第一篇:八年级上学期数学试卷分析
八年级上学期数学试卷分析
一、试题的评价
这次八年级数学试卷,以新课标为依据,题型较新,较好地体现了新课程基本理念,有利于促进初中数学课堂教学改革和新课程的实施。试卷考查的知识点分散、覆盖面广,体现八年级学生所学知识的重点内容。试题内容丰富,贴近生活,灵活性强,从不同角度对学生所掌握的数学基础知识和运用数学知识分析问题、解决问题的能力进行了全面的考查。今年的数学试卷具有如下几个亮点:
1、突出考查八年级数学的主要内容
全卷共26题,总分120分,代数部分约占60%,几何部分约占40%。着重考查了代数运算、几何证明、函数方程等重点知识,以及数形结合、逻辑推理等基本数学思想方法,并注重了灵活运用知识解决问题的能力的考查。
2、面向全体,注重基础
基本题以常规题型为主,并以基本要求为考查目的,强调知识的直接应用,问题表述简洁明了,例如避免了繁难的数值计算,降低了几何证明中的难度与推理过程。
3、重视与实际生活的联系,考查数学应用能力
全卷设置了9个与现实生活有关的实际问题,分值占70分。这些试题贴近学生的生活实际,体现了数学与生活的联系,在考查中引导学生经历解决实际问题的过程,体验运用数学知识解决实际问题的情感。
4、注重灵活运用知识和探求能力的考查
如3、4、5、6小题,考查学生观察图形、图像的能力,灵活运用知识与方法的能力;第15题考查学生通过阅读分析探求规律的能力;23题与24、25、26题具有开放性、探索性,考查不同层次的学生分析、探求、解决问题的能力,具有较好的区分度。
5、试卷体现新课程理念
有些试题较好地考查了学生的创新能力、探究能力。另外,试题还从另一个侧面反映了数学内容来源于现实生活,数学是解决现实生活中的实际问题的一门学科,如第3、4、5、6、7、23、24、25、26题,从不同层次和角度考查学生的分析问题能力和解决问题能力。
这些,对我们今后的教学工作起到了较好的导向作用,有利于教师引导学生从题海中解放出来,自觉体验和探究现实生活中的数学规律,使学生的数学学习融入现实生活,数学教学达到培养学生学习数学的兴趣的目的,同时也使学生明确了学习数学的方向,从现实生活中学会观察、探究和总结数学规律,把生活常识与所学数学知识联系起来,从而能够学好初中数学。
二、学生的答题情况
这次的100份试卷,最高分120分(3人),最低分为6分,平均71.59分,优秀46人(96分以上),及格52人(72分以上)
第一大题 选择题10个小题,每小题2分,共20分,平均得16.22分。
第1题考查了分解因式的知识。
第2题主要考查全等三角形的判定,(ASS)不能判定三角形全等,有些同学错误的认为(AAS)也不能判断三角形全等。
第3题三角形的玻璃被打碎成三块,只有第③块符合(ASA),其他两块均不能判断。
第4、6题是生活与数学相结合的题,只有生活知识或只有数学知识是无法作出正确选择的,判断时需有一个转化过程。
第5题有些同学根本没有找到对称轴就下结论,因此出现错误。第7题消费各项所占百分比在其他学科也有应用,学生出错较少。
第8题涉及简单的单项式运算及幂运算,出错较少,只有个别学生没有做对。第9题失分多,原因是不知道什么数的零次幂等于1,属概念不清。
第10题在已知两三角形有两边相等时,若要判断其全等,只有两种可能,或(SAS)或(SSS),这道题不可能用(SSS),很多学生没有选择(SAS),失分的较多。第二大题 填空题10个小题,每小题3分,共30分,平均得18.5分。第11题出错原因大多是没考虑系数的符号。
第12题出错原因是不能正确利用同底数幂的运算法则,或忽视负数的奇数次幂为负数。第13题出错大部分是基础差的学生,不清楚正比例关系中k值的求法。
第14题为较常见的一次函数应用题,程度好的学生能正确写出关系式,部分学生不能正确写出x的取值,程度较差的学生不能写出正确的关系式,也有关系式中带着单位(cm)(kg)的。
第15题是一个先去括号再进行多项式的加减运算题,出错的主要原因是括号外带“—”号的去括号后不能将各项都变号,或找不出同类项和不能正确合并同类项。
