第一篇:全等三角形观课报告
暑期研修中,我共学习了六节课,就其中一节《全等三角形》谈一下自己的体会。本节课设计巧妙,条理清晰,始终以学生为主,教师为辅,充分调动了学生的学习积极性和主动性,很好地实现了教学目标。
这节课有以下几点很值得学习:
1.目标明确,设置恰当,符合课程标准的要求。教学中,始终围绕目标进行,教学内容安排合理,讲授正确,课堂结构合理;
教学思路清晰,教学环节紧凑一环扣一环。在教法上这节课老师让学生亲身体验,通过亲历教学的方法,适合初中年龄段的学生,学生的积极性很高,另外学生动手操作拼出不同的几何图形,这里训练了学生的发散思维能力,同时又蕴涵了几何图形的运动变化,这两点充分将学生放在主体地位,激发了每名学生的学习热情。然后按照学生的拼图编拟习题,又充分激发了学生学习的自信心,人人争先恐后充分发挥了学生学习的主动性。整个教学过程是在一种轻松活跃的气氛中进行,以学生为本,在学习知识的同时发展学生的思维。
2、教学思路清晰,教学环节紧凑一环扣一环。在教法上这节课老师让学生亲身体验,通过亲历教学的方法,适合初中年龄段的学生,学生的积极性很高,另外学生动手操作拼出不同的几何图形,这里训练了学生的发散思维能力,同时又蕴涵了几何图形的运动变化,这两点充分将学生放在主体地位,激发了每名学生的学习热情。然后按照学生的拼图编拟习题,又充分激发了学生学习的自信心,人人争先恐后充分发挥了学生学习的主动性。整个教学过程是在一种轻松活跃的气氛中进行,以学生为本,在学习知识的同时发展学生的思维。
3、课堂气氛营造:针对初二学生的年龄特点,教师又适当的加入激励性的语言,激起学生的参与意识,例如:“在这一节的学习中,我们又会面临哪些挑战呢?大家想不想挑战自我?”这节课中类似这样的语言很多。张老师能做到面向全体学生,在教学中,能坚持以学生为本,面向全体学生,调动起所有学生的积极性。
4.三角形全等条件的讨论,让学生通过操作、比较后,再得出结论:一个条件,二个条件都不能确定两个三角形全等,三个条件中三条边相等能够确定两个三角形全等,从而得出判定定理,让学生亲自体验成功的快乐。
5.例题安排合理。先以填空的形式出现,使同学们有一个初步的巩固,然后再让学生写出整个证明过程。由易到难,使刚接触证明的学生感觉证明不是那么难,效果较好。
教学建议:
1.“动手做”这一环节设计的主要目的是让学生感知什么是全等形,我看了一下,进行了十多分钟,仍然有部分学生没有做出。其实,只要让学生做两个一模一样的图形,也许不到三分钟,全班学生都可以做出,这中间就有我们这节课要讲的全等三角形,多出的时间可以用在全等三角形的性质运用中。
2.在说明“一个三角形经过旋转后得到的三角形与原三角形是全等图形”时,老师用非常娴熟的手法把一个三角形在空中水平转了一圈。根据学生现有的认知,我们说的“旋转”是在平面内做顺时钟或逆时钟旋转,更多方式的旋转初中阶段还没有涉及
3.教学过程中,探究新知过程所用的时间太多,足用了25分钟得出“边边边”定理。探究用一个二个元素不能证得两个三角形全等的过程的时间应再少一些。整个教学过程的时间可再缩短到17分钟左右,这样留给学生练习的时间就多一些。习题的量和难度不够,适当难度的题目能激发学生学习兴趣,提高学生逻辑思维能力,教会学生从习题的结论出发用分析法证明几何证明题
观课反思:
1、在平时的课堂教学中要安排一定时间给学生自己,放心大胆的把课堂还给学生,把时间还给学生。
2、精心设计教学内容,多设计调动学生学习积极性的内容,在备课上多下功夫。
3、多给学生以肯定性评价,充分的表扬。重视学生思维能力的培养,也要重视学习习惯等非智力因素的培养。
第二篇:全等三角形观课报告
今天反复观看了《全等三角形》,这些老师的课让我大开眼界,从中学到了一些新的教学方法和新的教学理念,尤其《全等三角形》的这节课给我更多的启示。这节课有以下几点很值得学习:
