第一篇:高二文科数学寒假作业
高二文科数学寒假作业1 一.选择题 1.双曲线 A. y=± y=± 的渐近线方程为()B.
y=±
C.y=±
D.2. “2b=a+c“是“a,b,c成等差数列”的()
A. 充分不必要条件 B. 必要不充分条件
C. 充要条件 D. 即不充分也不必要条件 3.下列说法正确的是()
A. 命题“若a>b,则a2>b2”的否命题是“若a<b,则a2<b2”
B. 命题“若a>b,则a2>b2”的逆否命题是“若a≤b,则a2≤b2”
C. 命题“∀∈R,cosx<1”的否命题是“∃x0∈R,cosx0≥1”
D. 命题“∀∈R,cosx<1”的否命题是“∃x0∈R,cosx0>1”
4.△ABC中角A,B,C所对的边分别是a,b,c,若a2+b2﹣c2=ab,则角C为()
A. 30° B. 60° C.120° D. 150° 5. A.
等于()
B.
﹣
C.
D. ﹣6.若变量x,y满足约束条件()
A. 6 B.,则目标函数z=2x+y的最小值是C.
=()
D. 1 7.设Sn为等比数列{an}的前n项和,8a2+a5=0,则 A. ﹣11 B.
﹣8 C.5 D. 11 8.数列{an}的通项公式an=n2+n,则数列{ A. B.
}的前9项和为()
D.
C.
9.下列命题中正确的是()
A. 若a>b,c<d,则a﹣c<b﹣d C. 若a>b>0,c<0,则>< 10.已知双曲线C:
B. 若a>b>0,c<d<0则ac<bd D. 若a>b>0,则a﹣a>b﹣b
=1(a>0,b>0)的左右焦点分别为F1,F2,点P
|,|OP|=|OF2|(O为坐标原点),则在双曲线的右支上,且满足|PF1|=双曲线C的离心率为()
A. 3 二.填空题 B.
C. 5 D.
11.已知tanα=,则tan2α= .
12.△ABC中,AC=,BC=,∠B=60°,则∠A= .
13.若数列{an}的前n项和Sn=n2+n,则数列{an}的通项公式an= .
14.已知抛物线C:y2=4x的焦点F,点P为抛物线C上任意一点,若点A(3,1),则|PF|+|PA|的最小值为 .
15.已知正数a,b满足2a+b=ab,则a+2b的最小值为 . 三.解答题
16.△ABC中,角A,B,C所对的边分别为a,b,c,若asinB=bcosA.(1)求角A的大小;
(2)若b=1,△ABC的面积为,求a的值.17.已知p:∀x∈R,x2+mx﹣m+3>0;q:∃x0∈R,x02+2x0﹣m﹣1=0,若p∧q为真命题,求实数m的取值范围.
18.已知等差数列{an}的前n项和为Sn,且a1=4,S4=30.(1)求数列{an}的通项公式;
(2)设bn=an•2n+1,求数列{bn}的前n项和Tn.
19.已知函数f(x)=(1)求函数f(x)的最小正周期;(2)若f(x.)=,求cosα的值. 20.如图,某学校准备修建一个面积为2400平方米的矩形活动场地(图中ABCD)的围栏,按照修建要求,中间用围墙EF隔开,使得ABEF为矩形,EFCD为正方形,设AB=x米,已知围墙(包括EF)的修建费用均为每米500元,设围墙(包括EF)的修建总费用为y元.
(1)求出y关于x的函数解析式及x的取值范围;
(2)当x为何值时,围墙(包括EF)的修建总费用y最小?并求出y的最小值.
21.已知F1(﹣c,0),F2(c,0)分别是椭圆M:右焦点,且|F1F2|=2,离心率e=
.
=1(a>b>0)的左、(1)求椭圆M的标准方程;
(2)过椭圆右焦点F2作直线l交椭圆M于A,B两点. ①当直线l的斜率为1时,求线段AB的长; ②若椭圆M上存在点P,使得以OA,OB为邻边的四边形OAPB为平行四边形(O为坐标原点),求直线l的方程.
