第一篇:2012最新千兆网接口摄像机设计方案
1引言
随着监控系统在商用民用的日渐普及,监控摄像机被广泛应用在各个领域,为社会治安保驾护航。视频监控摄像机广泛应用于居民住宅、楼盘别墅、商场店铺、财务室。每个不同的应用领域,需要有不同类型的监控摄像机。传统的监控摄像机图像分辨率低,难以满足一些有特殊要求的应用场合。利用网络来实现对高分辨率高帧率视频图像传输是视频监控系统的一种重要思想。但百兆网传输带宽不足、数据传输速度太慢严重制约了其在监控领域的应用。针对这一问题,本文提出了基于千兆以太网传输视频图像并充分利用了FPGA并行处理和SDRAM高速缓存的优势,提高了视频图像的传输速度。
2硬件总体设计
硬件总体框架如上图,主控制器FPGA选用altera公司高性价比芯片EP2C20F256C6N。系统工作频率为100M。图像传感器的数据首先在FIFO里缓冲后暂存于SDRAM,在网络空闲时将暂存的图像数据经FIFO2缓冲后送MAC芯片,再发送到网络上。
CMOS芯片选用MicronTechnology的MT9P031,在500万像素的满分辨率下最高可输出14帧的图像数据。SDRAM选用W982516BH-75,容量为32Mbytes,g与FPGA内部FIFO结合可设计为32Mbytes的大容量循环缓存,在图像分辨率为300万像素时可缓存10帧以上图像数据。千兆网接口MAC芯片选用AX88180,物理层芯片选用88E1111,再通过网络变压器及RJ45用六类网线与计算机千兆网卡相连。
3千兆网接口设计
AX88180是亚信公司推出的一款高性能低成本的Non-PCI千兆以太网控制器,适用于多种需要高速接入网络的嵌入式系统,如消费电子和家庭网络等。AX88180内置10/100/1000Mb/s以太网媒体存取控制器(MAC),符合IEEE802.3/IEEE802.3u/IEEE802.3ab协议,可与一般16/32位微控制器连接,其操作与SRAM相同。AX88180内置10/100/1000Mb/s以太网媒体存取控制器(MAC),与PHY之间采用RGMII接口;内置主机接口控制器,可以与16/32位主机方便连接寻址方式与SRAM相同;内置40KBSRAM网络封包缓存器,其中32KB用于从PHY接收数据包,KB用于主机发送数据包到PHY,可以用高效方式进行封包的存储、检索与修改;内置256字节的配置寄存器,用于主机控制和参数设置;内置EEP-ROM接口;内置IP/TCP/UDP校验和大大减小微控制器的运算负载,改善传输反应时间。图2为AX88180及PHY芯片88E1111的连接图。
3.1千兆网接口初始化
对千兆网接口的初始非常重要,如果初始化不正确,系统将无法正常工作。对接口的初始化主要包括对AX88180和88E1111的初始化。
代码用verilog语言完成。具体代码可参考亚信公司的驱动程序代码,应注意初始化时需要加入一些固定的延时以确定芯片正常工作。
3.2图像数据的封包
当图像的分辨率为2048×1536时,一个UDP数据包包含1024字节的图像数据和两个bytes图像行编号。当计算机收到数据包时,根据图像行编号信息放入对应的内存中,可以很方便的组合成一副完整的图像。并且,采用行编号的形式,还可防止某一两个数据包丢失后导致整副图像都无法显示的问题。以下这FPGA写入AX88180的UDP包头代码。
case(param_num)
‘d0:w_dd‘d3:w_dd‘d6:w_dd‘d7:w_dd‘d8:w_dd‘d9:w_dd‘d10:w_dd‘d11:w_dd‘d12:w_dd‘d13:w_dd‘d14:w_dd‘d15:w_dd‘d16:w_dd‘d17:w_dd‘d18:w_dd‘d19:w_dd‘d20:w_dd‘d21:w_dddefault:w_ddendcase
3.3应用程序设计
由于大量数据在网络上传输,用SOCKET的方式来获图像数据包已经比较困难,丢包率会比较高。采用Winpcap来捕获网络上的数据包,可有效的减少丢包率。用Winpcap编写程序需要安装开发包及驱动程序。
第一步,指定要通信的网卡设备并打开。
BOOLInitWpcap(){
pcap_if_t*alldevs;
pcap_if_t*d;
errbuf[PCAP_ERRBUF_SIZE];
if(pcap_findalldevs(&alldevs,errbuf)==-1){
AfxMessageBox(“Errinpcap_findalldevs);
returnFALSE;}
//枚举网卡然后添加到用户选择的ComboBox中,代码省略
*filter=“port6000”;//只接收端口6000的数据
bpf_u_int32NetMask=0xFFFFFF;