第16题是一个典型的配方问题,此方法在初三时会常用到,近几年高考也是常用到的,可以说是一种重要的数学方法,此题出错者较多,主要是对完全平方公式的各项关系不完全清楚。第17题出错较少,出错者多是猜想出来的,缺少依据,因为根本找不到△PMN的边与CD上部分线段的等量关系。
第18题是由学生添加条件再进行证明,添加条件可以是AD=BC用(SSS)也可是∠CAB=∠DBA(SAS)大部分学生可以选择其中一个条件,也有部分学生选择不符合三角形全等的条件如(SSA)。
第19题有一定的综合性,需由条件将两个函数转化成方程组解出k、b的值,学生出错较多的原因是不知道函数图象上的点满足函数关系式,因此得不到关于k、b的二元一次方程组。第20题属代数、几何的综合性题目,需根据一次函数先求出与坐标轴的交点,再由三点确定三角形,最后求三角形面积。用到的几何知识少而且简单,出错原因与19题相似,19题做错者20题基本上没能做对,可见学生对函数与图像之间的“数、形”关系没有很好的掌握。第21题是多项式运算中较为简单的问题,但抽样的100份试卷中竟有40名学生为0分。有没做的,也有没做对的,做错者多为完全平方公式与平方差公式用错或去括号时出现错误,也有在加减运算中出错的。
第22题是用提取公因式法分解因式的问题,虽然题目较为简单,但抽样中有52名学生为0分,出错原因是有当成计算题去做的,也有提取公因式时需将括号内外变号时出错的(内变外不变或外变内不变),教学中应引起重视。
第23题与18题有共同之处,属较开放性命题,需自己添加条件,已知两三角形一角及一角所在的边对应相等,可添加条件:另一边对应相等或还有一组对应角相等,也可添加条件为△EFC≌△DFA。出错者添加条件的一边符合(SSA)情况无法判断全等,也有添加∠A=∠C这两个角都不是单个的角,应表示为∠BAE=∠BCD,可能是学生心里明白但表示不正确导致错误,也有证法不规范被扣分者,这与教师的要求有直接关系。
第24题是叫找出一对全等三角形,实际上只有一对全等,大部分同学能够找出并正确证明;也有一部分学生只能找到这对全等三角形,不能给出正确的证明;另有一部分学生不能正确的找出这对全等三角形;还有少部分学生此题没做。证明时有的学生不用三角形符号“△”表示三角形,如(ACE≌BCD),还有用“=”号表示全等的,应引起老师们的重视。第25题是利用函数图象上点的坐标满足函数关系式的特点求出函数关系式的题,并能根据一个变量的变化情况确定另一个变量的变化范围。有近一半学生能正确解答,有41名学生完全没有做对。主要原因是不能利用点的坐标列出方程组,也有能列出方程组但不能正确的解出方程组,从而使得出的函数关系式错误,这也就导致了后一问的错误,也有不会列方程组的或空白没做的。26题是利用函数关系解决实际问题的应用题类,空白不做者较多。有些同学虽没有计算数据,但从图像上可以看出用30元钱租书卡租用的时间长(如果不提任何依据还是不得分),此题正确求出两个函数关系式是关键,后面的问题都是以函数关系式为依据来解的,有的学生第一问就解错了,直接影响后面的得分,因此认真解题,每步不出错误是得分关键。从答题情况看,如何使学生能把会做的题做对,是今后摆在广大教师面前的一个大问题,这个问题其实就是学生的数学基础的问题,也是因材施教的问题,需要我们全体数学教师的努力。
三、今后教学的建议
1、要立足基础。初中阶段的数学教学必须面向全体学生,立足基础,教学过程中要落实基础知识、基本技能和基本数学思想方法的要求,特别要关心数学“学困生”的学习,通过学习兴趣的培养和学习方法的指导,使他们达到学习的基本要求,提高合格率。
2、要加强培养学生的数学的应用意识和建模能力。不少试题体现了数学应用思想、实践与操作、过程与方法、探究学习等新课程理念。新课程标准非常注重学生的动手操作和实践探究,数学的学习过程是学生不断探究、不断实践的自主学习过程。因此,在今后的教学过程中应以新课程理念为指导,必须重视学生的动手操作和实践探究能力的培养,要经常从所熟悉的实际生活中和相关学科的实际问题出发,引导学生通过观察、猜想、测量、探究,归纳抽象出数学概念和规律,让学生不断体验数学与生活的联系,提高学习兴趣的同时,培养应用意识和建模能力,帮助学生走出死读书题海战术的困境,提高教学效果。
