第一篇:继电保护发展史及其应用方面
试论我国电力系统继电保护技术的应用现状与发展趋势
电力系统继电保护技术对电力维护起着至关重要的作用。随着科学技术的发展,计算机控制技术亦成功运用到电力系统继电保护中,为继电保护技术注入了新的活力,继电保护技术向着计算机化、网络化、一体化、智能化方向进一步的发展。
电力系统包含发电、输电、变电、配电等多个环节,地域分布广,系统结构复杂庞大,其中任何一点发生的故障,往往都会在瞬间影响和波及全系统,引起连锁反应,造成大面积停电,可能直接造成设备损坏,人身伤亡和破坏电力系统安全稳定运行。
电力系统继电保护技术是在上述背景下应运产生的,它是当电网或电力设备发生故障,或出现影响安全运行的异常情况时,能够自动切除故障设备和消除异常情况的技术与装备,其特点是动作速度快,其性质是非调节性的。
一、电力系统继电保护技术的应用现状
1.起步较晚发展迅速
电力系统继电保护技术主要研究电力系统故障和危及安全运行的异常工况,国内的研究开始于 2O世纪70年代后期,起步较晚,但发展迅速。在我国电力系统继电保护技术发展的过程中,1984 年以保护电脑的样机试运行后,通过鉴定和大规模生产。目前,线路保护产品已形成并得到广泛应用。微机保护取得多年的实际操作,依靠优良的先进技术和极为良好的原则性,则进程已经超越了进口保护。从 20世纪 8O 年代及以上的 220kV 高压电力系统,以保护使用进口,到现在的基本国内 220kV 系统的继电保护,反映了国内继电保护设备和具有明显优势。
2.微机继电不断发展
随着电力系统的不断发展,继电保护电力技术系统发展迅猛。在继电保护领域,成熟的微机继电保护技术的发展是最重大的进展。国内外学者经过长期研究和实践,证实了电力系统继电保护的重要作用。在电力系统继电保护技术飞速发展过程中,微机继电取得了新的成就。微机保护是电力继电保护的发展方向,它具有自我测试功能,逻辑的强大处
理能力,数值计算能力和记忆能力,其高可靠性、高选择性、高灵敏度,明显优于传统的电磁继电器和晶体管。另外,由于微机保护是用微型计算机构成的继电保护,它充分运用计算机技术,实现电力自动化,使得微机继电的性能更优,数字更准确。
二、电力系统继电保护技术的发展趋势
继电保护作为保障电力系统可靠运行的重要组成部分,其未来的发展趋势明显呈现出四个特征,即继电保护技术计算机化、继电保护技术网络化、继电保护技术一体化和继电保护技术智能化。
1.继电保护技术计算机化随着电力工业与计算机硬件技术的迅猛发展,从初期的8位单 GPU结构问世,不到 5年时间就发展到多 CPU结构,后又发展到总线不出模块的大规模结构。除了具备保护的基本功能外,还具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其他保护、控制装置和调度联网共享全系统数据、信息和网络资源的能力,高级语言编程等。在微机保护发展初期,曾设想过用一台小型计算机做成继电保护装置。由于当时小型机体积大、成本高、可靠性差,这设想没能实现。现在,同微机保护装置大小相似的工控机的功能、速断、存储容量都大大超过当年的小型机,因此,微机保护充分利用了计算机技术上的两个显著优势,即高速的运算能力和完备的存贮记忆能力,计算机技术与通信技术的飞速发展,为实现高可靠性和灵活性的通用软硬件平台创造了更有利的条件。
2.继电保护技术网络化
计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化,它深刻影响着各个工业领域并为之提供了强有力的通信手段。多年来,继电保护的作用也只限于切除故障元件、缩小事故影响范围,这主要是由于缺乏强有力的数据通信手段。随着电力系统发展的要求及通信技术在继电保护领域应用的深人,继电保护的作用不只限于切除故障元件和限制事故影响范围,还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统运行状态和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。显然,实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络连接起来,亦即实现微机保护装置的网络化。
3.继电保护技术一体化
在实现继电保护的计算机化和网络化的条件下,继电保护装置实际上就是高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息,也可将自身所获得的被保护元件的任何信息传送给网络控制中心,或任一终端。因此,每个微机保护装置不但可以完成继电保护功能,而且在正常运行情况下还可完成测量、控制、数据通信等功能,亦即实现保护、控制、测量、数据通信一体化。
4.继电保护技术智能化
近年来,人工智能技术如神经网络、模糊逻辑等在电力系统各个领域都得到了应用,在继电保护领域应用的研究也已开始。神经网络是一种非线性映射方法,很多难以列出方程式或难以求解的复杂非线性问题,应用神经网络可迎刃而解。距离保护很难正确做出故障位置的判别,从而造成误动或拒动。如果用神经网络方法,经过大量故障样本的训练,集中充分考虑了各种情况,则在发生任何故障时都可正确判别。
三、结语
总之,随着电力容量的应用不断扩大,而继电保护系统需要进一步的发展并不断增强,从而使得继电保护技术不断创新,继电保护系统也将进行全面的改革并提高其技术含量,电力系统继电保护技术也将向着计算机化,网络化,保护,控制,测量,数据通信一体化和人工智能化等方向迈进。
参考文献
[1]贺家李,李咏丽等主编.电力系统继电保护原理(第四版)[M].北京:中国电力出版社 2010年月 8第四版.
[2]张保会,尹项根主编.电力系统继电保护[M].北京:中国电力出版社.2005年 5月第一版.
[3]张耀天.电力系统继电保护技术现状与发展研究[J].现代商贸 工业,2010(24).
第二篇:继电保护在生活中的应用
目录
继电保护在当代生活中的运用 ······························1 1 研究的背景与意义 ·····································1 1.1背景 ············································1 1.2继电保护的作用与意义······························2 2 研究内容··············································2 2.1继电保护的基本原理································2 2.2组成与分类········································3 3.3继电器············································4 3 继电保护在电厂中的应用································4 3.1继电保护在电厂应用的基本要求······················4 3.2继电保护的维护管理································5 3.3继电保护在电厂配置的规则和重点····················5 4 结论··················································7 5 心得体会··············································7 参考文献··················································8继电保护在当代生活中的运用 研究背景和意义
1.1研究背景
电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力,因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段。
建国后,我国继电保护学科、继电保护设计、继电器制造工业和继电保护技术队伍从无到有,在大约10年的时间里走过了先进国家半个世纪走过的道路。50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术[1],建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了指导作用。阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。因而在60年代中我国已建成了继电保护研究、设计、制造、运行和教学的完整体系。这是机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。
自50年代末,晶体管继电保护已在开始研究。60年代中到80年代中是晶体管继电保护蓬勃发展和广泛采用的时代。其中天津大学与南京电力自动化设备厂合作研究的500kV晶体管方向高频保护和南京电力自动化研究院研制的晶体管高频闭锁距离保护,运行于葛洲坝500 kV线路上[2],结束了500kV线路保护完全依靠从国外进口的时代。
在此期间,从70年代中,基于集成运算放大器的集成电路保护已开始研究。到80年代末集成电路保护已形成完整系列,逐渐取代晶体管保护。到90年代初集成电路保护的研制、生产、应用仍处于主导地位,这是集成电路保护时代。在这方面南京电力自动化研究院研制的集成电路工频变化量方向高频保护起了重要作用[3],天津大学与南京电力自动化设备厂合作研制的集成电路相电压补偿式方向高频保护也在多条220kV和500kV线路上运行。