structbpf_programfcode;
if(pcap_compile(m_pcap,&fcode,filter,1,NetMask)AfxMessageBox(“nErrcompilingfilter:wrongsyntax”);
pcap_close(m_pcap);returnFALSE;}
if(pcap_setfilter(m_pcap,&fcode)AfxMessageBox(“nErrsettingthefiltern”);
pcap_close(m_pcap);returnFALSE;}
pcap_freealldevs(alldevs);//释放alldev资源
returnTRUE;}
第二步:开启一个线程接收数据。
UINTRecvProc(LPVOIDlpParammeter)
{pcap_loop(m_pcap,0,packet_handler,NULL);return0;}
packet_handler是处理收到数据包的回调函数,当从port6000收到数据后它会被调用,直到线程终止。
第三步:处理收到的数据
voidpacket_handler(u_*param,conststructpcap_pkthdr*header,constu_*pkt_data){
constu_*real_data=pkt_data+42;
introw=real_data[0]+(real_data4总结
兆网接口摄像机,网络传输有效数据带宽达400Mb/s以上,较好的解决了百兆网传输带宽不足、数据传输速度慢的问题。传输300万像素不进行压缩的原始图像,帧率可达18帧/秒,视频流畅清晰。计算机采用Winpcap捕获图像数据,丢包率小于0.02%。
北京至福州货运专线 北京到上海物流专线 北京到南京物流专线http://sumin2010.jdol.com.cn/小口径膛线无缝钢管 gcr15轴承钢管 轴承钢管生产厂 http://gujiancong.jdol.com.cn/KCB齿轮泵厂家 RY导热油泵 LQB沥青保湿泵http://llofzz.jdol.com.cn/有载调压电力变压器 高出力变压器 非晶合金变压器http://clhtdq.jdol.com.cn/电动二通阀 汽水分离器 缓闭式止回阀http://zgzcvjdzx.jdol.com.cn/杭州电焊机价格 杭州螺杆空气压缩机 杭州等离子切割机报价http://hzjuba1688.jdol.com.cn/公交刷卡机 手持刷卡机 手持收费机 http://cardlan126.jdol.com.cn/微机监控电机保护器 电机缺相保护器 电机微机保护器 http://cngydz.jdol.com.cn/
第二篇:摄像机技术指标
常见一些广播电视界的工程技术人员指着自己操纵的摄像机,不无自豪地脱口而出:“这可是广播级!”或“这可是数字机!”其实,“广播级”也好,“数字机”也罢,说的都是摄像机的等级,而所谓“摄像机”的等级又是用摄像机的技术指标来量化来定义的。所谓技术指标,即摄像机按其使用要求必须达到的目标,如图像的技术质量,摄像机的性能和精度等等。这些指标是对摄像机的定量分析和科学评析,具有可量化性和可比较性。当然这些指标由许多项目组成,因为我们评价的是摄像机这一电视节目的信号源的制造者。摄像机必须满足多项技术指标的要求,等级越高指标越苛刻。
为了规定摄像机的等级,国家颁布了摄像机技术条件的规定。可是在电视工程技术飞速发展的今天,这些规定已相对落后,灵敏度、分解力和信杂比这三大技术指标已不能全面反映摄像机的质量。
一 CCD器件和图像像素
这一指标给出CCD器件的数量、尺寸和电荷转移方式的种类,以及图像像素的数量。广播级和许多业务级摄像机一般都是3块2/3英寸CCD,电荷转移方式或IT(行间转移),或FT(帧转移)、或FIT的都有,等级稍高的取FIT,稍低点的取IT,而FT CCD摄像机亦不乏佼佼者。与IT相比FIT残留电荷少,图像惰性小,但价格之贵也自不待言。而IT在采取了微透镜等技术后提高了灵敏度,减少了图像惰性,更具竞争力的当然还是价格。FT CCD的摄像机种类较少,但尺寸相比FIT小,残留电荷少于IT,灵敏度和动态范围均高于IT。加上设置了机械快门,利用机械快门在场消隐期间对感光部遮光,减少拖尾。据有关公司介绍,其FT CCD由于取消了FIT CCD的垂直移位寄存器,增大了CCD像素窗口,因而增加了像素的有效受光面积,使更多的光转换为电荷,提高了灵敏度。此类摄像机的性能,指标均高于IT CCD摄像机,而并不弱于FIT CCD摄像机。