3、培养学生的数学语言表述能力。学生在答题中,由于书写表达的不规范或是表达能力的欠缺,也是造成失分的原因。如解答过程的阐述不清等。表述是一种重要的数学交流能力,因此,教学中要重视训练,培养学生良好的数学语言表述能力,尽量减少由于书写表述不清造成的失分。
4、要重视学生自主获取知识的教学。传统的教学是教师怎样教,学生跟着怎样学,学生的学习完全处于被动接受的状态,而新课程标准要求学生的学习是尝试探究、合作交流、主动获取知识。因此,教师在教学过程中要很好地把握好教授的“度”,也就是说,教师的任务不仅仅是传授知识,更重要的是传授学习数学的方法。
此外,新课程标准还要求教学过程必须关注学生的学习兴趣和经验,要加强课程内容与学生生活以及现代社会和科技发展的联系,培养学生搜集和处理信息的能力、阅读理解的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力,使学生具有终身学习必备的基础知识和技能,具有初步的创新精神、实践能力、科学和人文素养以及环保意识。因此,我们只有转变观念,树立全新的教学观和学生观,新课程的实施才更有成效。
第二篇:八年级上学期期末考试数学试卷分析
2012——2013学
八年级上学期期末考试数学试卷分析
一、试题分析
试题难度适宜,能重视考查基础知识、基本技能和数学思想方法。部分题目可直接运用公式、定理、性质、法则解决,无繁难计算、证明,对教学有导向作用。
二、从学生的失分情况上分析教情与学情
1.基础题和中档题的落实还应加强。比如,学生必会,应该拿分的一些中档题得分情况并不理想。这是因为我们在教学中对学习困难的学生关注不够,课堂密度小,双基的落实不到位。2.学生数学能力的培养上还有待加强。
(1)审题和数学阅读理解能力较弱。如第9题,其实在分段函数中,曾讲过这种类型,但学生根本就没有理解此题,造成思维混乱。因而,无从下手;造成严重失分。还有第25题,学生根本就没有读懂题。
(2)计算能力较弱。从所调查学生中可以看出,一部分学生的计算能力较弱。比如,第12题与第21题,这是送分题,但学生因为粗心而出错。
(3)运用数学思想方法解决数学问题的能力还需加强。试卷设置了一些涉及到开放性、探究性、应用性的问题,比如:第26题,第27题等;从调查中可以看到学生的得分率都不高,学生所学知识较死,应变能力也不好。这说明平时教学中,注重的只是告诉学生怎么解,而忽略了为什么这么解,也就是只有结果没有过程。造成学生应变差,题目稍有变化,就不知如何下手。学生不会综合运用所学知识结合数学思想去解决问题,这也是优秀率低的一个主要原因。
四、今后几点措施
1.加强对课程标准的研究。比如从试卷中体现出来的:立足基础性、注重能力性、感受时代性、强调应用性、渗透探究性、关注创新性、重视综合性、体验过程性。特别指出的是考试过程也是学习过程。2.加强对学生学习方法的指导和学习能力的培养。在后面的教学中应注重在课堂教学中发挥学生的主体作用,不光要传授知识,更应传授学习和考试的方法,注重学生能力的培养。今后的教学过程中,数学思想的教学要作为一个重点内容,使一部分优秀的学生真正能灵活运用数学思想解决实际问题,提高优秀率。
3.要养成反思的习惯。每次考完我要好好分析、研究学生的试卷,分析一下学生错误的主要原因,最好是分析到每个学生,指出学生的问题所在,反思自己在前一阶段中的得与失,从中获取经验和教训,并及时调整自己的教学,使自己的后一阶段的教学中更有针对性。另外,还应该培养学生养成反思的习惯,使学生的学习更有针对性、主动性和实效性,使学生能力的提高更快。
4.在后阶段的教学中,尽可能针对不同层次的学生采取不同的方法。对于基础较差的学生主要就是落实双基,让他们能拿到基本分;对于学有余力的学生,要适当给他们“吃点偏饭”,使他们的能力得到较快的提高,力争在中考中取得优异的成绩。总之,本学期我将会更好地适应新时期的教学的要求,在各个章节的学习上都积极征求其他老师的意见,学习他们独特的教学方法;同时,多参加公开课的讲评,努力学习别人的闪光点,不断提高自己的业务水平,使教学工作有计划,有组织,有步骤地开展。
第三篇:-2010学八年级数学试卷分析
2009—2010学第一学期期末