我国从70年代末即已开始了计算机继电保护的研究[4],高等院校和科研院所起着先导的作用。华中理工大学、东南大学、华北电力学院、西安交通大学、天津大学、上海交通大学、重庆大学和南京电力自动化研究院都相继研制了不同原理、不同型式的微机保护装置。1984年原华北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用[5],揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。在主设备保护方面,东南大学和华中理工大学研制的发电机失磁保护、发电机保护和发电机?变压器组保护也相继于1989、1994年通过鉴定,投入运行。南京电力自动化研究院研制的微机线路保护装置也于1991年通过鉴定。天津大学与南京电力自动化设备厂合作研制的微机相电压补偿式方向高频保护,西安交通大学与许昌继电器厂合作研制的正序故障分量方向高频保护也相继于1993、1996年通过鉴定。至此,不同原理、不同机型的微机线路和主设备保护各具特色,为电力系统提供了一批新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。可以说从90年代开始我国继电保护技术已进入了微机保护的时代
1.2继电保护的作用与意义
改革开放30年来,中国的市场经济得到快速的发展,我国的经济建设取得了举世瞩目的成就。随着经济的发展,对电力的需求越来越大,电力供给开始出现紧张,在很多地方都出现了供电危机,使其不得不采取限电、停电等措施,以缓解电力供给的紧张。在如此严重的形式下,加强对电力系统的安全维护至关重要,而继电保护正是其中主要的保护手段之一。继电保护对电力系统的维护有重大的意义。一是,继电保护可以保障电力系统的安全、正常运转。由于当电力系统发生故障或异常时,继电保护可以实现在最短时间和最小区域内,自动从系统中切除故障设备,也可以向电力监控警报系统发出信息,提醒电力维护职员及时解决故障,这样继电保护不仅能有效的防止设备的损坏,还能降低相邻地区供电受连带故障的机率。同时还可以有效的防止电力系统因种种原因,而产生时间长、面积广的停电事故,是电力系统维护与保障最实用最有效的技术手段之一。二是,继电保护的顺利开展,在消除电力故障的同时,也就对社会生活秩序的正常化,经济生产的正常化做出了贡献,不仅确保社会生活和经济的正常运转,还从一定程度上保证了社会的稳定,人们生命财产的安全。前些年北美大规模停电断电事故,就造成了巨大的经济损失,引发了社会的动荡,严重的威胁到了人们生命财产的安全。可见,电力系统的安全与否,不仅仅是照明失效的题目,更是社会安定、人们生命安全的题目。所以,继电保护的有效性,就给社会各方面带来了重大的影响。
2研究内容
2.1机电保护的基本原理
电力系统发生故障后,工频电气量变化的主要特征是:
1)电流增大。短路时故障点与电源之间的电气设备和输电线路上的电流将由负荷电流增大至大大超过负荷电流。
2)电压降低。当发生相间短路和接地短路故障时,系统各点的相间电压或相电压值下降,且越靠近短路点,电压越低。
3)电流与电压之间的相位角改变。正常运行时电流与电压间的相位角是负荷的功率因数角,一般约为20°;三相短路时,电流与电压之间的相位角是由线路的阻抗角决定,一般为60°~85°;而在保护反方向三相短路时,电流与电压之间的限额将则是180°+(60°~85°)。
4)不对称短路时,出现相序分量,如单相接地短路及两相接地短路时,出现负序和零序电流和电压分量。这些分量在正常运行时是不出现的。
利用短路故障时电气量的变化,便可构成各种原理的继电保护。例如,据短路故障时电流的增大,可构成 过电流保护;据短路故障时电压的降低,可构成 电压保护 ;据短路故障时电流与电压之间相角的变化,可构成功率方向保护;据电压与电流比值的变化,可构成 距离保护 ;据故障时被保护元件两端电流相位和大小的变化,可构成 差动保护; 据不对称 短路故障时出现的电流、电压相序分量,可构成零序电流保护、负序电流保护和负序功率方向保护等。2.2组成与分类
模拟型继电保护装置的种类很多,它们都由测量回路、逻辑回路和执行回路 三个主要部分组成。
对继电保护装置的基本要求
1)选择性
选择性就是指当电力系统中的设备或线路发生短路时,其继电保护仅将故障的设备或线路从电力系统中切除,当故障设备或线路的保护或断路器拒绝动作时,应由相邻设备或线路的保护将故障切除。
2)速动性
速动性就是指继电保护装置应能尽快地切除故障。对于反应短路故障的继电保护,要求快速动作的主要理由和必要性在于
(1)快速切除故障可以提高电力系统并列运行的稳定性。
(2)快速切除故障可以减少发电厂厂用电及用户电压降低的时间,加速恢复正常运行的过程。保证厂用电及用户工作的稳定性。
(3)快速切除故障可以减轻电气设备和线路的损坏程度。
(4)快速切除故障可以防止故障的扩大,提高自动重合闸和备用电源或设备自动投人的成功率。
对于反应不正常运行情况的继电保护装置,一般不要求快速动作,而应按照选择性的条件,带延时地发出信号。
3)灵敏性
灵敏性是指电气设备或线路在被保护范围内发生短路故障或不正常运行情况时,保护装置的反应能力。
所谓系统 最大运行方式,就是在被保护线路末端短路时,系统等效阻抗最小,通过保护装置的短路电流为最大的运行方式;系统 最小运行方式,就是在同样的短路故障情况下,系统等效阻抗为最大,通过保护装置的短路电流为最小的运行方式。
保护装置的灵敏性用灵敏系数来衡量。灵敏系数表示式为:
(l)对于反应故障参数量增加(如过电流)的保护装置:
保护区末端金属性短路时故障参数的最小计算值
(2)对于反应故障参数量降低(如低电压)的保护装置:
保护区末端金属性短路时故障参数的最小计算值 4)可靠性
可靠性是指在保护范围内发生了故障该保护应动作时,不应由于它本身的缺陷而拒动作;而在不属于它动作的任何情况 下,则应可靠地不动作。
以上四个基本要求是设计、配置和维护继电器保护的依据,又是分析评价继电保护的基础。这四个基本要求之间,是相 互联系的,但往往又存在着矛盾。因此,在实际工作中,要根据电网的结构和用户的性质,辩证地进行统一。电力系统保护分为主保护和后备保护,后备保护是指当主保护或断路器拒动时,用来切除故障的保护,后备保护可分为远后备保护和近后备保护2种,远后备保护就是当主保护或断路器拒动时,由相邻的电力设备或线路的保护来实现的后备保护,如变压器的后备保护就是线路的远后备。近后备保护是当主保护拒动时,由本电力设备或线路的另一套保护来实现的后备保护,如线路的零序保护和距离保护就是相互后备的 2.3继电器
1)电磁型继电器
电磁继电器的基本结构形式有螺管线圈式、吸引衔铁式和转动舌片式三种,如图 1 所示。电流继电器在电流保护中用作测量和起动元件,它是反应电流超过一整定值而动作的继电器。电磁继电器是利用电磁原理工作的。
螺管线圈式;
吸引衔铁式;
转动舌片式
图 1 电磁型继电器的结构原理
2)集成电路型继电器
3)抗TA饱和、抗暂态超越的集成电路型电流继电器
3继电保护在电厂中的应用
3.1继电保护在电厂应用的基本要求
继电保护在电厂应用的基本要求:继电保护装置应满足可靠性、选择性、灵敏性和速动性的要求:这四 “性” 之间紧密联系, 既矛盾又统一。
(一)继电保护的可靠性可靠性是指保护该动体时应可靠动作。不该动作时应可靠不动作。可靠性是对继电保护装置性能的最根本要求。继电保护的可靠性主要由配置合理、质量和技术性能优良的继电保护装置以及正常的运行维护和管理来保证。任何电力设备(线路、母线、变压器等)都不允许在无继电保护的状态下运行。220kV 及以上电网的所有运行设备都必须由两套交、直流输入、输出回路相互独立, 并分别控制不同断路器的继电保护装置进行保护。当任一套继电保护装置或任一组断路器拒绝动作时, 能由另一套继电保护装置操作另一组断路器切除故障。在所有情况下, 要求这购套继电保护装置和断路器所取的直流电源都经由不同的熔断器供电。
(二)继电保护的选择性:选择性是指首先由故障设备或线路本身的保护切除故障, 当故障设备或线路本身的保护或断路器拒动时, 才允许由相邻设备保护、线路保护或断路器失灵保护切除故障。为保证对相邻设备和线路有配合要求的保护和同一保护内有配合要求的两元件(如启动与跳闸元件或闭锁与动作元件)的选择性, 其灵敏系数及动作时间, 在一般情况下应相互配合。
(三)继电保护的灵敏性:灵敏性是指在设备或线路的被保护范围内发生金属性短路时, 保护装置应具有必要的灵敏系数, 各类保护的最小灵敏系数在规程中有具体规定。选择性和灵敏性的要求, 通过继电保护的整定实现。
(四)继电保护的速动性:速动性是指保护装置应尽快地切除短路故障, 其目的是提高系统稳定性, 减轻故障设备和线路的损坏程度, 缩小故障波及范围, 提高自动重合闸和备用电源或备用设备自动投入的效果等。一般从装设速动保护(如高频保护、差动保护)、充分发挥零序接地瞬时段保护及相间速断保护的作用、减少继电器固有动作时间和断路器跳闸时间等方面入手来提高速动性。
3.2继电保护的维护管理
(一)防误措施
微机保护的一些定值设定以及重要参数修改在硬件设计上设置操作锁,操作时必须正确输入操作员的密码和监护人的密码时,方可进行正常操作,并将操作人和监护人的姓名等信息予以记录和保存。
(二)继电保护装置的日常维护
1.当班运行人员定时对继电保护装置进行巡视和检查,对运行情况要做好运行记录。
2.建立岗位责任制,做到人人有岗,每岗有人。
3.做好继电保护装置的清扫工作。清扫工作必须由两人进行,防止误碰运行设备,注意与带电设备保持安全距离,避免人身触电和造成二次回路短路、接地事故。
4.对微机保护的电流、电压采样值每周记录一次,对差动保护要记录差动电流值。
5.定期对保护装置端子排进行红外测温,尽早发现接触不良导致的发热。6.每月对微机保护的打印机进行检查并打印。
7.每月定期检查保护装置时间是否正确,方便故障发生后的故障分析。8.定期核对保护定值运行区和打印出定值单进行核对。
3.3继电保护在电厂配置中的规则和重点
(一)220kV系统双重化的保护,保护Ⅰ接于保护小母线Ⅰ(BMⅠ),保护Ⅱ接于保护小母线Ⅱ(BMⅡ)。独立组屏的断路器保护直流电源接入两组保护小母线之一。非电量保护、失灵保护、3/2接线断路器保护和短引线保护用直流电源,按均匀分布的原则,接入两组保护小母线之一。两组跳闸线圈的断路器控制回路,控制电源Ⅰ接于控制小母线Ⅰ(KMⅠ),控制电源Ⅱ接于控制小母线Ⅱ(KMⅡ)。
(二)220kV系统双重化的两套保护与断路器的两组跳闸线圈一一对应时,其保护直流和控制直流必须取自同一组直流电源。对于220kV断路器只有一组跳闸线圈的情况,失灵保护工作电源应与相应的断路器控制电源取自不同的直流电源系统。故障录波器、保护和故障信息系统设备采集柜的直流电源按电压等级(主变录波器按高压系统归类)分类接于相应的直流分电屏保护小母线。测控装置电源按电压等级分类(主变各侧测控装置按高压侧归类)接于相应的直流分电屏控制小母线。