图像像素数量是CCD器件的一项重要指标,像素就是CCD表面上的感光单元,像素数量越多,越能分辨景物细节、感光密度也越大。因此像素数量不仅与图像清晰度有关,而且与灵敏度也有关。20年前2/3英寸CCD器件的像素数量通常在40万左右,分解力仅为250至350线。而今天CCD器件的有效像素可达60至70万,分解力可达800至900线;HDTV的CCD器件的像素甚至多达200多万。分解力高达1200线。CCD器件的像素数量与分解力的关系是显而易见的,根据经验公式:水平像素乘以四分之三等于该CCD芯片的水平临界分解力。CCD器件对于摄像机性能之关键,历来为人们所关注,将此项目做为摄像机的首要技术指标也顺理成章。
二 数字量化和数字信号处理
数字量化和数字信号处理的等级是数字摄像机出现后新增的技术指标。众所周知,CCD器件产生的模拟信号必须转换成数字信号,再进行数字处理,这一转换和处理的精度对信号的技术质量有重大影响,因此必须加以限定。ITU—R601对演播室数字信号编码规定的最低要求是8bit量化,摄像机作为信号源理所当然地要高于此要求。模拟信号和数字处理的参数之间存在一定的关系,信杂比和动态范围与在转换成数字信号时使用的量化级数成正比。因为量化级数是转换成二进制码值的,所以级数增加一倍,信杂比和动态范围增加6dB,而只需要在二进制编码数据中增加一个bit。因此一个10 bit的数字信号比8 bit在信杂比和动态范围方面有12 Db的改善。今天广播级的数字摄像机A/D转换的量化级数多为12 bit,这样与ITU—R601的要求相比,可以在信杂比的动态范围上增加24 Db的优势。使用12 bit的A/D转换器,可对600%视频电平采用动态压缩算法进行处理。
90年代中期,大部分摄像机厂家开发的摄像机多采用10 bit A/D转换器,再用13 bit数字处理。到90年代末期,各摄像机厂家开发的摄像机几乎都采用12 bit A/D转换器,而且为了保证更为精确的伽玛、拐点、轮廓等信号的校正,在信号处理上都用更高的量级,少则14—16 bit,多的可达20—30 bit。在摄像机上采用如此之大的数据量进行处理,具有相当的难度,除非开发专用超大规模的数字处理集成电路之外,别无良策。因此各厂家都为此花大气力,开发了专用数字信号处理集成电路。处理量级可达20—30 bit,电路细微可达0.6--0.3微米,门数可达180万门。
三 灵敏度
这一摄像机指标属老生常谈,对于20年前的摄像管摄像机应属主要指标,而今天的重要程度或人们的关注程度已经降低,但是依然出现在今天的数字摄像机技术说明书中,在未来HDTV摄像机技术指标中也未见删除。
这一指标描述了摄像机对所拍摄图像的照度的反应能力。测试也简单易行:在标准照度条件下,(即2000lux、3200k色温下)拍摄89.9%反射灰度卡,视频幅度达到0.7V时的光圈指数,即是该摄像机的灵敏度。今天广播级摄像机的灵敏度通常在F8至F10之间。
灵敏度的测量,除了测量标准照度下得到的额定信号电平时的光圈指数外,通常还要测摄像机的最低照度。这一指标将灵敏度和信杂比联系起来,使灵敏度和信杂比之间存在着某些互相牵制的关系。
最低照度是在增益开关处于最大、镜头光圈也处于最大的情况下,拍摄灰度卡,视频信号达标准幅度(0.7V)时所需的照度即最低照度。广播级摄像机的最低照度通常7-8 lux(F1.4 +18dB),最低可达1 lux(F1.4、+36dB)。必须指出的是目前最低照度并无统一标准,特别是摄像机输出电平,是标准电平100%(0.7V),还是70%(0.49V)尚无定论。一般广播级摄像机输出电平为100%,业务级摄像机就要求各异了。因此当我们分析某一摄像机的最低照度时,可不能掉以轻心。
一般情况下希望最低照度指标要低一些,可是最低照度越低,要达到视频电平0.7V,增益就要加得越大。增加增益的结果是降低了信杂比,使杂波增大,图像颗粒增粗,使技术质量恶化。这样的恶化是显见的,γ=1时,增益提升多少Db,信杂比就降低多少Db时。Γ=0.45时,信杂比下降得更多。例如一摄像机的信杂比为60dB(增益0 db,γ关)那么增益+18 Db时,信杂比为42 Db。但在γ=0.45的情况下,信杂比下降到36 Db。在增益+30 Db时,信杂比只有24 Db,这将严重影响图像质量。从这个意义上说,为了保证图像信号的信杂比,最低照度还是不要过低。为了降低噪声,摄像机还增设了图像噪声抑制开关,在使用增益时降噪。
同样是广播级,数字机的灵敏度并不比模拟机高许多,而是几乎相等,这是因为F8的灵敏度已经够用了。有趣的是有些业务级摄像机却一味追求高灵敏度,甚至达F11还多,这样做似乎是考虑到业务级摄像机的工作环境较为恶劣吧。
四 分解力
分解力又称分辨率,解像力,通常分解力指水平分解力。有人将分解力与清晰度这两个概念等同起来。需知,这实在是两个有关联而又不相同的概念。分解力是指电视设备所能分解和重现细节的能力,而清晰度是指人眼对电视图像所见的清晰程度。分解力越高清晰度也越高,对摄像机来说,分解力是摄像机分辨黑白细线条的能力,广播级摄像机多在800线以上。
