(ki22i1i)(k2k2k2i22i1i)x2162x基本流动变量对空间及时间的二阶偏导数:

22k2ki2xtkiki2i16xt

6.2 离散后的控制方程

离散后的控制方程如下: 离散后的连续性方程:

(14)

15)

16)

(17)(18)(19)

((1kk1kk1k1kkk1k1kkikuuu1i1iii1i1iiiuii1i10

(20)2t2x离散后的运动方程:

1k1kkk1k1kkk1kk1kikuuuuPPPP1i1i1i1iiiii1iii12t2x1k12kk2k1k12kk2ik(u)(u)(u)(ui1i1iiii)1i(21)2x1kk1kk1kk1kuuuuiki1iii2(1)(i1i1i)02D44离散后的能量方程:

1k1k121kk21k1k1kkkikh-P(u)-(h-Pi1(ui1))1i1i1i1i1i1i1i1222t1k1k121kk2kkkh-Pii(ui)-(ihi-Pii(ui))222t1k131k3k1k1k1kkki1ui1hi1(ui1)(i1ui1hi1(ui1))222x1k131k3k1k1k1kkkiuihi(ui)(iuihi(ui))222xk1k1kk1k(Ti1TiTT1ii4Tw)0Dk1k1iik1(22)

6.3 初始条件与边界条件

初始条件指系统开始运行时的初始压力、流量或温度的分布状态。边界条件指某一管段起始节点和终止节点上的约束条件。主要包括:

(1)管段端点上的输油泵、压缩机或阀门等的出入口压力、流量、温度、转速、压比或开度设定值;

(2)气源对应节点的压力、流量或温度设定值;(3)分输点对应节点的压力、流量或温度设定值;(4)节点处压力、流量或温度的一致性;(5)节点处压力、流量或温度的范围控制值;(6)管道物理元件周围的温度场状况。7非线性方程组的求解算法

离散后的控制方程配合边界条件和初始条件才能封闭,封闭后形成了非线性方程组,对于该非线性方程组选取牛顿迭代法进行求解。

若采用C(x)xb的矩阵形式(其中C(x)为非线性方程组的系数矩阵),则x(x1,x2,x3,...,xn)T为需要求解的向量,b(b1,b2,b3,...,bn)T为等式右边的向量。

(1)牛顿拉普森迭代法 设迭代函数列F(F1,F2,F3,...,Fn)T

T

迭代变量x(x1,x2,x3,...,xn)

迭代增量x(x1,x2,x3,...,xn)

迭代函数FiTFi(x1,x2,x3,...,xn)

牛顿拉普森迭代公式如下:

xk1xkxk

(5.7-1)

对于迭代函数F,将求解非线性方程组问题转化成为寻根问题,也即要求下式成立:

F(F1,F2,F3,...,Fn)T0

(5.7-2)

对任意点x0和它的相邻点/邻域(x0+△x),通过泰勒展开式我们有:

FiFi(x0x)Fi(x0)xj(x2)i1,2,...,n

(5.7-3)

j1xj若采用矩阵形式,则有:

nF(x0x)F(x0)Jx(x2)

(5.7-4)

其中 J 为n×n的雅可比矩阵且Jij如果略去其中的高次项(x2Fi。xj),并要求F(x0x)0。我们得出:

xJ1F

(5.7-5)

至此,可以按照牛顿拉普森迭代法的求解步骤进行计算。

(2)牛顿+最速搜索迭代法

引入目标函数 f0.5FF,通过简单的数学运算,可以得到牛顿迭代沿着此目标函数的梯度方向f,始终可以发现一个数值α能使得目标函数的值下降,即:f式: xFJ(J1F)FF0。所以本专题研究采用如下迭代公xk1xkxk

(5.7-6)

该方法较牛顿拉普森方法具有收敛速度快,且全局收敛的特点。8仿真运行

8.1仿真运算的基本过程

仿真运行的基本过程如图1仿真运行所示。运行系统状态数据和不同视角构成单文档-多视的关系。

图中的兰色带箭头线条表示通过不同的视角和核心功能层接口,可以监视或编辑仿真系统的状态数据,并下达计算命令;粉色线条表示运算中仿真模拟器和数据模块进行数据交互;绿色线条表示初始化过程加载数据。

简单人机界面视角视角命令行视角表格视角仿真模拟器调度模块核心功能层接口计算状态数据数据模块监视或编辑状态数据编译模块加载系统及其初始参数运行系统状态数据编连文件

图1仿真运行过程

仿真运行基本过程如下:

(1)通过各个接口或视角,下达加载系统命令;(2)调度模块命令编译模块加载编连文件;

(3)如果需要,通过各个接口或视角,对系统参数进行进一步初始化;(4)通过各个接口或视角,下达一轮计算命令;