(三)3/2断路器在每个线路、变压器间隔配三相电压互感器;为了检查同期和检电压,在母线上配单相电压互感器;变压器间隔上母线的情况下,母线上配备三相电压互感器。并联补偿电容器组的电压互感器(包括放电线圈兼电压互感器)的设置应满足电容器组内、外部故障继电保护原理的需求。失压保护和过电压保护使用母线电压互感器;开口三角电压保护和电压差动保护使用电容器组电压互感器。
(四)电压互感器二次绕组:110kV~220kV电压等级电压互感器应有三组保护专用的二次绕组。其中两组星型接线的二次绕组分别供两套主保护用,开口三角形接线的二次绕组接零序电压回路。按照“《国家电网公司十八项电网重大反事故措施》继电保护专业重点实施要求”,双重化的主保护的电压回路宜分别接入电压互感器的不同二次绕组。来自开关场电压互感器的二次的四根引入线和开口三角绕组的两根引入线应使用各自独立的电缆。
(五)双重化配置的两套保护应配置相互独立的电压切换装置。双母线接线电压切换装置,由隔离开关的辅助接点控制。保护用电流互感器的配置,应使电站内各主保护的保护区之间互相覆盖或衔接,消除保护死区。在采用罐式断路器的情况下,电流互感器布置在断路器的断口两侧。
(六)双母线主接线以及3/2断路器接线的母线侧断路器,电流互感器布置在断路器的外侧(非母线侧)。发生断路器和电流互感器之间死区故障、断路器内部故障时,由母差保护动作快速切除故障,避免了因依赖断路器失灵保护而延长故障切除时间。
(七)双重化配置的两套保护的跳闸回路与断路器的两组跳闸线圈分别一一对应。单套配置的保护和220kV母差保护同时作用于断路器的两组跳闸线圈。双母线接线断路器随线路保护而双重化配置的重合闸,“压力低闭锁重合闸”回路应分别接入。
(八)SF6断路器的SF6气体压力低应接入闭锁合、分闸的回路,但不接入闭锁重合闸的回路。若设置了SF6气体压力低闭锁重合闸,则在线路发生健全断路器相别的故障时,线路保护由于重合闸被闭锁而三相跳闸,单相故障增加误启动失灵保护2/3的概率。考虑到SF6气体压力低该种缺陷的不可自愈性,基于简化二次回路的原则,并计及分相闭锁合、分闸回路时SF6气体压力低闭锁重合闸带来的上述负面影响,SF6气体压力低不接入闭锁重合闸的回路。
(九)失灵保护回路:220kV母线保护、线路、变压器、发变组的电气量保护、母联和分段断路器的充电和过流保护应启动断路器的失灵保护。主变或发变组动作于母联或分段断路器的后备段保护不启动母联或分段断路器的失灵保护。非电量保护不允许启动失灵保护。断路器三相不一致保护不启动失灵保护,单断路器接线及单断路器运行的发变组保护中的非全相保护应该投跳闸并启动失灵保护。
(十)单断路器接线发变组保护非全相运行,负序电流将造成发电机定子过热和振动,危害发电机的安全运行,因此其三相不一致保护应启动失灵保护。3/2接线母线侧断路器失灵出口跳所在母线其它断路器,可以采用经母线保护出口的方式。通过开关量输入回路实现失灵经母差直跳功能时,经过强电中间继电器转换,应设置双开入、与逻辑,提高失灵经母差直跳功能的安全性。失灵启动回路(含发变组保护解除失灵电压闭锁)的二次电缆跨保护小室连接时(分小室布置电站的保护小室之间,发电厂升压站网控室和机组主控室之间),该回路应在失灵保护侧应经强电中间继电器转接。
(十一)母差保护回路:双母线接线母线保护屏的刀闸信息宜直接取自刀闸的辅助接点。一方面保证了两套保护回路的独立性,另一方面避免了取自各间隔电压切换继电器接点时受该间隔保护检修等的影响。每套母差保护应接入独立的电流互感器二次线圈。母联、分段断路器保护,3/2接线断路器保护应独立组屏。3/2断路器主接线短引线保护宜与相应的母线侧断路器保护共同组屏。
结论
继电保护技术应用的研究与探索,应以进一步提高保护的性能和安全可靠性为目的。继电保护在功能实现上,是统一的整体,需要一次设备、二次回路、通道、保护装置之间的配合协调,才能发挥其整体性能。随着电力系统的发展和计算机通信技术的进步,继电保护技术的发展向计算机化、网络化、一体化、智能化方向发展,这对继电保护工作提出了新的挑战。只有对继电保护装置进行定期检查和维护,按时巡检其运行状况,及时发现故障并做好处理,保证系统无故障设备正常运行,这对防止继电保护不正确动作,提高继电保护的安全运行,提高供电可靠性,具有十分重要的意义。
继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化发展。
心得体会
时间飞逝,还没来得及画上圆满的句号,电力系统机电保护的课程已经结束了。14周授课内容丰富了很多以前没有学到的新知识,让我逐步了解自己专业领域。这篇小论文写作能够顺利地进行,归功于老师您上课传授给我的知识,使我能够很好的掌握和运用专业知识,把专业课程系统的结合起来,并在实践中得以体现。过去忙碌的14周里,总会觉得自己碌碌无为,但这份小论文见证了我的硕果。一份耕耘一分收获,也许我的收获并没有其他学霸那么多,但至少我从辛勤耕耘过。
参考文献
[1]周希章等.起重机电气设备的故障诊断与修理[M].北京:机械工业出版社,2004.7.[2]孙桂林等.龙门起重机检修[M].北京:人民铁道出版社,1980.2.[3]胡冬星.抓斗起重机控制系统研究[J].中国科技信息,2005(20):67-68.[4]时新建.发电厂输煤系统起重机的变频调速方案[J].继电器,2003(9):86-87.[5]段苏振.交流变频调速技术在门式起重机中的应用[J].电气传动,2005(1):57-64.
第三篇:继电保护名词解释
继电保护名词解释
1、主保护:满足系统稳定和设备安全要求,能以最快速度有选择地切除被保护设备和线路故障的保护。
2、高频闭锁距离保护:利用距离保护的启动元件和距离方向元件控制收发信机发出高频闭锁信号,闭锁两
侧保护的原理构成的高频保护。
3、二次设备:是指对一次设备的工作进行监测、控制、调节、保护以及为运行、维护人员提供运行工况或
生产指挥信号所需的低压电气设备。
4、重复接地:将零线上的一点或多点,与大地进行再一次的连接叫重复接地。
5、距离保护:是利用阻抗元件来反应短路故障的保护装置。因阻抗元件反应接入该元件的电压与电流的比值(U/I=Z),即反应短路故障点至保护安装处的阻抗值,而线路的阻抗与距离成正比,所以称这种保护为
距离保护或阻抗保护。
6、零序保护:在大短路电流接地系统中发生接地故障后,就有零序电流、零序电压和零序功率出现,利用这些电量构成保护接地短路的继电保护装置统称为零序保护。零序电流保护就是常用的一种。
7、后备保护:是指当某一元件的主保护或断路器拒绝动作时,能够以较长时限(相对于主保护)切除故障
元件的保护元件。
8、高频保护:就是故障后将线路两端的电流相位或功率方向转化为高频信号,然后利用输电线路本身构成一高频电流通道,将此信号送至对端,以比较两端电流相位或功率方向的一种保护。
9、电力系统安全自动装置:是指防止电力系统失去稳定和避免电力系统发生大面积停电的自动保护装置。
10、电力系统事故:是指电力系统设备故障或人员工作失误,影响电能供应数量和质量并超过规定范围的事件。
11、谐振过电压:电力系统中一些电感、电容元件在系统进行操作或发生故障时可形成各种振荡回路,在一定的能源下,会产生串联谐振现象,导致系统某些元件出现严重的过电压。
12、断路器失灵保护:当系统发生故障,故障元件的保护动作而断路器操作失灵拒绝跳闸时,通过故障元件的保护作用于本变电站相邻断路器跳闸,有条件的还可以利用通道,使远端有关断路器同时跳闸的接线
称为断路器失灵保护。
13、谐振:由电阻、电感和电容组成的电路,若电源的频率和电路的参数符合一定的条件,电抗将等于零,电路呈电阻性,电压与电流同相位,这种现象称为谐振。
14、综合重合闸:当发生单相接地故障时,采用单相重合闸方式;当发生相间短路时,采用三相重合闸方式。综合考虑这两种重合闸方式的装置称为综合重合闸装置。综合重合闸装置经过转换开关切换,一般都具有单相重合闸,三相重合闸,综合重合闸和直跳(即线路上发生任何类型的故障,保护可通过重合闸装置的出口,断开三相,不进行重合闸)等四种运行方式。
15、自动重合闸:是将因故障跳开后的断路器按需要自动投入的一种自动装置。
16、运用中的电气设备:是指全部带有电压或一部分带有电压及一经操作即带有电压的电气设备。
17、远后备:是指当元件故障而其保护装置或开关拒绝动作时,由各电源侧的相邻元件保护装置动作将故
障切开。
18、能量管理系统(EMS):是现代电网调度自动化系统的总称。其主要功能由基础功能和应用功能两个
部分组成。
19、近后备保护:用双重化配置方式加继电保护名词解释
1、主保护:满足系统稳定和设备安全要求,能以最快速度有选择地切除被保护设备和线路故障的保护。
2、高频闭锁距离保护:利用距离保护的启动元件和距离方向元件控制收发信机发出高频闭锁信号,闭锁两侧保护的原理构成的高频保护。
3、二次设备:是指对一次设备的工作进行监测、控制、调节、保护以及为运行、维护人员提供运行工况或生产指挥信号所需的低压电气设备。
4、重复接地:将零线上的一点或多点,与大地进行再一次的连接叫重复接地。
5、距离保护:是利用阻抗元件来反应短路故障的保护装置。因阻抗元件反应接入该元件的电压与电流的比值(U/I=Z),即反应短路故障点至保护安装处的阻抗值,而线路的阻抗与距离成正比,所以称这种保护为距离保护或阻抗保护。
6、零序保护:在大短路电流接地系统中发生接地故障后,就有零序电流、零序电压和零序功率出现,利用这些电量构成保护接地短路的继电保护装置统称为零序保护。零序电流保护就是常用的一种。
7、后备保护:是指当某一元件的主保护或断路器拒绝动作时,能够以较长时限(相对于主保护)切除故障元件的保护元件。
8、高频保护:就是故障后将线路两端的电流相位或功率方向转化为高频信号,然后利用输电线路本身构成一高频电流通道,将此信号送至对端,以比较两端电流相位或功率方向的一种保护。
9、电力系统安全自动装置:是指防止电力系统失去稳定和避免电力系统发生大面积停电的自动保护装置。
10、电力系统事故:是指电力系统设备故障或人员工作失误,影响电能供应数量和质量并超过规定范围的事件。
11、谐振过电压:电力系统中一些电感、电容元件在系统进行操作或发生故障时可形成各种振荡回路,在一定的能源下,会产生串联谐振现象,导致系统某些元件出现严重的过电压。