测试也简单,即在标准照度条件下(2000lux、3200K色温),镜头光圈置于5.6与8之间,(依最佳观察效果而定)拍摄分解力卡。在镜头最佳聚焦情况下,从精密黑白监视器上读取分解力线数。
必须强调的是,应从黑白监视器上读取分解力,因为摄像机编码输出是R.G.B三路叠加,而分解力的指标是Y通道或G通道;如若用彩色监视器读取的分解力,则低于黑白监视器的读取值。同样应注意的是摄像机输出信号也应从Y或G通道接出,而不能从编码输出接出。
在测试时,人们不仅要测摄像机的分解力,还要测摄像机在5MHZ(约为400线)时的调制深度,简称调制度。
实际上调制度是比分解力更实质地体现摄像机性能的重要参数。这是因为摄像机的输出信号,在送达家庭电视机之前,要经过电缆传送、记录、编辑、地面传输等过程,在这些过程中受到带宽的限制,结果使摄像机原有的高频分量损失。但是反映在传送带宽内,5MHZ处振幅大小的调制度却不受带宽限制的影响。换句话说就是400线以上的信号衰减较大,而400线左右的信号几乎没有衰减。人眼对400线左右的细节又较敏感,有时即使分解力线数较高,而400线时的调制度不太高,人眼的主观感觉并不认为图像质量好。因此调制度就成了左右电视机清晰度的重要参数。这一指标的测试也很简单,摄像机在标准照度下拍摄多波群卡,通过示波器取其行频波形,以最低频0.5MHZ的幅度为基准,去除5MHZ的幅度,再乘上100%就是调制度(MTF).80年代摄像管摄像机的调制度仅30%,CCD摄像机调制度可达70%,而数字摄像机可达80%。
通过上述分析,我们在上文说到的水平分解力在800线以上,这一分解力确切地说是极限分解力,也就是人眼在高精度监视器上观察黑白相间线条隐约可见时的清晰度,此时如果从示波器上看,调制度大约在5%左右。而标准分解力则是调制度为50%的分解力。通常说明书上给出的都是极限分解力。由此可使我们得以在无高清晰度监示器的条件下,检测具有800至900线分解力的摄像机。
五 信杂比
信杂比是指在标准照度下摄像机输出信号(Y通道)的峰峰值与视频杂波的有效值之比。这一指标是不同档次或等级摄像机的主要技术标志。广播级摄像机的信杂比一般在60 Db上下。
信杂比测量是在摄像机处于盖上镜头盖或关闭光圈的条件下,使视频信号中的黑电平保持在5%(35mv)处,用视频杂波仪测量0dB、+9dB、+18dB时不加权的信杂比。
第三篇:千兆网口接线定义
千兆网口是向下兼容的,和百兆的网口也可以连接。
百兆网线水晶头的卡线器位置,用来固定后端的网线。千兆水晶头改用了另外一种卡线器。这个卡线器和百兆的相比优点是环形整体固定,一是比较结实,二是不会把网线压扁而造成传输效率下降。
首先,双绞线从分线器的后部穿入,在十字形的导入口就按照线对分开了,白、橙入左孔;浅蓝、深蓝入上孔;浅绿、深绿入下孔;浅棕、深棕入右孔。到前端后按照白、橙、浅绿、深蓝、浅蓝、深绿、浅棕、深棕的顺序被排好,线头与前端对其后就可以插入RJ45水晶头的外壳了。这个是一个不错的改进,一下就把原来那种又掰又捏又捅的别扭工序摒弃了。而且线芯只有到了顶端才变成平面的排列,在整个接头的 80%的区域仍然保持着双绞和圆形的状态,这明显比原来的百兆接头强多了。不光是制作工序上,在传输效率上也是比较大的改进。(这么多怪怪的零件,看来原来的RJ45压线钳是对它束手无策了)
以太网 100Base-T4 接口: TX_D1+ Tranceive Data+(发送数据+)TX_D1-Tranceive Data-(发送数据-)
RX_D2+ Receive Data+(接收数据+)
BI_D3+ Bi-directional Data+(双向数据+)BI_D3-Bi-directional Data-(双向数据-)RX_D2-Receive Data-(接收数据-)BI_D4+ Bi-directional Data+(双向数据+)
BI_D4-Bi-directional Data-(双向数据-)
第四篇:接口实验报告
贵
州
大
学
实
验
报
告
纸
系 别 电科 班 级 电科 091 班 姓 名
学号
课 程 名 称 微机接口技术 成 绩
评 定
教师签名 实 验 时 间
2012 年 6 月 11 日 实验四
综合实验 一、实验目的1、了解 8253 定时器的硬件连接方法及时序关系,掌握 8253 工作方式以及编程方法。
2、了解 8255 芯片结构及接口方式,掌握 8255 输入、输出的编程方法。
3、掌握 8088 中断系统原理,掌握 8259A 扩展 8088 系统中断的方法及编程。