(一)从课程教学思路设计:
(1)课堂结构合理、活动安排科知识学、重点、难点处理符合要求能够落实分层教学、考虑全体学生。
(2)练习设计合理,有层次,有梯度,基础掌握在课堂上,关键性的训练完成在课堂上,问题解决在课堂上。
(3)面向全体,不同层次学生均得到发展;过程体验充分,学习能力得到提升;教学目标检测及时有效,达成度高。
(二)教学目标:设置恰当,用认识、掌握、知道、运用等刻画知识和技能目标,主要指明了学生学习数学所达到的层次要求,深刻体会数学课程目标的要求。
(三)教师的语言:
教师针对学生的年龄特点,适当的加入激励性的语言,激起学生学习意识,例如:“在这一节的学习中,我们又会面临哪些挑战呢?大家想不想挑战自我?”这节课中类似这样的语言很多。老师能做到面向全体学生,在教学中,能坚持以学生为本,面向全体学生,调动起所有学生的积极性。
(四)师生的双边活动课堂上,教师让学生在讲台上讲解充分暴露学生思维中的缺点,教师及时补充更正,起到了很好的效果。师生交往既有师生的交往,又有生生的交往,发挥了学生的主观能动性,也提高了学生的智力活动水平。
(五)授课方式与学习方式:教学中开展了小组活动,活动中,小组成员对共同学习中发现的问题利用教师所提供的材料,通过分析、比较、抽象和概括与一系列积极的思维活动,实现了认识上的飞跃,有利于培养学生的团队精神和创新能力。观课反思:
通过观课,让我学到了一些新的教学方法和新的教学理念。在这些优质课例中,教师放手让学生自主探究解决问题的方法,整节课,每一位教师都很有耐性的对学生进行有效的引导,充分体现“教师以学生为主体,学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”的教学理念。今后的课堂必须掌握好以下几点:(1)、在平时的课堂教学中要安排一定时间给学生自己,放心大胆的把课堂还给学生,把时间还给学生(2)、精心设计教学内容,多设计调动学生学习积极性的内容,在备课上多下功夫。(3)、多给学生以肯定性评价,对于回答的比较好的学生给以充分的表扬。(4)、重视学生思维能力的培养,也要重视学习习惯等非智力因素的培养。
总之,今后的课堂要凸显学生的主体地位,通过定理的证明、例题的引领、练习题的巩固,及时地总结提升,培养学生分析问题、解决问题的能力。从创造性地使用例题到设计变式训练、迁移训练;从设计条件开放、结论开放题,到设计条件不变、图形变化的各种训练;从展示正确证明过程到展示错误证明过程让学生评价,使学生的思维在广度教学建议。
第三篇:全等三角形
复习提问 通过前两个问题复习巩固上一节所讲的知识,通过问题3引导学生认识到三角形全等是证明角相等、线段相等的重要方法,然后设疑,如何证明两个三角形全等?从而引出课题。
活动二:讲授新课 全等三角形的判定条件的探究 首先提出
问题1:两个三角形三条边相等、三个角相等,这两个三角形全等吗?学生通过观察图形和课件演示,会很容易作出恳定的回答。
问题2:两个三角形全等是不是一定要六个条件呢?若满足这六个条件中的一个、两个或三个条件它们是否全等呢?然后教师引导学生分别从“角”和“边”的角度分析一个条件、两个条件各有几种情形。引导全班同学首先共同完成满足一个条件的情况的探究,然后指导学生分组讨论,对满足两个条件的 情况进行探究,并在组内交流,教师深入小组参与活动,倾听学生交流,并帮助学生比较各种情况。最后由教师在投影上给出满足一个条件和两个条件的几组三角形,学生通过观察图形就会得到一结论:两个三角形若满足这六个条件中的一个或两个条件是不能保证两个三角形一定全等的。