12、断路器失灵保护:当系统发生故障,故障元件的保护动作而断路器操作失灵拒绝跳闸时,通过故障元件的保护作用于本变电站相邻断路器跳闸,有条件的还可以利用通道,使远端有关断路器同时跳闸的接线称为断路器失灵保护。
13、谐振:由电阻、电感和电容组成的电路,若电源的频率和电路的参数符合一定的条件,电抗将等于零,电路呈电阻性,电压与电流同相位,这种现象称为谐振。
14、综合重合闸:当发生单相接地故障时,采用单相重合闸方式;当发生相间短路时,采用三相重合闸方式。综合考虑这两种重合闸方式的装置称为综合重合闸装置。综合重合闸装置经过转换开关切换,一般都具有单相重合闸,三相重合闸,综合重合闸和直跳(即线路上发生任何类型的故障,保护可通过重合闸装置的出口,断开三相,不进行重合闸)等四种运行方式。
15、自动重合闸:是将因故障跳开后的断路器按需要自动投入的一种自动装置。
16、运用中的电气设备:是指全部带有电压或一部分带有电压及一经操作即带有电压的电气设备。
17、远后备:是指当元件故障而其保护装置或开关拒绝动作时,由各电源侧的相邻元件保护装置动作将故障切开。
18、能量管理系统(EMS):是现代电网调度自动化系统的总称。其主要功能由基础功能和应用功能两个部分组成。
19、近后备保护:用双重化配置方式加强元件本身的保护,使之在区内故障时,保护无拒动的装
强元件本身的保护,使之在区内故障时,保护无拒动的可能,同时装设开关失灵保护,以便当开关拒绝跳闸时启动它来切开同一变电所母线的高压开关,或摇切对侧开关。
20、复合电压过电流保护:是由一个负序电压继电器和一个接在相间电压上的低电压继电器共同组成的电压复合元件,两个继电器只要有一个动作,同时过电流继电器也动作,整套装置即能启动。
21、自动低频减负荷装置:为了提高供电质量,保证重要用户供电的可靠性,当系统出现有功功率缺额引起频率下降时,根据频率下降的程度,自动断开一部分不重要的用户,阻止频率下降,以使频率迅速恢复到正常值,这种装置叫自动低频减负荷装置。
22、线路的纵联保护:当线路发生故障时,使两侧开关同时快速跳闸的一种保护装置,是线路的主保护。它以线路两侧判别量的特定关系作为判据。即两侧均将判别量借助通道传输到对侧,然后,两侧分别安装对侧与本侧判别量之间的关系来判别区内故障或区外故障。
23、电力系统动态稳定:是指电力系统受到小的或大的干扰后,在自动调节器和控制装置的作用下,保持长过程的运行稳定性的能力。
24、调度术语中“许可” 的含义: 在改变电气设备的状态和电网运行方式前,根据有关规定,由有关人员提出操作项目,值班调度员同意其操作。
25、综合指令:是值班调度员对一个单位下达的一个综合操作任务,具体操作项目、顺序由现场运行人员按规定自行填写操作票,在得到值班调度员允许之后即可进行操作。
26、频率的一次调整:由发电机组的调速器自动实现的不改变变速机构位置的调节过程就是频率的一次调整。这一调节是有差调节,是对第一种负荷变动引起的频率偏差进行的调整。
27、频率的二次调整:在电力负荷发生变化时,仅靠发电机调速系统频率特性而引起的一次调频是不能恢复原运行频率的,为使频率保持不变,需运行人员手动或自动操作调速器,使发电机的频率特性平行地上下移动,进而调整负荷,使频率不变。保持系统频率不变是由一次调整和二次调整共同完成的。
28、频率的三次调整:即有功功率的经济分配。按最优化准则分配预计负荷中的持续分量部分,安排系统系统内各有关发电厂按给定的负荷曲线发电,在各发电厂、各发电机组之间最优分配有功功率负荷。
29、发电机调速系统的频率静态特性:当系统频率变化时,发电机组的调速系统将自动地改变汽轮机的进汽量或水轮机的进水量,以增减发电机组的出力,这种反映由频率变化而引发发电机组出力变化的关系,叫发电机调速系统的频率静态特性。
30、逆调压方式:在最大负荷时提高中枢点电压以抵偿因线路上最大负荷而增大的电压损耗,在最小负荷时将中枢点电压降低一些以防止负荷点的电压过高。这种中枢点的调压方法称为逆调压。在最大负荷时,使中枢点电压比线路额定电压高5%,在最低负荷时,使中枢点电压下降至线路的额定电压,大多能满足用户要求。
31、恒调压:如果负荷变动较小,即将中枢点电压保持在较线路额定电压高(2%--5%)的数值,不必随负荷变化来调整中枢点的电压仍可保证负荷点的电压质量,这种调压方法叫恒调压或常调压。
32、顺调压:如负荷变化甚小,或用户处于允许电压偏移较大的农业电网,在最大负荷时允许中枢点电压低一些(不得低于线路额定电压的102.5%),在最小负荷时允许中枢点电压高一些(不得高于线路额定电压的107.5%)。在无功调整手段不足时,可采取这种调压方式,但一般应避免采用。
33、电力调度计划的变更权:是指电网调度机构在电网出现特殊情况下,变更日调度计划的一种权利。这种权利是有限的,不能借此权利滥变调度计划而使其失去严肃性。
34、变压器空载损耗:变压器运行时,一次侧在额定电压下变压器所消耗的功率。其近似等于铁损。
35、变压器连接组别的时钟表示法:以变压器高压侧线电压的向量作为分针,并固定指向“12”,以低压侧同名线电压的向量作为时针,它所指向的时数,即为该接线组别的组号。
36、变压器过励磁:当变压器在电压升高或频率下降时都将造成工作磁通密度增加,变压器的铁芯饱和称为变压器过励磁。
37、变压器励磁涌流:是指变压器全电压充电时在其绕组产生的暂态电流。其最大值可达变压器额定电流值的6—8倍。最大涌流出现在变压器投入时电压经过零点瞬间。
38、电力系统:把由发电、输电、变电、配电、用电设备及相应的辅助系统组成的电能生产、输送、分配、使用的统一整体称为电力系统。
39、电力网:把输电、变电、配电设备及相应的辅助系统组成的联系发电与用电的统一整体称为电力网。40、输电能力:是指在电力系统之间,或在电力系统中从一个局部系统(或发电厂)到另一个局部系统(或变电所)之间的输电系统容许的最大送电功率(一般按受端计)。
41、主网:是指最高电压输电网,在形成初期也包括次一级电压网,共同构成电网的骨架。
42、电网结构:主要是指主网的接线方式、区域电网电源和负荷大小及联络线功率交换量的大小等。
43、线路充电功率:由线路的对地电容电流所产生的无功功率,称为线路的充电功率。
44、潜供电流:当故障相(线路)自两侧切除后,非故障相(线路)与断开相(线路)之间存在的电感耦合和电容耦合,继续向故障相(线路)提供的电流称为潜供电流。如其值较大时可使重合闸失败。
45、波阻抗:电磁波沿线路单方向传播时,行波电压与行波电流绝对值之比称为波阻抗。其值为单位长度线路电感与电容之比的平方根。
46、自然功率:输电线路既会因其具有的分布电容产生无功功率,又会因其串联阻抗消耗无功功率,当沿线路传送某一固定有功功率,线路上的这两种无功功率适能相互平衡时,这个有功功率叫线路的自然功率。如传输的有功功率低于此值,线路将向系统送出无功功率;而高于此值时,则将吸收系统的无功功率。
47、大接地电流系统:中性点直接接地系统中,发生单相接地故障时,接地短路电流很大,这种系统称为大接地电流系统。
48、电压崩溃:电力系统无功电源的电压特性曲线与无功负荷的电压特性曲线的切点所对应的运行电压,称为临界电压。当电力系统所有无功电源容量已调至最大,系统运行电压会因无功负荷的不断增长而不断降低,如运行电压降至临界电压时,会因扰动使负荷的电压下降,将使无功电源永远小于无功负荷,从而导致电压不断下降最终到零,这种电压不断下降最终到零的现象称为电压崩溃。电压崩溃会导致大量损失负荷,甚至大面积停电或使系统瓦解。
49、频率崩溃:发电机的频率特性曲线与负荷的频率特性曲线的切点所对应的频率称为临界频率。电力系统运行频率等于(或低与)临界频率时,如扰动使系统频率下降,将迫使发电机出力减少,从而使系统频率进一步下降,有功不平衡加剧,形成恶性循环,导致频率不断下降最终到零,这种频率不断下降最终到零的现象称为频率崩溃。
50、重合闸后加速:当线路发生故障后,保护有选择性地动作切除故障,然后重合闸进行一次重合,如重合于永久性故障时,保护装置不带时限地动作断开短路器。
51、变压器复合电压过流保护:该保护通常作为变压器的后备保护,它是由一个负序电压继电器和接在相间电压上的低电压继电器共同组成的电压复合元件,两个继电器只要有一个动作,同时过流继电器也动作,整套装置既能启动。
52、跨步过电压:通过接地体或接地网流到地中的电流,会在地表及地下深处形成一个空间分布的电流场,并在离接地体不同距离的位置产生一个电位差,这个电位差叫跨步电压。跨步电压与入地电流强度成正比,与接地体的距离的平方成反比。跨步电压较高时,易造成对人、蓄的伤害。
53、反击过电压:在变电站中,如雷击到避雷针上,雷电流则通过架构接地引下线流散到地中,由于架构电感和接地电阻的存在,在架构上会产生很高的对地电位,高电位对附近的电气设备或带电的导线会产生很大的电位差。如两者距离较近,就会导致避雷针对其它设备或导线放电,引起反击闪落而造成事故。
54、系统瓦解:由于电力系统稳定破坏、频率崩溃、电压崩溃、连锁反映或自然灾害等原因所造成的四分五裂的大面积停电事故状态。
55、联锁反映:是指由于一条输电线路(或一组变压器)的过负荷或事故跳闸而引起其它输电设备和发电机的相继跳闸(包括防止设备损坏而进行的人员操作在内)。联锁反映是事故扩大的一个重要原因。
56、三道防线:是指在电力系统受到不同扰动时对电网保证稳定可靠供电方面提出的要求。(1)当电网发生常见的概率高的单一故障时,电力系统应保持稳定运行,同时保持对用户的正常供电。(2)当电网发生了性质严重但概率较低的单一故障时,要求电力系统保持稳定运行,但允许失去部分负荷(或直接切除某些负荷,或因系统频率下降,负荷自然降低)。(3)当系统发生了罕见的多重故障(包括单一故障同时继电保护动作不正确等),电力系统可能不能保持稳定运行,但必须有预定的措施以尽可能缩小事故影响范围和缩短影响时间。
57、差动速断保护:在变压器内部发生不对称故障时,差动电流中产生较大的二次谐波分量,使变压器微机纵差保护被制动,直至二次谐波分量衰减后,纵差保护才能动作。为加速保护动作行为,规定当差动电流大于可能出现的最大励磁涌流时,纵差保护应立即动作跳闸,按次原理而整定的保护即为差动速断保护
“乘机安全小贴士”安全出行要重视
36、发电机定子接地零序电压保护有几种?