数学寒假作业(文科)2
一、选择题
1.下列结论正确的是()
A. 若ac>bc,则a>b B. 若a2>b2,则a>b C. 若a>b,c<0,则 a+c<b+c D. 若<,则a<b 2.若命题“p∧q”为假,且“¬p”为假,则()
A. p或q为假B.q假C.q真D.不能判断q的真假 3.不等式≤0的解集为()
A. {x|﹣2<x≤3}
B.{x|﹣2≤x≤3} C.{x|x<﹣2或x>3} D.{x|﹣2<x<3} 4.已知等比数列{an}的公比为正数,且a3•a9=2a52,a2=2,则a1的值是()
A. B.
C.
D. 2 5.若不等式x2﹣ax+a≤1有解,则a的取值范围为()
A. a<2 B. a=2 C. a>2 D. a∈R 6.在△ABC中,a,b,c分别为角A,B,C所对的边,且ccosA=b,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.斜三角形 7.下列命题错误的是()
A. 命题“若m>0,则方程x2+x﹣m=0有实数根”的逆否命题是“若方程x2+x﹣m=0没有实数根,则m≤0”
B. “x=1”是“x2﹣3x+2=0”的充分不必要条件
C. 命题“若xy=0,则x,y中至少有一个为0”的否命题是“若xy≠0,则x,y中至多有一个为0”
D. 对于命题p:∃x∈R,使x2+x+1<0;则¬p:∀x∈R,均有x2+x+1≥0 8.在△ABC中,若C=90°,三边为a,b,c,则 A.(,2)B.(1,]
C.(0,的范围是()]
D. [,] 9.若函数y=2x图象上存在点(x,y)满足约束条件m的最大值为(),则实数 A.
10.如图,椭圆B. 1 C.
D. 2(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2,若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为()
A. B.
C.
D.
二、填空题 11.(5分)若关于x的不等式x2﹣4x+a2≤0的解集是空集,则实数a的取值范围是 .
12.(5分)设变量x、y满足约束条件为 .
13.(5分)已知双曲线C:的率心率为 .
14.(5分)已知双曲线C经过点曲线的标准方程为 . 15.(5分)若x∈(1,+∞),则y=x+的最小值是 .,渐近线方程为y=±x,则双,点P(2,1)在C的渐近线上,则C,则z=2x+y的最大值
三、解答题 16.(12分)已知a,b,c分别是△ABC的三个内角A,B,C所对的边,且c2=a2+b2﹣ab.(1)求角C的值;(2)若b=2,△ABC的面积,求a的值.
17.(12分)已知命题P:不等式a2﹣4a+3<0的解集;命题Q:使(a﹣2)x2+2(a﹣2)x﹣4<0对任意实数x恒成立的实数a,若P∨Q是真命题,求实数a的取值范围.
18.(12分)在数列{an}中,已知a1=2,an+1=4an﹣3n+1,n∈N•.(1)设bn=an﹣n,求证:数列{bn}是等比数列;(2)求数列{an}的前n项和Sn.
19.(12分)已知等差数列{an}的首项a1=1,前n项和为Sn,且S1,成等差数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}为递增的等比数列,且集合{b1,b2,b3}⊆{a1,a2,a3,a4,a5},设数列{an•bn}的前n项和为Tn,求Tn.
20.(13分)在平面直角坐标系中,已知点A(1,0),点B在直线l:x=﹣1上运动,过点B与l垂直的直线和线段AB的垂直平分线相交于点M.(1)求动点M的轨迹E的方程;
(2)过(1)中轨迹E上的点P(1,2)作轨迹E的切线,求切线方程.
21.(14分)如图,已知椭圆的离心率为,F1、F2为
. 其左、右焦点,过F1的直线l交椭圆于A、B两点,△F1AF2的周长为(1)求椭圆的标准方程;
(2)求△AOB面积的最大值(O为坐标原点). 高二文科数学寒假作业1 参考答案与试题解析
一.选择题
ACCAB. DCABC 二.填空题
11.12..13. 2n.14. 4.15. 9.
三.解答题 16.解:(Ⅰ)asinB=bcosA,由正弦定理可得sinAsinB=sinBcosA,∵B是三角形内角,∴sinB≠0,∴可解得:tanA=,A是三角形内角,∴A=.