问题3:两个三角形若满足这六个条件中的三个条件能保证它们全等吗?满足三个条件有几种情形呢?由学生分组讨论、交流,最后教师总结,得出可分为四种情况,即三边对应相等、三角对应相等、两边一角对应相等、两角一边对应相等。告诉学生这一节先探究两个三角形满足三条边相等时,两个三角形是否全等?对于此问题我是这样引导学生探究的,先让学生在练习本上各画一个边长分别为2、3、4的三角形(当然在这里要先给学生讲清楚已知三边如何画三角形,并且让学生牢记此种画三角形的方法),学生画好之后剪下来,同桌之间进行比较、验证,看它们是否重合。同时教师在投影上给出两个边长为2、3、4的三角形,通过课件演示,学生会看到两个三角形的三边对应相等,它们是全等的。从而得到全等三角形的判定方法,即:有三条边对应相等的两个三角形是全等三角形。得到全等三角形的判定条件之后,还要给学生讲清楚证明三角形全等的书写格式,即:先要写出在那两个三角形中,然后用大括号把全等的三个条件括住,最后写出全等的结论。由于学生刚开始学习全等三角形的证明,对三角形全等的书写格式还不熟悉,所以教师在此要强调三角形全等的书写格式以及应注意的问题。
活动三:题例训练 例1是两道填空题,需要补全三角形全等的条件,在讲解此题时关键是让学生看清图中两个三角形全等已具备哪些条件,还缺什么条件,把所缺的条件补上即可。通过此题要使学生进一步掌握三角形全等的判定条件及证明三角形全等的书写格式和应注意的问题。
第四篇:三角形全等复习课教学设计
三角形全等复习课教学设计
安坪中学
吴发礼
学习目标:
1.回顾全等三角形的概念,熟练运用全等三角形对应边相等,对应角相等的性质。2.熟练三角形全等的判定方法,能利用全等三角形全等的性质与判定进行相关的证明体验几何证明的严谨性与表述的规范性。3.学握证明格式,体会证明的过程要步步有据。教学重点·难点
重点:三角形全等的判定方法的应用。
难点:利用三角形全等的性质与判定进行相关的证明。教学过程
一、练习引入.如图、AB与CD相交于点O,且OA=OB,要添加一个条件,才使得△AOC≌△BOD
ACODB方法一:添加(),依据()
方法二:添加(),依据()方法三:添加(),依据()二.实例分析
例、已知:如图,AB=CD,BC=DA,E、F是AC上的两点。且AE=CF。求证:BF=DE 分析:证明题的思维模式
证明:在△ABC与△CDA中
{
AB=CD BC=DA AC=CA
DFECA∴△ABC≌△CDA(SSS)
∴∠BCF=∠DAE
在△BCF与△∠DAE中
B
{ BC=DA ∠BCF=∠DAE CF=AE ∴△BCF≌△DAE ∴BF=DE
此题中BF与DE在数量上是相等的。在位置上有何关系。请猜测并说明理由。(小
组讨论)
例2、如图,已知EG//AF。请以下面三个条件中,任选出两个为已知条件,另一个作为结论,推出一个正确的命题。(只写出一种情况)①AB=AC、②DE=DF、③BE=CF 已知:EG//AF,求证:
AEBGDCF
(小组讨论)
每组派一人写出本组解题过程:
三.巩固练习
已知,如图,AB=AD,BC=DC。求证:∠B=∠D
提示:操作一条辅助线得到两个三角形
ABC
D
四.总结提高
学习全等三角形注意以下几个问题
(1)要正确区分“对应边”“对应角”与“对角”的含义
(2)表示两个三角形全等时,表示对应顶点的 腰与在对角的位置上
(3)时刻注意图形中的隐含条件,如“对应角”“对应边”“对顶角”
五.作业
P88习题2.5A组第9题(必做)
B组第11题(选做)
第五篇:全等三角形复习课教学设计
全等三角形复习课教学设计
教材分析:
《三角形全等复习课内容》选用义务教育课程标准实验教材《数学》(华师大版)九年级上册,三角形全等是初中数学中重要的学习内容之一。本套教材把三角形全等看作是三角形相似的特殊情况,同时三角形全等的概念,三角形全等的识别方法,与命题与证明,尺规作图几部分内容相互联系紧密,尤其是尺规作图中作法的合理性和正确性的解释依赖于全等知识。本章中三角形全等的识别方法的给出都通过学生画图、讨论、交流、比较得出,注重学生实际操作能力,为培养学生参与意识和创新意识提供了机会。设计理念:
针对教材内容和初三学生的实际情况,组织学生通过摆拼全等三角形和探求全等三角形的活动,让学生感悟到图形全等与平移、旋转、对称之间的关系,并通过学生动手操作,让学生掌握全等三角形的一些基本形式,在探求全等三角形的过程中,做到有的放矢。然后利用角平分线为对称轴来画全等三角形的方法来解决实际问题,从而达到会辨、会找、会用全等三角形知识的目的。教学目标:
1、通过全等三角形的概念和识别方法的复习,让学生体会辨别、探寻、运用全等三角形的一般方法,体会主动实验,探究新知的方法。
2、培养学生观察和理解能力,几何语言的叙述能力及运用全等知识解决实际问题的能力。
3、在学生操作过程中,激发学生学习的兴趣,培养学生主动探索,敢于实践的精神,培养学生之间合作交流的习惯。教学的重点和难点:
重点:运用全等三角形的识别方法来探寻三角形以及运用全等三角形的知识解决实际问题。
难点:运用全等三角形知识来解决实际问题。教学过程设计:
一、创设问题情境:
某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全相同的玻璃,那么你认为它应保留哪一块?(教师用多媒体)
师:请同学们先独立思考,然后小组交流意见 生:…………
师:上述问题实质是判断三角形全等需要什么条件的问题。今天我们这节课来复习全等三角形。(引出课题)。师:识别三角形及等的方法有哪些? 生:SAS、SSS、ASA、AAS、HL。
复习回顾:练习
1、将两根钢条AA/、BB/中点O连在一起,使AA/、BB/绕着点O自由转动,做成一个测量工具,则A/B/的长等于内槽宽AB,判定△OAB≌△OA/B/现由()练习
2、已知AB//DE,且AB=DE,(1)请你只添加一个条件,使△ABC≌△DEF,你添加的条件是
(2)添加条件后,证明△ABC≌△DEF?
[根据不同的添加条件,要求学生能够叙述三角形全等的条件和全等的现由,鼓励学生大胆的表述意见]
二、探求新知:
师:请同学们将两张纸叠起来,剪下两个全等三角形,然后将叠合的两个三角形纸片放在桌面上,从平移、旋转、对称几个方面进行摆放,看看两个三角形有一些怎样的特殊位置关系? 请同组合作,交流,并把有代表性的摆放进行投影。
熟记全等三角形的基本形式,为探求全等三角形打下基础,提醒学生注意两个全等三角形的对应边和对应角。学生的摆放形式很多,包括那些平时数学成绩不好的学生也跃跃欲试,教师给予肯定和鼓励激发他们学习的积极性和主动性。
例
1、如图一张矩形纸片沿着对角线剪开,得到两张三角形纸片ABC、DEF,再将这两张三角形纸片摆成右图的形式,使点B、F、C、D处在同一条直线上,P、M、N为其他直线的交点。(1)求证:AB⊥ED(2)若PB=BC,请找出右图中全等三角形,并给予证明。
用多媒体演示图形的变化过程。
师:图3中AB与ED有怎样的位置关系?同学生猜想一下结果。生甲:AB垂直ED 师:为什么?可以从几方面来考虑? 生乙:可以从图形运动变化的过程来考虑
生丙:可以考虑全等在已知条件下,显然有△ABC≌△DEF,故∠A=∠D,又∠ANP=∠DNC,所以,∠APN=∠DCN=900,即AB⊥ED。
(根据学生的回答,教师板演)
师:若PB=BC,找出右图中全等三角形,看看谁能找得最快? 生丁:△PBD≌△CBA(ASA)
师:板演,由AB⊥ED,可得到∠BPD=900,∠BPD=∠CBA,∠A=∠D,PB=BC,故有△PBD≌△CBA(ASA)。师:还有其他三角形全等吗?