零序电压取自发电机中性点电压互感器的电压或消弧线圈的二次电压或机端三相电流互感器的开口三角。(1)反应零序电压的定子接地保护:保护装置的动作电压一般取15V,保护范围为85%。
(2)反应基波零序电压的定子接地保护:带有三次谐波滤过器,反应基波零序电压的定子接地保护动作电压取5~15V,保护范围为90~95%,死区5~10V。
(3)带有制动量的反映基波零序电压的定子接地保护:高压系统中性点不直接接地,为防止高压侧发生接地故障而误动,因此装设以高压侧零序电压为制动量、以发电机机端零序电压为动作量的基波零序电压型定子接地保护,也可采用高压侧零序电压闭锁的方式。
(4)保护装置的动作时间:一般取1.5S动作于信号;2.0S动作于跳闸。
37、发电机励磁回路接地保护:
发电机励磁回路一点接地,励磁电压仍然正常,对发电机无直接危害。但改变励磁电压的分布,在励磁绕组一端接地时,其另一端励磁电压将升高为全部励磁电压,比正常时增大一倍,在励磁绕组绝缘薄弱处可能发生第二点接地。
励磁绕组发生两点接地时,部分励磁绕组被短接,使其铁心气隙磁通畸变,造成机组振动。故障点的电弧将烧伤转子绕组与铁心。接地电流可能使轴系和汽轮机汽缸磁化。故励磁回路两点接地的后果是严重的。
(1)转子回路一点接地保护: ①绝缘检查装置
组成:将两电压表串联后接在转子回路正、负极之间,两电压表之间连线接地。根据两电压表读数不同,判断正极或负极绝缘降低。转子绕组中点接地,存在死区。②直流电桥式励磁回路一点接地保护:
保护原理:转子偏心和磁路不对称等原因产生的转子绕组(叠加在直流励磁电压上)的交流电压,使转子绕组中点对地电压不保持为零,而在一定范围内波动。利用这个波动的电压,可使保护具有较高的灵敏性。
由电阻R1、R2、非线性元件稳压管3WY为直流电桥的两个臂,励磁绕组的电阻构成直流电桥的另两个臂。直流电桥对角线P——地(转子轴)之间串入整流桥BZ和继电器J。正常情况下,调节R1、R2使通过继电器J中的电流最小,使继电器不动作。若转子绕组一点接地,电桥平衡被破坏,流过继电器J的电流大于其动作电流,保护动作。装设稳压管3WY后,即使转子绕组中点接地,保护也能动作,消除了动作死区。(2)转子回路两点接地保护:
①直流电桥原理构成的励磁回路两点接地保护:
由转子绕组构成直流电桥的两个臂、滑动变阻器构成两个臂组成直流电桥,其对角线-滑动电阻器的滑动端与地(转子轴)之间接入mV表和电流继电器。当发生一点接地后,投入发电机转子两点接地保护,调整滑动变阻器使mV表指示为零,此时电桥平衡。断开mV表,合上刀闸投入电流继电器LJ。当发生两点接地时,电桥平衡遭到破坏,流过继电器LJ的电流大于其动作电流,保护动作跳闸发电机。应用于小型机组。②反应定子绕组二次谐波电压的转子两点接地保护:
发电机正常运行时,转子磁通密度曲线对称于横坐标轴,不存在偶次谐波。当励磁回路发生两点接地或匝间短路时,由于部分励磁绕组被短接只要两个接地点不完全对称于励磁磁极,那么两个磁极的磁通密度曲线的对称性就被破坏,因而励磁绕组中就产生二次及以上的各种偶次谐波电流,于是定子绕组中也会出现相应的偶次谐波电势。利用定子绕组中的二次谐波电压,可以实现转子两点接地保护。
为区分励磁回路两点接地与匝间短路,将二次谐波电压继电器与一点接地保护继电器常开接点串联,构成转子两点接地保护的出口回路。仅二次谐波电压继电器动作可判断为转子绕组匝间短路。
38、发电机失磁保护:
(1)发电机失磁运行及其影响:
发电机失磁是指发电机的励磁电流下降到低于静态稳定极限所对应的励磁电流值或励磁电流完全消失。失磁的主要原因:转子绕组故障、励磁回路开路、半导体励磁系统故障、灭磁开关误跳闸、自动调节励磁装置故障、运行人员误操作等。发电机失磁后,18 由同步运行过渡到异步运行,转子出现转差,转子回路出现差频电流,定子电压降低,定子电流增大,有功功率下降,无功功率反向并增大,系统电压降低和某些电源回路过电流。在一定条件下,破坏电力系统的稳定运行,影响发电机的安全。
(一)失磁运行对发电机本身的影响:
①由于发电机转子出现转差,转子表面出现差频电流。该电流产生附加损耗,使转子过热,将转子本体与槽楔、护环的接触面烧伤。②失磁发电机转入异步运行后,其等值电抗降低,从系统吸取的无功功率增大。失磁前所带的有功功率越大,异步运行时的转差越大,等值电抗越小,吸取的无功功率就越大,造成定子绕组过电流,定子过热。
③异步运行中,发电机的转矩、有功功率将有剧烈的周期性摆动,使定子、转子和基座受到异常机械冲击。④失磁运行中,发电机定子端部的漏磁增大,使定子端部的部件和边段铁心过热。
(二)发电机失磁运行对电力系统的影响
发电机失磁后,从系统吸取相当于额定容量的无功功率,使系统电压降低。若系统的无功功率储备不足,将使邻近失磁发电机的部分系统电压低于允许值,这将威胁负荷和各电源间的稳定运行,甚至导致系统因电压崩溃而瓦解。这是发电机失磁最严重的后果。发电机的容量越大,失磁后引起的无功功率缺额越大;电力系统的容量越小,补偿失磁引起的无功缺额的能力越小。因此,发电机单机容量占系统容量比例越大,发电机失磁对系统的影响越严重。
(2)失磁保护的构成方式
①利用灭磁开关联跳发电机断路器。一般用于100MVA以下的发电机。不能反应除灭磁开关误跳外的其它原因引起的失磁故障。②利用失磁后有关参数的变化构成的失磁保护:阻抗元件Z——反映发电机机端测量阻抗的变化;低电压元件Uf<——反应机端电压的变化;励磁低电压元件Ufd<——反应发电机励磁电压。
若发电机失磁,阻抗元件Z动作,而励磁电压降低,Ufd<动作,“与”门Y2有输出,发出失步信号。表示发电机已失步,但不能确定是系统振荡还是失磁引起的失步,由延时t2来判断,如果是失磁,经t2动作于停机。T2按躲开系统振荡整定,t2=0.5~1.5S。如果机端电压降到系统安全运行最低允许电压值之下,低电压元件Uf<动作“与”门Y1有输出,经t1延时,通过“或”门H作用于停机。t1按躲开振荡影响的条件整定,t1=0.5~1.0S。
39、发电机的后备保护
发电机的后备保护采用低电压起动的过电流保护、复合电压起动的过电流保护、负序电压加单相电压起动的过电流保护,也可采用阻抗保护作为后备保护。负序电流保护采用两段式,即负序过负荷信号和负序过电流跳闸。前者动作电流按躲开发电机长期容许的负序电流整定,通常取0.1Ie.f发电机额定电流。其动作时限应大于发电机后备保护的动作时限5~10S。后者的动作电流应按发电机短时容许的负序电流整定。对表面式冷却的发电机取0.5~0.6 Ie.f发电机额定电流,其动作时限与后备保护逐级配合,取3~5S。
反时限负序过流保护:
发电机三相负荷不对称或发电机三相定子绕组发生不对称短路时,定子绕组中的负序电流在转子中感应出100Hz的电流,使转子附加发热。其发热量正比于负序电流的平方与所持续时间的乘积。因两段式负序电流保护时限特性不能与转子发热特性配合,定时限负序电流保护不能充分利用发电机承受负序电流的能力,有时负序电流很大,因时间短,保护不动作,也不利于发电机安全。因此装设与允许负序电流曲线配合的反时限负序电流保护。反时限负序电流保护是动作时间随负序电流的增大而减小的保护。
40、为什么大型发电机配置逆功率保护:
当汽轮机主汽门误关闭,在发电机断路器跳开前,发电机转为电动机运行,从系统吸取有功功率。此时逆功率对发电机本身无害,但是由于残留在汽轮机尾部的蒸汽与尾部叶片摩擦,使叶片过热。因此逆功率不能超过3MIN,装设逆功率保护。
邹县600MW发电机逆功率定值:2.5%Pe ;动作时限:5S。
41、发电机为什么要装设频率异常保护?
汽轮机的叶片都有一个自振频率,如果发电机运行频率低于或高于额定值,在接近或等于叶片自振频率时,将导致共振,使材料疲劳,达到材料不允许的程度时,叶片就可能断裂,造成严重故障,材料的疲劳是一个不可逆的积累过程,所以汽轮机给出了在规定频率下允许的累计运行时间。低频运行多发生在重负荷下,对汽轮机威胁更为严重,另外,对极低频工况,还将威胁厂用电的安全。因此发电机应装设低频保护。
42、大型发电机组要装设失步保护?