八年级数学试卷分析
八年级数学试卷是一份知识覆盖面广、基础性和创造性都强的试卷。它集检测反馈与训练提高于一体,对实践新课标具有一定的指导意义。本次期末考试数学试题是“稳中求活”。新课标中新的教育理念有充分的体现,本次考试既考查了学生对基础知识、基本技能和概念掌握情况,又考查了学生运用知识解决实际生活问题的能力,同时培养了学生的创新意识和实践能力,美中不足大题偏深。
一、试卷特点
1、注重基本知识,基本技能的考查,试卷内容覆盖了全册书的主要知识点,同时也注重考查学生的基本运算能力,注重培养学生的动手操作能力。如: 19、20、22等题。
2、设计了一些新颖的试题,用来激发学生的创造性思维和创新能力,考查学生从不同的角度去观察问题,同时也考查了学生的创新意识和实践能力。如: 26题。
3、基础性与创新性兼顾。前面填空题和选择题主要考查学生对“双基”的掌握,难度不大,这体现了数学要面向全体学生。后面的大题体现了对优生的开发与培养。
4、突出理论和实践的结合。如:
21、23等题。不足之处:
25、26题有些偏深,学生答题很困难。
二、考生答题错误分析
1、学生答题比较粗心,不认真审题,凭感觉答题。
2、基础知识掌握的不够熟练,尤其是基本的计算掌握的不扎实。
3、某些思考和推理过程,过程过于简单,书写不够严谨,字迹潦草。
4、对于知识的迁移不能正确把握,也就是不能正确使用所学的知识
三、教学中存在的问题及改进措施
1、学生的开放意识还不强,在下阶段的教学过程中,加强对多解题的训练的分析,让学生有较多的时间去思考,使学生学会思考,重视加强对学生的审题能力方面的训练题目。如对应用题要求的理解。
2、学生对于能力题的处理还不够到位
(1)阅读理解能力的考查,让他们懂得不仅是一门科学,也是一种语言。教师要注意培养学生运用数学语言进行交流的能力。在教学中,不仅要让学生学会如何解决问题,还必须让学生阅读和理解数学材料,会用口头和书面形式把思维的过程与结果向别人表达,听懂别人的数学见解。要提高学生运用数学语言(包括文字语言、符号语言和图形语言)的准确性、严谨性和流畅性,学会读数学、写数学、谈数学。
(2)计算能力的考查,主要是对法则、公式的特征和简便方法的应用没有搞懂,以致于造成了这样的错误,所以在今后的教学中既要注意学生对法则、公式的理解,也要加强学生检查的能力。
3、进一步重视思维能力和创新意识的培养,数学中的推理不仅包括分析、综合、抽象、概括等演绎推理方式,而且包括观察、试验、猜想、探索、调整等合情推理方式。我们老师应选配或设计一定数量的开放性问题、探索性问题,为培养学生的创新意识提供机会,鼓励学生对某些数学问题进行探讨,并在充分体现学生的自主性和合作精神形成获取、发展新知识,运用新知识解决问题的能力,所以针对这个问题,我们在每一节课都尽可能的给学生布置了几道拓展题。
4、重视应用题教学,数学新课改的基本理念是:学有价值的数学,我们应注意转变传统的学科体系观念,结合学生生活实际和社会实践,突出理论和实践的结合,引导学生重视实际,关心社会,将所学的知识应用于实际,并且注重动手能力,从数学角度对某些日常生活、生产和其他学科中出现的问题进行研究。
四、提出了对今后数学教学的几点建议:
1、向课堂教学要质量。依据课标,根据学生实际和认知水平,认真做好课前的教学设计。设计预案要有延展性、思辨性。尽力做到“复杂的问题简单化”、“知识情感化”,坚决克服“简单的问题复杂化”、“人情冷淡化”。
2、课堂上适当增加例题、训练题,以达到学生及时巩固知识的目的。
3、要做到“经常回头看”,在学习新知识的同时,及时复习巩固旧知识。
4、建立良好的师生关系。只有当知识的传授、能力的培养,伴随着师生情感的交流而进行,才能达到最佳境界。
5、培养学生良好的书写习惯、审题习惯、用画图工具规范画图的习惯,训练学生完整的解题步骤和规范的书写格式。
辛海珍 2010.1
第四篇:八年级数学试卷分析
八年级数学期末试卷分析
一、试卷分析:本次试卷紧扣《新课标》和教材,重视对基础知识、基本技能和基本方法的考查,试卷知识覆盖面广,题目难度呈梯级上升,中低档题占80%左右,不会让学生对试卷感到“望而生畏”,较好地营造了亲切的解题氛围,有利于考生的临场发挥。