(5)仿真模拟器开始一轮计算,并输出结果到数据模块;调度模块通知相应接口和视角计算结束;

(6)相应接口或视角获取关心的数据;

(7)如果需要进行新一轮计算,相应接口和视角可以对部分参数进行重新设定,并下达新一轮计算命令,系统将回到第5步。

8.2仿真运算的实现结构

仿真运算由仿真模拟器作为核心模块来实现,两个直接的辅助模块是数据模块和编译模块。

这3个模块相互协同进行仿真运算,基本过程如图2所示。

仿真模拟器数据模块3输入参数基本输出参数其它输出参数665其它输出参数数值化计算72 加载方程组2 加载数据模型文件编连文件1 输出:方程组+元件信息编译模块建统立的此联系组立输入参数预处理控制方程组4数值计算4446元件参数关系计算函数库外部边界方程组元件库元件参数关系计算函数库控制方程组外部边界方程组 图2仿真模拟器结构

(1)编译模块根据模型文件和元件库,建立编连文件,编连文件中包含仿真系统各个元件的信息;同时,根据通用、基本的控制方程组、元件参数关系计算函数库、外部边界方程组,编译模块将建立此系统的全部方程组,一并加入到编连文件中;

(2)在运算前的初始化过程中,编连文件中的参数数据将被加载到数据模块,方程组将被加载到仿真模拟器相应的方程组列表中,包括:控制方程组列表、外部边界方程组列表、元件参数关系计算函数库列表;

(3)每轮运算开始前,仿真模拟器的输入参数预处理模块需要对输入参数进行预处理,例如对部分参数进行离散化或拟合;

(4)开始运算后,仿真模拟器的数值计算模块根据处理好的输入参数和相关的方程组进行数值计算;

(5)数值计算模块计算出的是需要联立求解的基本输出参数;

(6)根据输入参数、基本输出参数、元件参数关系计算函数库,仿真模拟器同步对其它输出参数进行数值化计算;

(7)其它输出参数被输出到数据模块,此后可以通知调度模块前来获取相关数据并进行下一轮计算的参数输入了。9结论

通过建立天然气管道数学模型及求解算饭,在输入管道的基本参数后,可以根据输入的初始运行状态预测下一时刻的运行状态,从而为排定管输计划、优化运行工况提供决策依据。

第五篇:天然气管道运行中的安全管理

天然气管道运行过程中的安全管理

摘要:天然气管道运行过程中的不利因素越来越多,主要来自第三方的破坏和管道自身的质量问题。提高管道运行的安全性、加强安全管理要从多方面展开。

关键词:天然气管道 不安全因素 安全管理

引言

天然气是一种环保、方便、热能高的优质燃料。天然气在未来20到30年在世界范围内一次能源消费中占主要地位。近十年来,我国的天然气工业有了突飞猛进的发展,推进了全国能源结构和产业结构的调整,也改变了人们的生活方式,逐渐替代了以煤、石油为主要生产原料及能源的工业模式。在天然气管道建设飞速发展,天然气管网不断延伸的形势下,随之而来的对管网设施及输气安全构成的威胁因素也越来越多,保障城镇天燃气管道安全运行已成为天然气工业工作的重点。

1天然气管道运行过程中的不利因素 1.1第三方破坏因素

1.1.1 城市建设对管道安全的影响

城市建设的高速发展,各种基础设施建设、改造工程项目繁多,而施工项目承包者对天然气行业了解甚少,更不要提到在施工过程中竖立保护天气管道的意识。野蛮施工、强行违规作业的情况时有发生,施工现场安全人员缺位,管道警示标志被破坏,各种施工物料直接占压管道、挖掘作业中碰坏划伤管道,都给管道的安全运行留下了重大隐患。

1.1.2人们日常活动对管道的安全威胁

人民群众自觉保护城市天然气管道的责任感不强,没有充分意识到天然气的危险性,私自在管道上方乱搭乱建;一些民用车辆无视管道警示标示,在管线巡查便道上随意行驶;一些不法分子在利益驱动下,不顾自身安全,不顾触犯法律,铤而走险,偷取天然气。这些人为地有意识或无意识地破坏天然气管道的行为,给天然气管道在运行过程中增加了许多不确定的危险因素。1.1.3违章建筑对天然气管道不利的影响

天然气管道周围的违章建筑, 不仅影响了企业对管道的正常检查和维护, 而且会降低管道的安全系数,破坏管道受力平衡,一旦发生天然气泄漏, 极易导致火灾、爆炸和群体伤亡事故。1.2管道建设自身存在的缺陷对管道安全的不利影响