发电机与系统发生失步时,将出现发电机的机械量和电气量与系统之间的振荡,这种持续的振荡将对发电机组和电力系统产生有破坏力的影响。
(1)单元接线的大型发电机组电抗较大,而系统规模的增大将使系统等效电抗减小,因此震荡中心往往落在发电机端附近或
升压变压器范围内,使振荡过程对机组的影响大为加重。由于机端电压周期性地严重下降,使厂用辅机工作稳定性遭到破坏,甚至导致全厂停机、停炉、停电的重大事故。
(2)失步运行时,当发电机电势与系统等效电势的相位差为180o 的瞬间,振荡电流的幅值接近机端三相短路时流经发电机的电流,使定子绕组遭受热损伤或端部遭受机械损伤。(3)振荡过程中产生对轴系的周期性扭力,可能造成大轴严重机械损伤。
(4)在振荡过程中由于周期性转差变化在转子绕组中引起感生电流,引起转子绕组发热。(5)大型机组与系统失步,还可能导致电力系统解列甚至崩溃事故。因此大型发电机需要装设失步保护,以保障机组和电力系统的安全。
43、意外加电压保护:(1)定义:发电机在盘车过程中,发电机出口开关误合闸,突然加上电压,使发电机异步启动造成机组严重损坏。针对这 种异常运行而设置突然加电压保护,以迅速切除电源。(3)突然加电压的危害:
盘车中的发电机突然加电压后,其电抗接近Xd”,并在启动过程中基本不变。计及升压变压器的电抗Xb和系统连接电抗Xs,并且在Xs较小时流过发电机定子绕组的电流可达3~4倍额定电流值。定子电流所建立的旋转磁场,将在转子中产生差频电流(频率在变),如果不及时切除电源,使流过的电流持续时间过长,则在转子上产生的热效应I2t将超过允许值,引起转子过热而遭到损坏;此外,还可能因润滑油压低而使轴瓦遭受损坏。(4)保护构成及动作过程:
突然加电压后的异步启动过程,一般流过发电机的电流总是大于额定电流,意外加电压保护可以用一个低频组件F和一个过 电流组件I组成。
当频率降到可能的最低运行频率之下时,低频元件F输出逻辑1,启动一延时返回的时间元件t,t和电流元件I经“与”门 输出启动保护出口元件。频率元件F用于正常运行时把电流元件的输出回路解除,使之只在低频时才起作用。突然加电压后,由于外加电压的频率是额定频率,频率元件将立即返回,输出1变为0;为保证电流元件I动作后完成跳闸过程,设置时间元件t,其返回延时应保证跳闸过程的完成。当发电机停机(发变组出口刀闸未拉开前)时,应保持意外加电压保护始终投入。此外,逆功率保护、失磁保护、阻抗保护也能反应突然加电压工况,但需附加下列措施:(1)设置无延时出口元件,并在盘 车时投入,(2)盘车时接该保护的电压互感器、电流互感器、直流电源回路均不应解除。较复杂,不可取。
4)、600MW发电机意外加电压保护构成:
44、启动保护: 1)、定义:发电机在启动或停机过程中有励磁电流流过励磁绕组,(因误操作、机组低转速下并列、盘车状态利用励磁绕组
对转子预热),此时定子电压的频率很低,许多保护在低频下不起作用,通常要装设反应定子接地故障和相间故障、由电磁式继电器构成的保护装置,这种保护称为启停机保护或启动保护,也称为低频运行保护。2)、保护构成:
一般启停保护中,用一只电磁式电压互感器接入零序电压3Uo,装在机端或中性点侧,反映定子接地故障;在发电机、升压 变压器和机端引出的厂用变压器的差动保护回路中,各接入一组电磁式电流继电器,一般接于差动回路中,用于反应相间短路故障。
3)、600MW发电机启动保护:
45、非全相运行保护: 1)、定义:由于误操作或机械方面的原因,使断路器三相不能同时合闸或跳闸,或在正常运行中突然一相跳闸,造成断路器
非全相运行,针对这种异常工况装设的保护称为非全相运行保护。2)、非全相运行的危害:
发电机-变压器组的出口断路器发生非全相运行时,发电机定子绕组中流过负序电流。该负序电流产生反向旋转磁场,相对转子为两倍同步转速,因此在转子中出现100Hz的倍频电流,它会使转子端部、护环内表面等电流密度很大的部位过热,造成转子局灼伤,而反时限负序电流保护动作时间较长,可能造成相邻线路误动作,使故障扩大,装设断路器非全相运行保护可以快速切除故障。3)、非全相运行保护的构成:
一般由灵敏的负序电流元件I2和非全相判别回路组成。
经短延时(T=0.2~0.5S)动作跳开其他健全相。如果是操作机构故障断开其他健全相不能成功,则应动作于母线失灵保护,切断与本回路有关的母线上的其他有源回路。4)、500KV断路器非全相运行保护构成:
46、断路器闪络保护: 1)、定义:在进行同期合闸的过程中,断路器合闸之前,作用于断口上的电压,随待并发电机与系统等效发电机电势之间角度差δ
的变化而不断变化,当δ=180o 时,其值最大,为两者电势之和。当两者电势相等时,则有两倍的运行电压作用于断口上,有时造成断口闪络事故。2)、断路器闪络保护的危害:
断口闪络要造成断路器损坏,还可能由此引起事故扩大,破坏系统的稳定运行;闪络时一般是一相或两相闪络,一是要产生冲击转矩作用于发电机上,二是产生负序电流,在转子上引起附加损耗,威胁发电机的安全。3)、闪络保护的构成:断路器三相断开位置时有负序电流。
保护原理:(1)、利用负序电流元件I2和断路器的辅助触电DLA、DLB、DLC、、构成。当出现负序电流后,如果断路器有一相或两相是断开的,则说明是非全相运行,则动作于跳闸,断路器拒动时,启动断路器失灵保护;如果断路器三相是断开的,则说明是断口闪络,此时应首先动作本发电机灭磁,以降低断口电压,无效时,再启动失灵保护。(2)、用比较三相电流的方法构成的闪络保护: 因断路器闪络不会三相同时发生,三相断路器都处于断开状态,有一相或两相中流过电流,此时电流元件IA、IB、IC中相应的元件动作,其肯定端输出1,否定端(图中涂黑端)输出0,没有流过电流的元件相反,这样两个或门1H和2H的输出都是1,DLA、DLB、DLC又都是闭合的,则“与”门Y输出1,使出口元件动作。正常运行时,2H和辅助接点输出都是0;断路器跳闸后,1H输出0,因而都不会动作。
4)500KV断路器闪络保护构成:
47、何谓同步发电机的励磁系统?作用是什么?
供给同步发电机励磁电流的电源及其附属设备,称为同步发电机的励磁系统。其作用:(1)正常运行时,供给发电机维持一定电压及一定无功输出所需的励磁电流。
(2)当电力系统突然短路或负荷突然增、减时,对发电机进行强行励磁或强行减磁,以提高电力系统运行的稳定性和可靠性。(3)当发电机内部出现短路时,对发电机内部进行灭磁,以避免事故扩大。
48、同步发电机的励磁方式有哪些?
(1)同轴直流励磁机系统:用于中小容量发电机。发电机与直流励磁机同轴连接,当电网发生故障时,不会励磁系统的正 常运行。
(2)半导体励磁系统:用于大型发电机。性能优良、维护简单、运行可靠、体积小、寿命大。
49、实现自动调节励磁的基本方法有哪些?(1)改变励磁机励磁回路电阻。(2)改变励磁机的附加励磁电流。(3)改变可控硅的导通角。
50、何谓强行励磁装置?其作用是什么? 强行励磁就是强迫施行励磁(简称强励)。当电网发生事故电压严重降低时,强行以最快的速度,给发电机最大的励磁,迫
使系统电压迅速恢复。用继电器组成的这种装置称为强行励磁装置。
600ME发电机强励动作电压值:
51、为什么大型汽轮发电机应装设过电压保护?
当大型汽轮发电机满负荷运行突然甩去全部负荷,电枢反应突然消失,即使调速系统自动调整励磁装置运行正常,但它们都 有惯性环节,转速仍将升高,而励磁电流不能突变,使得发电机电压在短时间内也要上升,其值可能达1.3额定值。持续时间可能达几秒钟。
大型发电机定子铁心背部存在漏磁场,在这一交变漏磁场中的定位筋,将感应出电动势。相邻定位筋中的感应电动势存在相
第四篇:继电保护及故障信息管理系统子站的应用
继电保护及故障信息管理系统子站的应用
一、引言 在发生严重故障或复杂故障的情况下,调度值班人员和继电保护运行管理人,员需及时准确地了解故障情况,快速地判断故障发生的地点、性质及严重程度,科学地分析故障原因,并采取及时正确的措施缩小故障范围、避免事故扩大、减少故障损失,这些都要求建设一个技术先进、安全性高、可靠实用、开放性好、可扩展性强的继电保护及故障信息管理系统,实现继电保护运行管理、故障分析、辅助决策等主要功能,并与现有的变电站综合自动化系统、EMS系统、MIS系统等互联互通。
继电保护及故障信息管理系统由主站系统和子站系统组成,本文主要就河南南阳220kV遮山变电站改造及运行过程的实际情况进行分析,对继电保护及故障信息管理系统子站的应用提出一些着法。
二、系统结构 22OkV南阳遮山变电站是南阳局所属的6座220kV变电站之一,设计规模为:OSFPS8-120000/220自耦主变2台,均为有载调压;220kV出线4回,母联兼旁路1回,采用双母线带专用旁路接线;1lOkV出线7回,分段1回,专用旁路1回,采用单母线分段带旁路接线;35kV出线8回,分段1回,专用旁路1回,4回电容器,采用单母线分段带旁路接线。
遮山变子站需接入的不同厂家保护设备种类较多,主变保护采用南自厂的WBZ-500,220kV线(旁)路保护采用许继的WXH-l1、WXH-