二、学生试卷解答分析及阅卷反馈
1、学生试卷解答分析:整份试卷由选择题、填空题、解答题三部分组成。其中选择题10题,填空题10题,解答题7题,共 27道题。前25个小题较基础,学生认真,不马虎,就可以取得较好成绩。但是,第一题中的10小题,学生不理解题意而失分的较多;第二题的15、20小题,学生易马虎而失分的较多。27小题难度较大,大部分学生能得4-5分,最后一问难度较大,大多数的学生看不懂题意或根本不会做而不得分,做出来的学生也会因格式不严谨而失分,得满分的也有几个。因此,最高分120分。
2、阅卷反馈
(1)“双基”仍需进一步落实,自新教材以来,对于教学要求有的吃不透,尤其是对于教学的深广度把握不准,许多知识与技能仅满足于让学生“知”,而达不到使学生“会”,更不用说使学生“熟”了,教学中的“空档”较多。
(2)几何教学需要加强,表现为部分学生数学语言生疏,不严谨,动手能力差,对几何图形没有图感,特别是动点问题,要让学生化动为静,学会解题。
(3)分析问题的能力,探索、创新能力要继续加强,分析问题是解决问题的入口,不会分析,就谈不上解决,而探索、创新能力在随着学习的不断深入,要求会逐步加大,如果这一能力得不到应有提高,将会影响学生的继续学习。
三、教学建议
1.教师在教学前,首先要认真学习《课标》,掌握《课标》的新理念,在这一理念指导下,去理解教材,而不要单纯地由教材到教材,需研究教材中的练习与习题,了解教材对技能的深度要求。
2.几何教学要打好基本功,具有包含:几何语言;几何操作与实验;几何画图;几何动点问题等。教师应抓住时机,有计划、循序渐进地进行训练。
3.在课堂教学中,要给学生创设一定的问题情境,让学生独立思考,多“想”多“练”,“学而不思则罔”,只“练”不“悟”等于零,教师要在学生独立钻研的基础上组织学生问的交流,引导他们总结经验和规律。
第五篇:八年级数学试卷分析
2011——2012第二学期 八年级下册数学期末试卷分析
江起兵
一、总体评价
本套试题本着突出能力,注重基础的原则命题。按照《数学课程标准》的有关要求,突出了数学学科是基础的学科,八年级数学在中考中占的比例又大的特点,在坚持全面考察学生的数学知识、方法和数学思想的基础上,积极探索试题的创新,试卷层次分明、难易有度,既有对基础知识、基本技能的基础题,又有对数学思想、数学方法的领悟及数学思维的水平客观上存在差异的区分题,试题的立意鲜明,取材新颖、设计巧妙,贴近学生生活实际,体现了时代气息与人文精神的要求。
二、试题对今后教学的指导意义
1.加强基础知识的理解、记忆和解题基本方法的掌握
从试卷来看,部分学生失分还是由于基础知识、基本技能掌握的不够牢固所造成的。因此我在平时的教学中还要重视基础知识、基本方法和基本技能的训练。将基础知识打扎实。2.继续围绕主干知识,突出重点,对于学生较难理解的函数问题应该多复习。下学期要学反比例函数,我认为这块知识既是重点也是难点,我要做好充分的准备,首先把教材研究透彻,在授课过程中,充分给学生时间,让大组之内讨论直至理解。对每一个问题都要讲情楚、讲全面、讲透彻,让学生在讨论中互相研究,加深理解,确保学生该得到的分数能够拿到手。3.注重思想方法的渗透
对于重要的思想方法,例如做辅助线的方法等,在平时学习中应给予足够的重视,点滴积累,细心体会,理解其实质及应用。这次考试中两道几何大题都要用到作辅助线的方法,但是大部分学生都没有想到,下学期对于这方面的知识要重点练习。4.习题要精选,针对性要强
通过对试卷的分析可以看出,我们平时的训练题的选择不能盲目,要精挑细选,加强试题的针对性,既要涉及面广,又要突出考试的重点、热点内容;以专题形式复习,既要重点内容重点讲解练习,也要加强基础知识的巩固。在考试前,我们做了去年的期末考试卷,其中有一道函数图像题失分率较高,但是我们并没有进行专题的练习,导致这次期末考试中24题失分率较高。以后我要吸取教训,加强读图,识图,用图能力的培养,强化数形结合思想的训练。
通过以上分析,我认为在数学教学工作中,在抓基础题的同时,还要注重培养学生的能力,理解数学中的重要思想和方法,真正的授之以渔。
2012-6-27