=
=,(Ⅱ)∵b=1,S△ABC=∴可解得:c=4,∴由余弦定理可知:a2=b2+c2﹣2bccosA„(9分)=1+16﹣2×1×4×=13„(11分)
∴a=„(12分)
2217.解:p:∀x∈R,x+mx﹣m+3>0,则△=m﹣4(3﹣m)<0,解得﹣6<m<2;
q:∃x0∈R,x02+2x0﹣m﹣1=0,则△1=4﹣4(﹣m﹣1)≥0,解得m≥﹣2. 若p∧q为真命题,则p与q都为真命题,∴,解得﹣2≤m<2.
∴实数m的取值范围是﹣2≤m<2. 18. 解:(1)设差数列{an}的公差为d,∵a1=4,S4=30. ∴=30,解得d=.
=
.
∴an=a1+(n﹣1)d=4+∴an=
.(2)bn=an•2=n+1•2.,n+1∴数列{bn}的前n项和Tn=+„+(7n﹣2)×2n+(7n+5)×2n+1] ∴﹣Tn===∴Tn=19.解:(1)f(x)==所以:
,所以:
=,.
x.
+„+7×2n﹣(7n+5)×2n+1]
(2)由(1)得:f(x)=所以:则:因为:则:cosα==cos(=)cos+sin()sin
20.解:(1)设AD=t米,则由题意得xt=2400,且t>x,故t=可得0,„(4分)),)(0=120000,).
>x,则y=500(3x+2t)=500(3x+2×所以y关于x的函数解析式为y=1500(x+(2)y=1500(x+当且仅当x=)≥1500×2,即x=40时等号成立.
故当x为40米时,y最小.y的最小值为120000元.
21.解:(1)由题意,c=∴a=2,b=1,∴椭圆M的标准方程为
;,=,(2)①可设直线方程为y=x﹣ 代入椭圆方程可得5x2﹣8x+8=0 ∴x=∴弦AB的长为
=;
②假设椭圆上存在点P(m,n),使得以OA、OB为邻边的四边形OAPB为平行四边形.
设直线方程为y=k(x﹣),代入椭圆方程,可得(1+4k2)x2﹣8k2x+12k2﹣4=0,设A(x1,y1),B(x2,y2),由=+,则m=x1+x2,n=y1+y2,x1x2=,x1+x2=y1+y2=k(x1+x2﹣2)=k(﹣2)=,11 即有P(,),代入椭圆方程可得解得k2=,解得k=±故存在点P(则有直线l:y=
,﹣x﹣,),或(或y=﹣,﹣x+
=1,),.
山东省菏泽市2014-2015学年高二上学期期末数学试卷(文科)2
参考答案与试题解析
一、选择题
DBACD CCBBC
二、填空题
11. a<﹣2或a>2; 12. 6;13.
三、解答题
16.解:(1)∵c2=a2+b2﹣ab,∴cosC=∵0°<C<180°,∴C=60°;(2)∵b=2,△ABC的面积∴=,=,;14.
;15.
.
解得a=3.
点评: 本题考查余弦定理的运用,考查三角形面积的计算,正确运用公式是关键.
17.解:不等式a2﹣4a+3<0得,1<a<3,所以命题为; 1<a<3,由不等式(a﹣2)x2+2(a﹣2)x﹣4<0对任意实数x恒成立; 得a a=2 或,解得﹣2<a≤2,∵P∨Q是真命题,∴a的取值范围是﹣2<a<3.
点评: 本题考查的知识点是命题的真假判断与应用,函数恒成立问题,其中根据已知求出命题p和q满足时,参数a的取值范围,是解答本题的关键.
18.解:(1)∵(5分)
且b1=a1﹣1=1∴bn为以1为首项,以4为公比的等比数列,(7分)(2)由(1)得bn=b1qn﹣1=4n﹣1(8分)∵an=bn+n=4n﹣1+n,(9分)∴=,(12分),点评: 本题主要考查数列求和和等比关系的确定的知识点,解答本题的关键是熟练掌握等差和等比数列的性质和求和公式,本题难度一般.