15、WXH-802、南瑞继保的LFP-901A、北京四方的CSL-103,22OkV母线保护采用南瑞继保的RCS-915A,1lOkV线(旁)路保护采用许继的WXH-811和南瑞继保的RCS-914D, 1lOkV母线保护采用南瑞继保的RCS-915A,HOW母联保护采用南京中德的NSP788,35kV出线分段旁路及电容器保护采用南京中德的NSP788和NSP782,录波器分别是南京银山的YS-8A和深圳双合的WGL-12。
遮山变子站系统采用分层分布式结构,系统的纵向结构分为站控层和间隔层两层结构,层间传输介质采用光纤。
(一)间隔层
间隔层配有保护通信管理机1台,加插MOXA多串口卡1块,并配有RS-232/422(485)转换器若干,独立组屏,保护设备均分散安装在各保护屏上,全部通过串口和管理机通信(所有保护皆不支持网络功能)实现各种保护的规约转换(不具备串口接入的老保护、设备仍以硬接点接入监控系统)。其结构示意图如图1。
1.两种接入模式的比较
保护装置和故障录波器接入子站系统的保护通信管理机一般有直接和间接接入两种模式。两种接入模式的特点见表1。
2.接入模式的选择 考虑到遮山变子站接入的国内外的保护种类繁多,同一厂家的不同类型的保护装置都采用不同的规约,为了实现规约的统一化和标准化,最好采用间接接入的模式,即各厂家的保护装置都通过自己的规约转换器与子站的保护通信管理机通信,通讯规约采用标准的IEC60870-5-103规约,这样可以大大降低接口的复杂程度,维护起来更加容易。但由于南阳变是改造站,有些装置早在1994年就已投运,要求各厂家都采用各自的规约转换器通信的难度较大,综合遮山变的实际情况,决定采用直接接入模式。
另外,由于故障录波数据量较大,所以调试时曾希望与故障录波器通过以太网进行通信,但YS-8A是1996年投运的老产品,不支持网络功能,只能通过串口进行通信,这就大大增加了录波数据读取的时间,子站系统的性能受到影响。而据WGL-12厂家介绍录波数据目前只能保存在装置中不能送出,所以暂时无法取到WGL-12的录波数据。
3.与主站的通信
为了能够使故障发生后将所有的信息快速地传送到主站端,遮山变子站与主站端采用了以太网方式进行通信,通信规约采用标准的103规约,由于目前国家对子站和主站之间通信所采用的规约标准并没有具体的定义,应用服务数据单元符合((DL/T-667-1999远动设备及系统第5部分传输规约第103篇继电保护设备信息接口配套标准),链路协议符合《OL/T634.5104-2002远动设备及系统第5-104部分:传输规约采用标准传输子集的IEC60870-5-101网络访问》,为今后方便过渡到IEC61850变电站通信网络系列标准打下基础。
第五篇:材料发展史
材料的历史同人类社会发展史同样悠久。历史上,材料被视为人类社会进化的里程碑。历史学家曾把材料及其器具作为划分时代的标志:石器时代、青铜器时代、铁器时代、高分子材料时代∙ ∙ ∙ ∙ ∙ ∙。这里我们不难看到材料在社会进步过程中的巨大作用。
制作物品的来源即原料或材料。其中“来源”指物质。
材料:是由一种化学物质为主要成分、并添加一定的助剂作为次要成分所组成的,可以在一定温度和一定压力下使之熔融,并在模具中塑制成一定形状,冷却后在室温下能保持既定形状,并可在一定条件下使用的制品,其生产过程必须实现最高的生产率、最低的原材料成本和能耗,最少地产生废物和环境污染物,并且其废弃物可以回收、再利用。
按组成、结构特点进行分类:金属材料;无机非金属材料;高分子材料;复合材料。 按使用性能分类:利用材料力学性能的称为结构材料;而利用材料物理和化学性能的则称为功能材料。
也可将材料分为传统材料和新型材料。两者无严格区别,是互相依存、互相转化的。传统材料的特征:需求量大、生产规模大,但环境污染严重;新型材料的特征:投资强度较高、更新换代快、风险性大、知识和技术密集程度高,一旦成功,回报率也较高,且不以规模取胜。狭义陶瓷是陶器与瓷器的统称。 二者的坯料都由长石、硅石和矾土(氧化铝)构成。陶器的原料中矾土的成分多一些,是粘土质。瓷器的坯料是矾土成分较少的矿石质。陶瓷的概念有狭义、广义之分。 从狭义上说,陶瓷是用无机非金属化合物粉体,经高温烧结而成的,以多晶聚集体为主的固态物质。狭义的陶瓷概念中不包括玻璃、搪瓷、水泥、耐火材料、金属陶瓷等。 从广义上说,陶瓷泛指一切经高温处理而获得的无机非金属材料,包括人工单晶、非晶态、狭义陶瓷及其复合材料、半导体、耐火材料及水泥等。
公元前8000年左右,铜首次被有意识地用来作为原料。先民们发现并利用天然铜块制作铜兵器和铜工具。 到公元前5000年,人们已逐渐学会用铜矿石炼铜。 公元前4000年,铜器及其制造就已推广,而石头作为材料已退居第二位。铜是人类获得的第二种人造材料,也是人类获得的第一种金属材料。
在人类历史上,有过一个辉煌灿烂的青铜器时代。考古表明,青铜文明的源头在古代中国、美索不达米亚平原和埃及等。 随着时间的推移,先民们发现,在铜中加入部分锡,可使原来较软的铜制品变得更坚韧、更耐磨。于是青铜(铜锡合金)产生了。
中国商代青铜器已经盛行,并将青铜器的冶炼和铸造技术推向了世界的顶峰。 中国先民们掌握了6种不同铜、锡比例的青铜技术。知道含锡量1/6的青铜韧性较好,可做钟鼎;而含锡量2/5的青铜较硬,可做刀斧。
后来的化学成分分析证明,铁中含有百分之几的镍和钴,而不含碳和其他熔渣夹杂物。这说明它是天外来客——陨铁; 天上掉下陨铁的机会是很少的,人类不可能大量使用陨铁。但是,陨铁让人们认识了铁,知道它比铜更坚韧,用它可以制成更坚固耐用、更锋利的砍削工具。早在2600年前的春秋时代中后期,我们的祖先就发明了生铁冶炼技术,比欧洲国家要早1000多年;世界上冶炼、浇铸生铁的最早文字,也记载于我国古代典籍名著《左传》中; 最早的钢是在大约1200ºC的较低温度下,用木炭还原出铁矿石里的混杂铁(含铁、矿渣和没烧尽的木炭混杂在一起的炼铁块)为原料,在炭火中反复锻打,反复渗碳而逐步形成的。
钢和生铁的最大区别是含碳量的多少,前者少而后者多,以2.11%为界。 生铁硬而脆,韧性不好;很少作为结构材料使用(跟碳含量有关)
炼钢跟炼铁的主要区别是消耗掉多余的碳,最简单的方法是利用空气中的氧气去除碳,以降低碳含量;
第一次技术革命发端于18世纪后期,以蒸汽机的发明及广泛应用为主要标志,由此引发的纺织工业、冶金工业、机械工业、造船工业等的工业大革命,是这次技术革命的产物,使人类从手工工艺时期跃进到机器工业时代,开创了工业社会的文明。
其主要的材料依靠是钢铁的飞速发展,实现了高炉、转炉、平炉制造优质钢材的工业化。第二次技术革命开始于19世纪末,以电的发明和广泛应用为标志,由于远距离送电材料以及通讯、照明用的各种材料的工业化,实现了电气化。其结果是石油开采、钢铁冶炼、化学工业、飞机工业、电气工业、电报电话等迅猛发展,组成了现代产业群,使人类跨进了一个新的时代,实现了向现代社会的转变。
其主要材料依托是紫铜、黄铜、铝、钨等有色金属以及高分子绝缘材料的迅猛发展。
第三次技术革命始于20世纪中期,以原子能应用为主要标志。1942年12月,意大利物理学家费米在美国建立了第一个核反应堆,实现了控制核裂变,使核能利用有了可能,实现了合成材料、半导体材料等大规模工业化、民用化,把工业文明推到顶点,开启了通向信息社会文明的大门。
其主要材料依托是钛合金、先进合金、高温陶瓷、先进复合材料等材料的迅猛发展。
第四次技术革命始于20世纪70年代,它是以计算机,特别是微电子技术、生物工程技术和空间技术为主要标志,新型材料、新能源、生物工程、航天工业、海洋开发等新兴技术是主攻方向。
其主要材料依托是以硅、砷化镓为代表的半导体材料、先进高分子材料、先进复合材料、生物相容材料等的迅猛发展。在炼钢时加进金属锰,就能炼出锰钢。锰钢最大的特点是强硬坚韧,是工业建设的栋梁之材,是国防建设的“铁甲卫士”。锰钢的问世,是一位年轻的冶金学家(英国的哈德菲尔德)藐视权威,以他那锰钢般的意志顽强攻关的结果。权威们告诫人们,钢铁中锰的含量绝不能超过1.5%,否则它就会越来越脆。在经过了几百次的失败以后,他终于发现当锰的含量达到13%时,锰钢一改它昔日脆弱的形象,变得既有很好的硬度,又富有韧性了。
不锈钢,是以铁为主体元素,加上一定比例的铬、镍、钼、锰等金属炼成的耐腐蚀合金材料。不锈钢以其锃亮的外表、良好的机械性能和对酸性腐蚀物质的强大抗御能力赢得了人们的欢迎,是现代工业生产和日常生活中常用的金属材料。冶金专家布里尔利在一次偶然发现,由电炉炼成的含铬8%,含碳0.24%的合金钢经过热处理后,具有极好的耐腐蚀性能,特别是不怕酸性物质的腐蚀。布里尔利把它起名为“不锈钢”。
到1898年,美国工人技师泰勒创造了一个奇迹。他想研制一种耐高温的高速刀具钢。他分析了钨锰钢的成分,认为钨是好的,熔点高达3380℃,受热肯定不会变软,问题一定是出在熔点和硬度都不够高的锰身上。泰勒思考了很久,决定采用铬取代锰。泰勒赶紧安排试验冶炼含铬钨钢。经过一段时间的试验,合乎要求的含铬钨钢炼出来了。新材料做的车刀的切削速度比过去提高了5倍!在这之后,泰勒又对钨铬钢刀做了不少改进,使它能在五六百摄氏度下也不变软,切削速度达到每秒10米(600米/分钟),可与奥运会100米跑的冠军比一比速度。