生:有,我连接BN,由勾股定理得PN=CN,就不难得到△APN≌△DCN。
(在错综复杂的图形中寻找全等三角形是一件不容易的事,要鼓励学生大胆的猜想,努力探求,在学生的叙述过程中,教师及时纠正学生叙述中的错误,训练学生严谨的学习态度和学习习惯。)
例
2、(动手画)(1)已知OP为∠AOB平分线,请你利用该图画一对以OP所在直线为对称轴的全等三角形。
教师在黑板上画好∠AOB和直线OP,学生独立思考,然后请几个学生在黑板上演示。
师生总结:想要画出符合条件的三角形,只要在射线OA、OB上找到一对关于OP对称的点就可以了。
(2)利用上图作全等三角形方法,在△ABC中,∠B=600,∠ABC是直角,AD、CE是∠BAC,∠DCA的平分线,AD、CE相交于F,请判断FE与FD间数量关系。
师:请同学们用三角尺和量角器准确画出此图,然后量出EF、FD的长度,看看EF与FD长度 关系如何? 生:基本相等。生:长度相等。
师:如何来证明他们相等?注意审题。
学生先独立思考后,组内交流,等到有同学举手发言。生:在AC上取点H,使AH=AE,则△AEF≌△AHF则EF=FH 师:为什么要这么做?你是怎么想到的?
生:因为要证明线段相等要考虑三角形全等,而EF、FD所在两个三角形显然不全等,又AD是平分线,在AC上找出E关于AD有对称点H得到△AEF≌△AHF。师:这样只能得到EF=FH。生:再证明△FHC≌△FDC。生:先求出AD、CE是角平分线∠APC=1200,则∠DPC=∠EPA=∠APH=600,所以∠HPC= ∠DPC=600,PC=PC,∠3=∠4,因为△HCP≌△DCP(ASA)所以PD=PH。
(看清题意,猜想结果是解决探究题的重要环节,教师要留给学生一定思考时间,同时鼓励学生尝试和交流,鼓励学生勇于探索以及同学之间的合作。)师生共同小结:
1、熟记全等三角形的基本形态,会找全等三角形的对应边和对应角。
2、在错综复杂的几何图形中能够寻找全等三角形。
3、利用角平分线的对称性构造三角形全等,并利用三角形的全等性质解决线段之间的等量关系。
4、运用全等三角形的识别法可以解决很多生活实际问题。作业:
1、在例2中,如果∠ACB不是直角,而(1)中的其他条件不变,请问:你在(1)中所得结论能成立吗?若成立,请证明,若不成立,请说明理由。
2、书本课后复习题 教学反思:
本教学设计从以下三方面考虑:
1、根据学生的学习情况,改进学生的学习方式,强调合作交流,探索学习,教师在教学过程中,努力为学生创设自主探索的氛围,让学生真正成为课堂主体。
2、重视对学生能力的培养,除常规的鼓励就大胆思考,积极发言,重视培养学生观察、操作、测试、思考的能力,学生的活跃,他们思考问题的方式是多种多样,教师从对完全更改,尊重他们的学习方式,这样有助于创新
3、重视对学生学习习惯的培养,全等三角形是几何部分内容说明书,有较强逻辑性,教师板演,以及在学生叙述中纠正学生的错误,是培养学生养成良好的习惯之一,同时学生学习习惯多方面的,在合作交流中,培养学生合作意识和合作习惯培养显得尤为重要。