19.解:(1)设等差数列的公差为d,由,即即,„..(2分),解得d=1,∴an=1+(n﹣1)×1=n„.(6分)
成等差数列,得(2)由{b1,b2,b3}⊆{a1,a2,a3,a4,a5},即{b1,b2,b3}⊆{1,2,3,4,5},∵数列{bn}为递增的等比数列,∴b1=1,b2=2,b3=4,∴,„..(8分)
∴Tn=a1b1+a2b2+a3b3+„+an﹣1bn﹣1+anbn①
则2Tn=a1•2b1+a2•2b2+a3•2b3+„+an﹣1•2bn﹣1+an•2bn,即 2Tn=a1b2+a2b3+a3b4+„+an﹣1bn+anbn+1②
①﹣②得﹣Tn=a1b1+(a2﹣a1)b2+(a3﹣a2)b3+(a4﹣a3)b4+„+(an﹣an﹣1)bn﹣anbn+1,即∴
=„(12分)
=2n﹣1﹣n•2n=(1﹣n)2n﹣1,点评: 本题考查等差数列以及等比数列的应用,数列求和的方法,考查分析问题解决问题的能力.
20.解:(1)依题意,得|MA|=|MB|„(1分)
∴动点M的轨迹E是以A(1,0)为焦点,直线l:x=﹣1为准线的抛物线,„(3分)
∴动点M的轨迹E的方程为y2=4x.„(5分)(2)设经过点P的切线方程为y﹣2=k(x﹣1),„.(6分)联立抛物线y2=4x消去x得:ky2﹣4y﹣4k+8=0,„(10分)由△=16﹣4k(﹣4k+8)=0,得k=1,„(12分)∴所求切线方程为:x﹣y+1=0.„(13分)
点评: 本题考查轨迹方程的求法,直线与抛物线的位置关系的应用,考查计算能力.
21.解:(1)设椭圆的半焦距为c,则二者联立解得分)
(2)设直线l的方程为:x=ky﹣1,与
联立,消x,整理得:(k2+2),由题意知,.„.(6,c=1,则b2=1,所以椭圆的标准方程为y2﹣2ky﹣1=0,△=(﹣2k)2+4(k2+2)=8k2+8>0,„(10分)
所以
=„(12分)==
=
(当且仅当
=,即k=0时等号=
=成立),所以△AOB面积的最大值为.„.(14分),与,联说明:若设直线l的方程为:y=k(x+1)(k≠0),则立,消x,整理得:所以,====,当且仅当,即k=0时等号成立,由k≠0,则.
当直线l的方程为:x=﹣1时,此时综上所述:△AOB面积的最大值为
.,.
点评: 本题考查直线与椭圆的位置关系的综合应用,椭圆方程的求法,基本不等式在最值中的应用,考查分析问题解决问题的能力以及计算能力.
第二篇:高二数学文科试题样板
德惠市第二实验中学2010—2011学第二学期 高中二年级文科数学期末考试试题 试卷说明: 1.本试题满分150分,考试时间120分钟。2.考试结束只交答题卷。
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.有位家长通过孩子5—10岁的身高数据,建立身高y(单位:cm)与年龄x的回归模型为y=8.1x+36.3,则下列叙述正确的是()A.该孩子每年身高增加8.1cmB.可预测该孩子11岁时的身高约为125.4 cm C.该孩子在5—10岁时,每年身高增加8.1cmD.该孩子5岁时的身高为76.8 cm 2.已知“直线与圆相切时,圆心与切点的连线与直线垂直”,现推测“平面与球相切时,球心与切点的连线与平面垂直”,这种推理属于()A.归纳推理B.演绎推理C.类比推理D.联想推理 3.下面图2中的程序框图的作用是输出两数中的较大者,则①②处分别为()
图2A.输出m ;交换m和n的值B.交换m和n的值;输出mC.输出n ;交换m和n的值D.交换m和n的值;输出n 4.如右图,A、B是⊙O上的两点,AC是⊙O的切线,∠
B=70°,则∠BAC等于()A.70°B.35°C.20°D.10° C5、如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使ΔABE和ΔACD相的是()
A.∠B=∠CB.∠ADC=∠AEB
C.BE=CD,AB=ACD.AD∶AC=AE∶
AB
高二文科数学期末考试试题第 1 页(共4页)
6.若直线的参数方程为
x12ty23t
32(t为参数),则直线的斜率为()
A.
B.
C.D.