我国天然气工业发展的初期阶段,经验欠缺,施工质量不高。埋地管道主要采用钢管并进行管道外防腐,但埋地钢质天然气管道防腐层效果欠佳且缺乏相应的检测保养措施。经多年运行,管道老化问题严重,其安全可靠性无法确定,随管道运行年限的增加,管道腐蚀穿孔的几率也随之增大。更换新管道工程庞大,又将带来新一轮的问题。

我国现代化城市建设发展初期,由于欠缺经验,规划比较混乱,各种地下管线、地面管道和高压电线交错运行,风险大,存在诸多安全隐患。

1.2天然气管道对人民群众、环境、社会和企业自身的影响 1.2.1对人民群众的影响

单纯的天然气管道泄露会引起泄露范围内的人员感到不适甚至威胁生命。天然气的主要成分是甲烷,当空气中甲烷达到25%-30%时,可引起头痛、头晕、乏力、注意力不集中、呼吸和心跳加速、共济失调。若不及时远离,可致窒息死亡。皮肤接触液化的甲烷,可致冻伤。如果是在人口稠密的地区,影响程度大大增强。天然气泄露最为严重的后果是燃烧和爆炸。空气中天然气(甲烷)含量达到5%至15%时,遇火源就会发生爆炸。如果在天然气泄漏源附近存在火源,易发生燃烧和爆炸,给人民群众的生命和财产带来严重的损失。

天然气泄漏还将给环境带来一定的影响,地下管道泄露对周围的动植物,农田,生态环境都会造成一定程度的破坏;穿越河流的天然气管线,如泄露将污染周围水域,且清理工作十分困难;地上管道泄露,天然气直接扩散到大气或周围地面上,危险程度极高。1.2.2对管道企业的影响

国内外天然气管道破裂爆炸事故屡见不鲜,每个发生事故的管道企业都遭受巨大了的损失。首先处理安全事故的要花费大量财力和人力,成本极高;员工满意度和忠诚度降低,工作积极性削弱;人民群众对企业失去信心,造成社会范围内的不良影响,企业形象严重受损。2天然气管道的安全管理

天然气管道安全管理涉及社会的各个层面,因此,保证其安全运行需要大家的共同努力,管道企业应承担更大的社会责任。2.1实现安全管理的有效性首先要转变安全生产的观念

社会的发展和文明程度不断提高,人们对安全生产的认识也在不断提升,生产的目的从为企业制造最大化效益向关注人的生命安全和保护环境的重心转移。以人的健康和生命为代价换取效益的生产模式不再被认可,以人为本的理念和保护自然的生态环境成为当今社会的主流价值观。最大限度地减低安全事故的发生几率,保护生命财产的安全是安全管理工作的核心思想。

安全管理以相应规范制度为基础,建立人性化的安全管理模式,明确落实相关责任,目的是为了提高人的社会责任感,这样才能推进管道安全管理工作的有效进行。2.2影响天然气管道安全因素的对策办法

2.2.1对于第三方施工单位,要进行安全教育,建立第三方破坏防御体系,加强天然气管道建设规划工作。

天然气管道工程是一项社会范围内的基础工程,要求规划部门在编制市区发展规划时,充分考虑影响天然气管道的安全运行的影响因素,其位置排布不应在快车道下,防止因车速过快、车体过重对地下输气管道造成严重的冲击、损坏。2.2.3加强市政建设工程信息采集工作

天然气企业应与城市道路建设相关审批部门建立良好的信息沟通。输气管道大部分埋设于城市道路下方,市政道路开挖工程属经常性行为,天然气企业在第一时间取得施工信息,与施工单位做好施工开挖区间的沟通,能够在很大程度上避免天然气管道受第三方破坏。只搬出法律条文一味地生硬阻止并不能起到规范其施工行为的目的。要以对方的人身安全为出发点,与其良好地沟通,使违规施工人员意识到违规操作对自身安全的威胁和在社会范围内的恶劣影响,自觉地避免违规施工作业。为了防止施工单位无意识破坏天然气气管道的情况,则需要安排施工过程监控工种,在施工过程中做好对施工单位施工方法的引导和监督工作。2.2.4对人民群众要加强需安全教育

人民群众对于天然气的危险性有模糊的概念和规避危险的意识,但对天然气的相关知识不甚了解,企业有责任和义务对其进行宣传和教育,可以采取多种形式,逐步扩大影响范围,动员全民共同竖立保护天然气管道设施的意识。2.2.5加强管道建设承包商管理

对于管道建设承包商,要严格按照企业安全管理规范的统一要求执行企业制度标准,在对员工的培训和个人防护装配配备上等方面加强内部管理,把承包商当做自己的队伍管理,严格要求、严格考核。在明确双方安全责任的前提下,使承包商同样具有责任感、使命感。2.2.6管道占压建筑