二、实验内容
编程将 8253 定时器 0 设定为方式 3,定时器 1 设定在方式 2,每 5 秒产生一次中断请求(共八次),用 8259 实现中,CPU 响应后,通过 8255 的 A 口读取一次开关状态(8 位),存入内存单元中,读入 8 个数据后,再通过 8255 的 B 口送到 LED 依次输出显示(1 亮,0灭)。
三、实验要求
根据实验内容编写一个程序,并在实验仪上调试和验证。
四、实验说明和电路原理图
本实验需要用到 CPU 模块(F3 区)、8253 模块(C4 区)、8255 模块、8259 模块(C5区)、频率发生器模块(E6 区)、八位逻辑电平显示模块(B5 区),8253 电路原理图参见图 4-1。频率发生器电路原理图参见图 4-2。8255 电路原理图参见图 4-3。8259 电路原理图参见图 4-4。
8253 是一种可编程计数器/定时器,它是用软、硬技术结合的方法实现定时和计数控制。其主要有以下特点:
①有 3 个独立的 16 位计数器,每个计数器均以减法计数。
②每个计数器都可按二进制计数或十进制(BCD 码)计数。
③每个计数器都可由程序设置 6 种工作方式。
④每个计数器计数速度可以达 2MHz。
8259A 是专用控制中断优先级而设计的集成电路,可对中断源的优先级排队、识别、及提供中断矢量。单块 8259A 可编程实现 8 级中断管理,并可选择优先模式及中断请求方式。另外由多片 8259A 级联,可构成多达 64 级的矢量中断系统。
中断序号 0 1 2 3 4 5 6 7
变量地址 20H 23H 24H 27H 28H 2BH 2CH 2FH 30H 33H 34H 37H 38H 3BH 3CH 3FH 本实验用 2 号中断源 IR2,接单次脉冲,中断方式为边沿触发方式。
程序每按一次按键产生一次中断,中断服务程序使输出状态反转一次。
8255 是可编程的并行输入/输出接口芯片,通用性强且使用灵活。8255 共有三个八位口,其中 A 口和 B 口是单纯的数据口,供数据 I/O 口使用。C 口可分为两个 4 位端口(C 口 的上半部分和下半部),不仅可以作数据 I/O 口使用,还能用作控制线,配合 A 口和 B 口使用。
图4-1
8253
图4-2
频率发生器
GND12VCC24D08OUT010D17GATE011D26CLK09D35D44D53D62OUT113D71GATE114CLK115CS21RD22WR23OUT217A019GATE216A120CLK218U9C8253ICAD0ICAD1ICAD2ICAD3ICAD4ICAD5ICAD6ICAD7A0A1P37CCS_8253R11C4.7KVCCVCCP38CCLK0P39COUT0P40CGATE0P41CCLK1P43COUT1P42CGATE1P44CCLK2P45COUT2P46CGATE2/RD_IC/WR_ICCLK10RST11Q19Q47Q55Q64Q76Q813Q912Q1014Q1115Q121Q132Q143VDD16GND8U4ECD4020IOCK1VCCIOCK2IOCK3IOCK4P23E150HzP24E300HzP25E600HzP26E2.4kHzP28E153.6kHzP27E19.2kHz2.4576MHzD034D133D232D331D430D529D628D727PA04PA13PA22PA31PA440PA539PA638PA737PB018PB119PB220PB321PB422PB523PB624PB725PC014PC115PC216PC317PC413PC512PC611PC710RD5WR36A09A18RESET35CS6GND7VCC26U11C8255ICAD0ICAD1ICAD2ICAD3ICAD4ICAD5ICAD6ICAD7P58CCS_8255R13C4.7KVCC/RESET_ICA1A0VCC12345678JD3CPA0-712345678JD4CPB0-712345678JD5CPC0-7/RD_IC/WR_IC
图 4-3
8255 电路
图 4-1
8259
五、实验程序
;//***************************************************************;文件名: 综合实验;功能: 8253定时/计数器,8259中断,8255并行输入输出实验;接线:;
用导线连接CPU模块的208H到8259的CS_8259;;
;
用导线连接CPU模块的8000到8253模块的CS_8253;;
频率发生器模块的153.6kHz接8253模块的CLK0;;