进入20世纪以后,刀具材料又有了一次飞跃,那就是诞生了硬质合金。1907年,德国冶金专家施特勒尔用碳化钨的硬质颗粒,加上铁和钴的粉末,先压制成型,再以高温烧结,让铁和钴熔化而成为粘结材料,使碳化钨紧紧地“团结”起来,制成了硬质合金。硬质合金一经问世,便受到了热烈欢迎。人们发现用它制作的刀具,在1000℃的高温下也不会变软,切削速度可达到每分钟2000米以上,比普通碳素钢刀高出100多倍。
铝是地壳中含量最多,分布最广的金属元素。我们脚下的粘土,就是铝的藏身之处、所以人们称铝是“来自粘土的白银”。
在今天,铝是产量仅次于铁的第二金属。生活中随处可见。但在100多年前,铝比黄金还要贵几倍,是王公贵族才能赏玩的珍宝。
说明:炭没有从铝手里夺取氧的能力,那就换一种思路,让氯气从氧那里把铝夺过来。
他向烧得发红的矾土里通入氯气,发现有一些液体流出来,得到了应该是氯化铝。他仔细地把这些液体收集好,再加热并加入还原能力强大的钾汞剂(合金),让它代替炭去把铝还原出来。实验分析结果告诉他,有氯化钾生成。钾汞剂已经变成了铝汞剂,加热以后汞蒸发掉了,可铝也再一次变成了白色的矾土。
由于铝的需求量越来越大,原料矾土的供应也变得紧张。自然界纯矾土矿很有限,大部分的矿石含有一半的铁硅和其它杂质,不能直接用来炼铝。有必要寻求一种廉价的方法将氧化铝提取出来。
奥地利化学家拜尔采用煅烧矿石,然后粉碎,再加入氢氧化钠,使其与氧化铝反应,生成氢氧化铝。然后分离出氢氧化铝,最后加热使氢氧化铝分解,就可以得到纯净的矾土了。他们研究发现:
1.具有形状记忆能力的合金并不只是镍钛合金一种,还有铜铝合金、铜锌合金、铜镍台金、镍铝合金等;
2.不同的组成,甚至是组成虽然相同,但热处理方法不同的合金,被“唤醒记忆”恢复原有形状的温度就有所不风
3.这些合金变形能力是无疲劳的,即使反复变形上百万次也不会断裂。
氢是一种高效的燃料,它的比热是航空煤油的三倍,也就是说1公斤的氢可以代替3公斤煤油,目前任何化学燃料都无法和它相比。更重要的是它是一种洁净的、无污染的燃料。因为氢燃烧时与氧结合,剩下的只是水,避免了产生有害的废弃物。
通常,人们只是把易与氢气结合成金属氢化物的合金才称为“储氢合金”。金属为什么具有储氢的本领呢? 因为氢是一种很活泼的元素,能与许多金属起化学反应。一个金属原子能与两个、三个或更多的氢原子结合,生成稳定的金属氢化物,同时放出热量。当稍微加热,金属氢化物吸收热量后,就会分解出高纯度的氢气。研究表明,能满足储氢材料基本条件的合金,其成分中的主要元素有镁、钛、铌、钒、锆和稀土类金属,添加元素有铬、铁、锰、钴、镍、铜等。
现在研究开发的合金,有镧镍、钛铁、镁镍、混合稀土、非晶态类储氢合金。储氢合金有很好的吸附性能,不需要高压高温就能贮存氢和释放氢,并且两者的数量很大,而且吸附性能也不会因反复贮藏、释放而减弱,因而特别适用于贮藏和运输氢,其理论贮氢量可为同体积高压贮气瓶的1000—1300倍,为液态氢单位容积贮气量的1.5倍,而且不会形成氢气压力,使之成为可靠的贮氢手段。
晶须是一种直径为几微米到几十微米、长度可达数厘米的单晶体,可以在自然界生成,也可由人工制成。它强度极高,接近晶体的理论强度。因晶须十分细小,故一般不能独立使用,但可编织成线材或与其他聚合物复合成纤维增强复合材料。
经现代的X射线衍射技术显示,晶须内部的原子完全按照同样的方向和部位排列。这是一种没有任何缺陷的理想晶体。而在一般金属中,虽说总体上原子是有规则排列的,但局部地方,一些原子的排列并不规则,因而,晶体构造中产生了缺陷。
设想:将硝化纤维薄膜夹在两层玻璃中间,设法把它们粘成一体,就可以做成不伤人的安全玻璃。
困难:硝化纤维“脾气暴躁”,见火就烧.有时温度一高还会自己烧起来。怎样使它与玻璃紧密结合起来? 方案:
1.用胶水?——粘合牢度太低。
2.把玻璃烧软了,再趁软把硝化纤维压在一起?——实验不是着火就是爆炸,太危险。
所谓先进陶瓷,是以高纯、超细的人工合成的无机化合物为原料,采用精密控制的制备工艺烧结而成的,比传统陶瓷性能更加优异的新一代陶瓷。先进陶瓷又称为高性能陶瓷、精细陶瓷、新型陶瓷或高科技陶瓷。
先进陶瓷按化学成分可分为氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、硼化物陶瓷、硅化物陶瓷、氟化物陶瓷、硫化物陶瓷等。
(1)陶瓷的耐热性好,这可以提高发动机的工作温度,从而使发动机效率大大提高。例如,对燃气轮机来说,目前作为其制造材料的镍基耐热合金,工作温度在1000℃左右;若采用陶瓷材料,工作温度可达1300℃,使发动机.效率提高30%左右。
(2)工作温度高,可使燃料充分燃烧,尾气中的污染成分大大减少。这不仅降低了能源消耗,而且减少了环境污染。
(3)陶瓷的热传导性比金属低,这使发动机的热量不易散发,可节省能源。
(4)陶瓷具有较高的高温强度和热稳定性,这可延长发动机的使用寿命。目前,这种陶瓷滚动轴承已经问世。陶瓷滚动轴承具有下列优点:
(1)陶瓷的耐蚀性好,所以陶瓷滚动轴承适合于在有腐蚀性介质的恶劣环境中工作;
(2)陶瓷滚动体的密度比钢低,转动时对外圈的离心作用力可降低40%,故使用寿命长;(3)陶瓷的热膨胀系数比钢小,在轴承的间隙一定时,允许在温差变化较大的环境中工作;(4)陶瓷的弹性模量比钢高,具有较好的刚度,有利于提高工作速度,达到较高的精度。人造金刚石:金刚石是大家熟悉的高级装饰品,又是已知材料中最硬的,由于天然金刚石矿床不多,故价格很贵。而商业上、工业上都有很大需求,于是人们希望能够人工合成。金刚石和石墨都是有碳元素组成,但是两者的性能却千差万别,一个很硬,一个很软。这为我们人工合成提供了线索。塑料、合成纤维和合成橡胶,是合成高分子化合物的三大家族。纤维和橡胶都有天然的存在,惟有塑料没有天然的存在,是人类创造力的产物。虽说塑料的诞生是受自然界的树脂类物质启发而起步的,但在塑料的发展过程中,完全是人类以丰富的想象力和艰苦卓绝的努力,才创造出这一个崭新的材料领域。
聚乙烯是由乙烯单体聚合而成,为发展最快、产量最大的一种热塑性聚合物。聚乙烯质感类似石蜡状,无味无毒,有良好的耐低温性、化学稳定性、加工性、电绝缘性,但耐热性不高,只可在80℃下使用。
由高压法所得的聚乙烯,分子质量较低,分子的支链较多,密度较小,所以又称低密度聚乙烯(LDPE),为半透明状,质地柔软,耐冲击,常用于制作薄膜、软管、瓶类等包装材料及电绝缘护套等。
超高分子量聚乙烯(简称UHMPE)的分子质量达上百万,使结晶困难。
与普通PE相比,耐磨性、抗冲击性、自润滑性、生理相容性、耐蚀性更好,但其硬度、强度、耐热性低些。可用于耐磨输送管道、机床耐磨导轨、小齿轮、人工关节、防弹衣、滑雪板等。
最轻且价低的塑料:聚丙烯(PP)
聚丙烯是由丙烯单体聚合而成的热塑性聚合物,常用的PP,耐蚀性、电绝缘性优良,力学性能、耐热性(可达150 ℃)在通用热塑性塑料中最高,耐疲劳性好,是常见塑料中密度最低、价格最低的塑料,但低温脆性大及耐老化性不好。其无味无毒,是可进行高温热水消毒的少数塑料品种之一。
最鲜艳且成形性特好的塑料:聚苯乙烯(PS)
聚苯乙烯为苯乙烯单体聚合而成的典型线型无定形热塑性塑料。
PS极易染成鲜艳色彩,透明度仅次于有机玻璃,制品表面富有光泽;几乎可用各种成形方法进行成形加工,成形收缩特小,可成形性非常突出;电绝缘性(特别是高频绝缘性)极好,刚性好、脆性大,为敲击时惟一有清脆的类似金属声的塑料;其无味无毒,但抗冲击强度低,易脆裂;不耐高温(100 ℃以下使用),户外长期使用易变黄变脆。与“尼龙—66”相比,聚酯纤维的优点:
1.保型性好。
它弹性足,尤其是弹性模量要比尼龙-66高2~3倍,不容易产生折皱,经熨烫后有“一朝定型,永不变形”的功效。
1.耐温性能好。
聚酯纤维既不怕高温又耐得低温。将其在150℃的热空气中加热1000小时,还能保持50%以上的强度,而尼龙-66在此温度下差不多已经“毁尸灭迹”了。聚酯纤维的熔化温度高达250℃、但在零下100℃的低温环境中也不会降低性能。
3.强度高;
它在干燥情况下强度与尼龙-66不相上下、而且在潮湿条件下依然如故。尼龙-66受潮后强度会下降10%~15%,聚酯的抗冲击能力比尼龙要强整整4倍。
3.“生命力”旺盛。
把它放在玻璃瓶里晒上一年,强度并没有太大的降低,而如果换成尼龙,同样晒一年,强度会有大幅度的下降。
3.聚酯还不怕酒精、汽油等有机溶剂,不怕含氯的氧化剂,不怕稀酸、稀碱溶液的腐蚀作用。
橡胶、人称“弹性之王”,最大的特点是富有弹性,可以在外力作用下伸长七八倍。但外力一消失,又迅速恢复其原来的长度。除了弹性好以外,橡胶还有防水、绝缘、气密、抗震、耐磨等一系列优良性能。橡胶是当今社会不可缺少的重要战略物资,是现代人生活中非常熟悉的材料之一。
橡胶家族分为天然的和人工合成的两大分支。无论是天然橡胶,还是合成橡胶,都是化学家们付出了大量辛勤的劳动后,才得以进入人类生活的。
人造“大然橡胶”与真正天然的橡胶相比,可以说是“巧手胜天成”的杰作。
它的弹性、耐磨性、耐温性、气密性等各项性能指标都与天然橡胶相同,甚至它的缺点也和天然橡胶一样——耐油性不太好。不同在于它在合成时的原料特别纯,所以产品中不含天然橡胶里常有的植物蛋白及脂肪等杂质,电绝缘性能比天然橡胶好,耐老化的时间也更长。