管道违章建筑的大量存在, 不仅严重影响企业的安全生产, 而且直接威胁着社会安全, 应引起广泛的高度重视。管道违章建筑形成的原因错综复杂,存在许多历史遗留问题,清理整治难度非常大,需要政府、企业与建筑物业主的共同努力。2.2.7建立管道腐蚀泄漏巡检体系 2.2.8 建立管道防腐层运行记录

工程施工前,要对选用的管材设备等进行严格检测。工程验收通气前,对埋地钢质管道应采用检测技术手段对管道防腐层现状进行检测,天然气钢质管道投入运行后,根据管道投用年限制订并实施防腐层周期检测工作,对管道防腐层运行数据进行收集、分析。2.2.9逐步整改管道安全隐患 对天然气管道安全隐患进行整体排查,如管道被建筑物占压等,制定隐患档案,并在各根据隐患严重程度制定专项计划,安排专项资金逐步予以解决。

2.2.10建立专业天然气泄漏巡检队伍

管网腐蚀泄漏分级巡检:应设专职的巡线工岗位,为其配备可燃气体泄漏检测仪器。根据管道竣工年限、腐蚀泄漏抢修记录等管网基础技术信息,将管网腐蚀泄漏巡检工作分级,制定各级别管道的巡检方式,使巡检工在力所能及的基础上,有重点地执行日常管网腐蚀泄漏巡检工作,一旦发现腐蚀泄漏怀疑区域,则交由专业抢修队伍负责详查腐蚀泄漏点,并完成管网抢修工作。3.3从源头加强安全管理

企业员工一直以来处于被监督的地位,预防安全事故的行为一直很被动,提高安全管理的效率要启发员工的安全意识,提高员工素质,避免由于误操作给管道安全带来的威胁,培养员工发现隐患和风险的能力,对员工进行安全教育和相关培训,加强对员工技能的培养,制定操作规程,建立严格可行的管理体系和工作程序。

结论

社会的高度发展为天然气行业带来了无限机遇,同时也增加了天然气企业的社会责任。为保证天然气管道安全运行,避免对人民群众和企业自身造成不良影响,安全管理工作至关重要。

参考文献:

[1]张普云.城市煤气管网及设施安全隐患与治理对策[J].煤气与热力,2007,27(12):53—55 [2]李 军,张书堂,董学佳.城市燃气管道的安全管理[J].煤气与热力, 2009 ,29(9):B32—B33 [3]魏军甫.城市燃气管道泄漏的原因分析与对策[J].煤气与热力,2004,24(2):105—107

下载天然气管道运行压力工艺参数word格式文档
下载天然气管道运行压力工艺参数.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    压力管道管理制度

    川染能源公司压力管道管理制度 第一章 总则 第一条 为贯彻劳动部一九九六年四月二十三日颁发的《压力管道管理与监督规定》,为确保我公司压力管道的长周期安全使用,特制定本制......

    压力管道论文

    姓名: 班级: 学号: 武 汉 工 程 大压力管道设计论文 学 压力管道的维护和保养 摘要: 本文主要讲述了压力管道防腐蚀的重要性,压力管道腐蚀的主要形式和腐蚀介质,以及介绍了三种......

    压力管道题库

    一. 单选题 (共80题,共80分) 1. 国家标准《工业金属管道设计规范》将流体介质分类为Al、A2、B、C、D五类。B类是指这些流体在环境或操作条件下是一种或可闪蒸产生气体的液体,......

    压力管道模拟

    1 按《特种设备安全监察条例》对压力管道的定义,符合一定条件的工作压力、公称直径和介质要求的管道才作为压力管道进行管理。 √ 作答正确√ 作答正确× 作答正确 2 城镇......

    压力管道题库

    压力管道题库 一、判断题: 1、 管道元件标准件的设计压力应当符合有关安全技术规范及其相应标准的要求。( √ ) 2、 外力去除后能够恢复的变形称为弹性变形。( √ ) 3、 管......

    压力管道试题

    2 判断题 蒸汽管网除按照一般管道进行日常巡视外,应特别注意管网的疏水、排水和排气问题。蒸汽管道的疏水可由自动排气阀完成或手动排气阀完成。在运行中应加强蒸汽管道的疏......

    天然气管道安全运行危害因素及防范措施最新

    天然气管道安全运行危害因素及防范措施 侯世光 (营口港华燃气有限公司营口鲅鱼圈115007) 摘要:分析了天然气管道安全运行的危害因素,从设计和施工方面提出了防范措施。 关键词:天......

    天然气管道施工合同

    天然气管道施工合同 甲方:定西中石油昆仑燃气有限公司 乙方:甲方:靖远县金地燃气有限公司 本着平等互利的原则,按国家《劳动法》《经济合同法》等相关的法律法规,经甲乙双方共同......