8253模块的CLK1接OUT0,;//***************************************************************
TIM_CTL
EQU
8003H
;8253 状态/命令口地址 TIMER0
EQU
8000H
ICAD0ICAD1ICAD2ICAD3ICAD4ICAD5ICAD6P47CCS_8259R12C4.7KVCCP48CINTP49CINTAVCCP50CINT_0P51CINT_1P52CINT_2P53CINT_3P54CINT_4P55CINT_5P56CINT_6P57CINT_7INT_0INT_1INT_2INT_3INT_4INT_5INT_6INT_***881RP1C10KVCCINT_0INT_1INT_2INT_3INT_4INT_5INT_6INT_7/RD_IC/WR_ICIR018IR119IR220IR321IR422IR523IR624IR725CAS012CAS113CAS215AD011AD110AD29AD38AD47AD56AD65AD74CS1INT17INTA26RD3WR2GND14VCC28SP/EN16A027U10C8259A0ICAD7
TIMER1
EQU
8001H
TIMER2
EQU
8002H
MODE03
EQU
00110110B MODE12
EQU
01110100B MODE22
EQU
10110100B CS8259
EQU
208H C8255
EQU
203H
;8255 状态/命令口地址 P8255A
EQU
200H
;8255 PA 口地址 P8255B
EQU
201H
;8255 PC 口地址 P8255C
EQU
202H
;8255 PC 口地址
DATA
SEGMENT ARY
DB 8 DUP(?)DATA
ENDS STACK
SEGMENT STACK STA
DW 50 DUP(?)TOP
EQU LENGTH STA STACK
ENDS
CODE
SEGMENT
ASSUME CS:CODE,DS:DATA,ES:DATA,SS:STACK START:
MOV
DX,C8255
MOV
AL,10011000B
;设置8255的A口输入,CH口输入,B口输出,CL口输出
OUT
DX,AL
CALL
DSCSH
;8253初始化
CALL
ZDCSH
;8239初始化
MOV
BX,OFFSET ARY
MOV
CX,8
XUNH:
CMP
CX,0
JNE
XUNH
MOV
CX,8
MOV
BX,OFFSET ARY LOOP1:
MOV
AL,[BX]
MOV
DX,P8255B
OUT
DX,AL
CALL
DELAY
INC
BX
LOOP
LOOP1
IRQ2:
CLI
MOV
DX,P8255A
IN
AL,DX
NOT
AL
MOV
[BX],AL
MOV
DX,P8255B
OUT
DX,AL
CALL
DELAY
INC
BX
DEC
CX
STI
IRET
ZDCSH
PROC NEAR
XOR
AX,AX
MOV
DS,AX
LEA
AX,IRQ2
MOV
DS:28H,AX
MOV
AX,CS
MOV
DS:2AH,AX
MOV
DX,CS8259
MOV
AL,00010011B
;ICW1
OUT
DX,AL
INC
DX
MOV
AL,00001000B
;ICW2:中断号从8开始
OUT
DX,AL
MOV
AL,00001111B
;ICW4:全嵌套方式,86/88系统,自动结束中断
OUT
DX,AL
MOV
AL,11111011B
;OCW1:开放Int-2
OUT
DX,AL
MOV
DX,CS8259
MOV
AL,20H
;OCW2:非特殊EOI结束中断
OUT
DX,AL
STI
;开中断
RET ZDCSH
ENDP
DSCSH
PROC NEAR
MOV
DX,TIM_CTL
MOV
AL,00110110B
OUT
DX,AL
MOV
DX,TIMER0
MOV
AL,00H
OUT
DX,AL
MOV
AL,03H
OUT
DX,AL
MOV
DX,TIM_CTL
MOV
AL,01110100B
OUT
DX,AL
MOV
DX,TIMER1
MOV
AL,0E8H
OUT
DX,AL
MOV
AL,03H
OUT
DX,AL
RET DSCSH
ENDP
DELAY
PROC
NEAR
PUSH
CX
PUSH
BX
MOV
BL,20 DL1:
MOV
CX,8000H DL2:
LOOP
DL2
DEC
BL
CMP
BL,0
JNE
DL1
POP
CX
RET DELAY
ENDP
CODE
ENDS
END
START
六、实验步骤
1)系统各跳线器处在初始设置状态。