7.用演绎法证明函数yx是增函数时的小前提是()
A.增函数的定义
B.函数yx满足增函数的定义
C.若x1x2,则f(x1)f(x2)D.若x1x2,则f(x1)f(x2)
8、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是()
A.假设三内角都不大于60度;B.假设三内角都大于60度;C.假设三内角至多有一个大于60度;D.假设三内角至多有两个大于60度。
9.(3-2i)
1+i
A.-
等于()
172
iB.
-3iC.
3+
iD.-4+3i10、有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b平面,直线a平面,直线b∥平面,则直线b∥直线a”的结论显然是错误的,这是因为()
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误
1.圆5cos的圆心是()
A.(5,5
3)B.(5,)C.(5,)D.(5,
43)
12.若a>b>c,且a+b+c=0,则下列不等式中正确的是()
A.ab>acB.ac>bcC.a∣b∣>c∣b∣D.a>b>c
二、填空题(本大题共4小题,每小题5分,共20分.)13.已知x与y之间的一组数据:
则y与x的线性回归方程为y=bx+a必过点.高二文科数学期末考试试题第 2 页(共4页)
14.直线t
x2(t为参数)被圆(x3)2(y1)
225所截得的弦长为.
y1t
15.设0
π,已知*
a1
2cos,an1(nN),通过计算数列{an}的前几项,猜想
其通项公式为aC
n=(nN*).D
16.如图,AB是⊙O的直径,∠E=25°,∠DBC=50°,E
A
O
B
则∠CBE=________.
三、解答题(本大题共6小题,17题10分,其余每小题12分共70分.17.(本小题满分10分)
某市居民1999~2003年货币收入x与购买商品支出Y的统计资料如下表所示:
单位:亿元
(Ⅰ)(4分)画出散点图,判断x与Y是否具有相关关系;
(Ⅱ)(6分)已知b0.842,a0.943,请写出Y对x 的回归直线方程,并估计货币收入为52(亿元)时,购买商品支出大致为多少亿元?
x
/亿元 18.我校学生会有如下部门:文娱部、体育部、宣传部、生活部、学习部。
(1)(4分)请画出学生会的组织结构图。
(2)(8分)给出如下列联表
由以上数据判断高血压与患心脏病之间在多大程度上有关系?
(参考数据:P(K
6.635)0.010,P(K
7.879)0.005参考公式:
高二文科数学期末考试试题第 3 页(共4页)
k
n(adbc)
(ab)(cd)(ac)(bd))
19.(本小题满分12分)
设数列an的前n项和为Sn,且满足an2Sn(nN).
(Ⅰ)求a1,a2,a3,a4的值并写出其通项公式;(Ⅱ)用三段论证明数列an是等比数列.
20.(本小题满分12分)已知,如图,AB是⊙O的直径,AC切⊙O于点A,AC=AB,CO交⊙O于点P,CO的延长线交⊙O于点F,BP的延长线交AC于点E(1)求证:FA∥BE(2)求证:
APPC
FAAB
21.已知直线l经过点P(1,1),倾斜角(1)写出直线l的参数方程。(2)设l与圆x
6,y
4相交于两点A,B,求点P到A,B两点的距离之积。
22.(本小题满分12分)选修4—5:不等式选讲设函数f(x)3x1x2,(1)解不等式f(x)3,(2)若不等式f(x)a的解集为R,求a的取值范围.