用导线连接 CPU 模块的 200 到 8253 模块的 CS_8253; 频率发生器模块的 153.6kHz 接 8253 模块的 CLK0; 8253 模块的 CLK1 接 OUT0,CLK2 接 OUT1,GATE0、GATE1、GATE2 接+5V,OUT2 接 L0 灯。
2)启动 PC 机,打开 THGMW-88 软件,输入源程序,并编译源程序。编译无误后,下载程序运行。
3)观察发光二极管的显示情况。
七、实验现象和分析 实验是为了输入和显示开关状态,并且通过 8253、8255、8259 来实现。实验通过 8253 来实现定时的采样,实验中每 5 秒产生一次定时输出;用 8259 来产生中断,当定时时间到就产生一次高电平输出,引起中断,产生中断后,CPU 对开关进行读取,并输出,通过发光二极管来显示输出结果;用 8255 来实现数据的输入和输出,输入为读取开关量,而输出为结果的输出到发光二极管,分别通过 8255 的 PA 口和 PB 口来实现。运行程序后,可以对开关进行拨动,在定时时间到后,可以看到发光二极管显示的状态的开关的状态相同。由此,可以认为电路对开关状态的输入和输出是正确的,实验完成了预想的要求。
八、实验总结
通过实验基本上掌握了 8253、8255、8259 的使用方法。8253 为计数器,有三个计数通道,并且有六种工作方式,可以产生多种不同的波形输出,实现不同长度的时间定时,通过方式命令字的设置可以设置不同计数器的不同方式。8255 为并行输入输出芯片,有三个输入输出口,可以实现三路的输入输出,并且有几种工作方式,在实验中,只用了方式 0,作为普通的输入输出口,工作时,可以通过方式命令字来设置三个口的工作状态。而 8259 为中断管理芯片,可以实现 8 路的中断处理,他可以实现中断的屏蔽,优先级的设定,中断号的产生等,他也可以通过设置方式命令字来设置它的工作方式。实验还使自己掌握了,多芯片联合工作的方法,这为以后的电路设计提供了很多的经验。
第五篇:认识网络摄像机
网络摄像机是一个高科技新产品,由于横跨网络与安防两大之前干系不大的行业,隔行如隔山,搞网络的不太懂监控、搞监控的不太懂网络,这给本来就模糊的网络摄像机蒙上一层神秘的面纱。目前而言,在经销商阵营,大多数的销售人员对它的认识也仅处在水中月镜中花的朦胧程度。更别说买家了。绝大多数的买家要不就跟着感觉走,要不就由价格说话。导致的结果就是买家买不到合适的产品,用不了多久就把产品放到回收站。钱花了,事还没办成。
本文就教大家认识一下网络摄像机,做一个精明的买家。
一,认识网络摄像机:
我们有必要先来了解下网络摄像机。网络摄像机又叫IP CAMERA(简称IPC)由网络编码模块和模拟摄像机组合而成。网络编码模块将模拟摄像机采集到的模拟视频信号编码压缩成数字信号,从而可以直接接入网络交换及路由设备(交换机、路由器这两个产品对于有网络的用户都不陌生吧),再接入互联网。IPC自带IP地址,有些品牌的IPC还自带了域名,如天视达。局域网内的用户可以通过登录IPC的IP地址来观看监控视频并进行控制管理和录像。远程用户则可以通过登录IPC的域名对IPC进行观看、控制、管理和录像。无任是局域网用户还是远程用户登录IPC都可通过网页浏览器(IE)和相应的视频集中管理软件来实现,具体这里就不多说了,有兴趣的朋友可致电4008801885咨询了解。
相对于模拟摄像机,IPC能更简单的实现监控特别是远程监控、更简单的施工和维护、更好的支持音频、更好的支持报警联动、更灵活的录像存储、更丰富的产品选择、更高清的视频效果和更完美的监控管理。另外,IPC支持WIFI无线接入、3G接入、POE供电(网络供电)
和光纤接入。总之IPC的出现对于网络和安防行业来说具有里程碑的历史意义。
大多数IPC的外形和模拟的摄像机差不多,由于IPC常被用于家庭和办公室,考虑到美观,IPC有更丰富更精美的造型。如天视达的“天使之光”。
IPC的价值极大。把它安装在家里,您就可以随时随地的看到家里的实时情况:了解孩子的学习情况、关爱老人、看看宠物;把它安装在店铺里,您就可以足不出户的巡视店铺了:了解员工工作情况、客流分析、货品摆放情形等;把它安装在产品展览室,你就可以随时让远方的客户看样品了;把它安装在医院、病人就可以得到远方医生们的会诊。。。。毫不夸张的说,IPC可以安装在任何一个地方,IPC终将走进千*万户、走进各个行业各个领域
从而为社会的和谐发展作出重大的贡献。
简单地了解了IPC后,您一定蠢蠢欲动了吧!那么,买IPC要注意些什么呢?怎样才能买到
适合自己的好产品呢?这就得了解IPC有哪些关健参数了。
二,网络摄像机的几个关健参数
1)
镜头
镜头是视频采集的第一道关,镜头的质量自然会影响视频的效果,尽管镜头有很多种,对视频效果影响很大,镜头的价格从几十元到几万元不等。但在监控领域还不至于买个几万元的镜头,故而基本上市面上的镜头都差不多。不过镜头的焦距对视频效果的影响倒值得注意,这意味着您选择产品时应该考虑是否选择可更换镜头的型号,或考虑是否选择变焦的镜头。说到这里不得不提一下,变焦指的是镜头的焦距可以改变。有些IPC带有数码变倍的功能,数码变倍的意思是可以将视频图像放大来看,丝毫不会改变图像的清晰度,对IPC的应用价
值不大。特别要当心有些不专业的销售人员或JS偷换概念。
2)
图像传感器
这是影响视频效果的关健因素。目前市面上有CMOS和CCD两种,成像方面,在相同像素下CCD的成像通透性、明锐度都很好,色彩还原、曝光可以保证基本准确。而普通CMOS的产品往往通透性一般,对实物的色彩还原能力偏弱(被监控物的本身色调与监视器上看到的相差较大,甚至完全变色),曝光也都不太好,由于自身物理特性的原因,普通CMOS的成像质量和CCD还是有一定差距。CMOS的视频图像艺术化效果比较好,就像人们照艺术照一样,大家都知道艺术照很漂亮但很不逼真,人们通常会被其艺术化的效果迷惑而忽略清晰度和逼
真度的重要性,事实上监控行业时这两点是非常重要的。
3)
视频压缩算法(也叫视频压缩格式)。
这是IPC里最重要的关健因素,因为其直接决定了视频清晰度、视频流畅度和视频存储空间。而经我多年了解,这条最重要的因素却总是被卖家有意无意的避而不谈,原因有可能是其本身也说不出其中道道,或有以次充好的动机。但作为精明买家的您就一定要了解清楚了。目前市面上的IPC主要有H.264与MPEG4两种视频压缩算法。前者压缩能力更强,视频损耗更少,因此更清晰并更流畅。前者可以支持25帧/秒的帧率,后者一般不超过10帧/秒。这意味着后者的视频不连贯、不实时;因为MPEG4压缩率不够在,如果做全实时的,码流太大,远程就很难看得到了。
4)
图像格式
图像格式是决定了视频图像的实际像素,分DVD格式和VGA(640*480)格式和CIF(352*288)格式两种,DVD图像格式家族里包含D1(720*576隔行扫描)、D2(1048*720)、D3(1920*1080
隔行扫描)、D4(1280*720逐行扫描)和D5(1920*1080逐行扫描)五种图像格式,目前市面上主流的的为D1.支持D3和D4的百万像素也上市了,只是由于其占用带宽较多,应用还不广泛。
不同的同像格式像素不同,录像文件大小也不一样。如果不是相同的图像格式,我们不能光凭录像所需的硬盘大小来确定IPC的优劣。一个IPC的图像格式往往可以调节,这意味着如果您的硬盘空间不够大,但又需要录制较长的时间,就可以通过降低图像格式来实现。
5)
帧率
众所周知,任何视频文件都是由连续的图片组成的,一张图片我们就叫它为一帧,如一秒钟的视频由25张连续的图片组成,这时的帧率就是25帧/秒。在PAL制式下,25帧/秒的视频能非常逼真的表现动作。如果低于25帧,视频中的动作会不够连贯,越低越不连贯甚至会出现跳跃的动作假像。因此帧率在视频监控中非常重要。这个参数在视频监看的界面上会表现出来。这个参数,同样被很多不够专业的销售员避而不谈。大家在选购产品一定要注意这个,因为是否能支持25帧/秒的IPC成本相差也较大。
6)
双码流
有些IPC被设计成支持两条视频信号,即所谓的双码流。双码流的好处是用一路码流观看、一路码流存储比观看和存储都用一路码流能更有效的防止网络阻塞,从而能更好的保障视频在有效的网络带宽上的流畅性。
7)
前端存储
有些IPC上带有SD卡插槽或USB移动存储接口,我们管其叫前端存储。前端存储常被应用于带宽不是很足的监控环境中。有些环境不便装宽带,利用前端存储的功能,保存监控的录像从而起到一定的监控效果,不能不说也是一种办法。
8)
产品线
大多数较大的监控系统中,往往要运用到多种型号的产品,由于目前各厂商的视频管理软件与其它品牌的IPC很难兼容。因此在为监控系统选择品牌时,必须要考虑该品牌是否有丰富的产品线以能应付各种环境的需求,以及系统解决能力。如支持红外、支持WIFI无线、支持POE、支持光纤接入、支持云台、支持变焦、是否有视频服务器以便可与某些特殊的模拟
摄像机结合以及是否有视频解码器可以接入电视墙等。
9)
软件功能
大多数的监控系统都需要集中管理,因此视频管理软件的功能是否强大,界面是否友好也是在产品选型时必须考虑的问题。管理软件的功能模块比较多,因此视频管理软件优劣的鉴定需要综合全面的考虑,不能夸大某一功能,也不能忽略某一功能,要以实际需求出发。
除以上9条以外,红外夜视能力、超低照度、宽动态、强光抑制等功能也是IPC的一些重要参数。综上所述,IPC的选型需要掌握一定的专业知识并更有耐心。不选贵的只选对的,希望大家能选择到自己合适的IPC。