高二文科数学期末考试试题第 4 页(共4页)
第三篇:高二文科数学教学计划
高二文科数学教学计划1
一、指导思想:
坚持以“学生发展为本,基于学生发展,关注学生发展,为了学生的发展”为教育课程改革的核心理念。不断研究课程标准。在教学中,要突出培养学生的创新和实践能力,收集处理信息的能力、获取新知识的能力、分析解决问题的能力,以及交流协作的能力,发展学生对自然和社会的责任感。从而实现全体学生的发展,以及学生个体的全面发展。为此,教师要发挥自己课程建设中的能动作用,要变“教教材”为“用教材教”,要变“经师”为“人师”,通过创造性地实施新课程,在知识、技能的传授过程中实现学生情感态度价值观的目标,实现育人的功效。
二、合理安排本学期教学进度,扎扎实实完成教学任务:
本学期授课时间约为17周,约102课时,本学期的教学任务第一学段:数学必修5约42课时;第二学段:必修3约46课时,保证完成教学任务。
三、认真备课工作,保证质量:
备课做到既备教材又备学生,认真学习新课标,钻研教材,掌握教材知识结构,重点,难点,并与学生原有知识加以联系,做到有的放矢。
四、精选例题和作业:
为提高学生学习的主动性、积极性,培养学生的创新意识。在教学中既要照顾中、下层学生,也要注意培养优生,因此,例题和课外作业的选取一定要有梯度,结合教材,可适度增减例题。课外作业分层要求:A组题要求学生都要完成;B组题要求学生有选择地完成;练习册上的题目经教师精选的必做,其他选做。
五、信息共享,发挥集体智慧的作用:
为加快对试验课的理解和掌握,积极探索教改进程,建立备课组资料库,要积极借助网络信息收集和筛选资料存库,发挥集体智慧,及时应用到具体教学中。
六、认真抓好落实,全面提高:
认真做好学困生的工作,对他们的学习加以督促,对他们的不良习惯加以纠正,争取 不让一个学生掉队,大面积提高教学质量,为使提高高二学生的数学成绩而努力奋斗。
1,培养良好的学习兴趣。
两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。“好”和“乐”就是愿意学,喜欢学,这就是兴趣。兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。那么如何才能建立好的学习数学兴趣呢?
(1)课前预习,对所学知识产生疑问,产生好奇心。
(2)听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。
(3)思考问题注意归纳,挖掘你学习的潜力。
(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?
(5)把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能对概念的理解切实可靠,在应用概念判断、推理时会准确。
2、建立良好的学习数学习惯。
习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。良好的学习数学习惯还包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。
高二文科数学教学计划2
数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。小编准备了高二第一学期数学文科教学计划,具体请看以下内容。
一、指导思想:
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
二、教学目标:
(一)情意目标:
(1)通过分析问题的方法的教学,培养学生的学习兴趣。
(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。
(3)在探究中体验获得数学规律的艰辛和乐趣,在分组研究合作的学习中学会交流、相互评价,提高学生的合作意识。
(二)能力要求:
(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。
(2)通过揭示所学内容中的有关概念、公式和图形的对应关系,培养记忆能力。
(3)通过教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。
(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算能力。
三、教学内容
本学期教学内容有立体几何、解析几何、逻辑知识和圆锥曲线、二元一次不等式(组)与简单的线性规划。
立体几何是研究的是物体的形状、大小与位置关系。通过直观感知、操作确认、思辨论证、等方法认识和探索几何图形及其性质。通过学习,培养和发展学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力。
直线和圆是用代数方法研究图形的几何性质,体现了数形结合的重要数学思想。在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互位置关系,并了解空间直角坐标系,体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
二元一次不等式(组)与简单的线性规划问题是不等式的重要应用,也是数学实际应用的重要形式之一。本节要求学生能识别不等式(组)表示的区域,并能根据区域正确地用不等式(组)来表示,能解决简单的实际问题。
常用逻辑包括命题及其关系、充要条件、简单的逻辑联结词和全称量词与存在量词
通过学习使学生理解命题的概念,了解若,则形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;理解必要条件、充分条件与充要条件的含义;了解逻辑联结词或、且、非的含义;理解全称量词和存在量词的意义、能正确地对含一个量词的命题进行否定。
圆锥曲线研究的对象是椭圆、双曲线、抛物线,使用的方法也是代数方法。这一部分的题目的综合性比较强,它要求学生既能分析图形,又能灵活地进行各种代数式的变形,这对学生能力的要求较高。坐标方法是要求学生掌握的。但是,对学生的要求不能过高,只能以绝大多数学生所能达到的程度为标准。
高二文科数学教学计划3
高二5班共有学生73人,8班共有学生70人。两个班级都是高二理科班的三类班,大部分学生基础不扎实,学习兴趣不高,甚至很多学生存在怕数学科的心理。但他们还是存在一颗想学好数学的心,也想融入变化多端的数学世界,更想在每次考试中独领风骚,鉴于此,对他们正确引导,教学中适当调整难度,起点放低点,步子迈小点,还是会有好成绩的。
一、教学计划
1.加强自身学习。
①加强课本的研读。教科书是一切教学的出发点,同时也是考试的归属地,任何一个数学知识点都会从教科书中找到类型题或者相似题或者其影子。对教科书能否吃透,专研到位,直接决定着教学知识的全面性和系统性。也就决定着研读教材的必要性。
②他山之石,可以攻玉。一个人由于生活的环境,面对的对象,自身知识局限等多方面原因,视野和出发点都有局限,思考问题和解决问题的广度和深度都有局限,因此,多阅读教学参考类的书,吸取他人的经验,借鉴他人所长弥补自己所短,对于增强教学的针对性和精彩性大有裨益。
③强化课改意识。新课改已经全面铺开,新课改的精神和思想都独具时代性,前瞻性,科学性,因此,加强新课改知识的学习,领悟新课改思想,增强新课改意识,是时代的需要,是发展的需要。因此,积极参与新课改培训,领会新课改精髓,并应用于实践中是当前必须要做的,只有这样,才能使自己的知识新陈代谢。
④认真参与组内备课。珍惜每周一次的集体备课,充分利用好这次集体备课机会,从同行们那里学习到自己缺乏或者不擅长的东西,并积极实施好组内的各项安排,落实好课时要求。
⑤增强听课意识。按照学校的要求,积极参加新课改年级的课堂听课活动,听取授课教师的点评,发现亮点,记录亮点,积累亮点,点亮亮点。
2.抓好课堂教学主战场,激发师生学习数学热情。
①加强新课情景创设,激发学生学习热情。每一节新课的开展,都有其现实意义,有其价值所在,有其趣味性,充分挖掘好这方面知识,可起到一个良好的开端作用。
②精选精讲例题。对于学生自己学得会的,不讲,对于学生讨论后可以解决的,给以适当点拨,对于学生在老师引导下完成的,要慢慢讲,细细的讲,争取每个学生都听得进,听得懂,学得会。对于超越学生承受能力的,一概不讲。
③精心布置课后作业。课后作业是课堂教学的反馈,作业质量的高低,一定层面可以反映教学效果的高低,因此,作业的布置需要科学化,分层化,多样化,且知识点具有全面性。
3.做好课后辅导工作。
①利用晚自习,充分给以每个学生耐心、细心、全面的辅导。让学生积累的问题得到彻底解决。
②利用自习课时间,寻找需要帮助的学生进行辅导,公式背不出来的,抓背公式,不交作业的,责令补交作业。
4.做好作业、考试反馈工作。
学生认真完成作业和考卷,老师进行批改,总结共性问题,发现个性问题,有针对性的给以反馈,及时消除困惑。
5.规范作答,养成良好习惯。
现在学生的数学答卷,条理不清晰,逻辑混乱,因果颠倒,这是基础不扎实的表现,更是一种思维的缺陷。因此,现阶段抓好规范答题,有助于学生良好数学思维的养成,避免将来高考失分和日后生活的凌乱。
6.培养学生的数学兴趣,普及数学价值规律的应用。
兴趣是的老师。数学难,数学烦,难在何处,烦在何方?找到原因,对症下药,通过课堂,移植中外数学趣味知识,让学生体会到数学的价值所在,通过多媒体,降低数学思维难度等等都是提高学生兴趣
二、教学内容
本学期,按照教育局教研室的要求,教学任务比较繁重。选修1-1,第三章《导数》,按照教研室的计划,应该安排在春节前结束,鉴于临近期末考试,这一章没学,这样本学期教学内容共有以下几部分:选修1-1《导数》,选修1-2共四章《统计案例》、《推理与证明》、《数系的扩充与复数的引入》、《框图》,复习必修1
三、教学策略
按照xx年山东省高考数学(文科)考纲的要求,及时调整教学计划,认真抓好学生学习的落实,努力使学生的学成为有效劳动。精心备课,精心辅导,重点抓住目标生不放松,努力使目标生的数学成绩成为有效,积极沟通交流,提高自己的授课水平,同时,认真研究《数学学科课程标准》,学习新课程,应用新课程。
四、具体措施
本学期,我主要从以下几个方面抓好教学:
1、注重学案导学,编好用好学案。注重研究老师如何讲为注重研究学生如何学。
2、尝试分层次作业,尤其是加餐作业,提高优等生的学习成绩。
3、抓好学生作业的落实,不定期检查学生的集锦本、练习本。
4、组织好单元过关,搞好试卷讲评。
5、积极做好目标学生的思想交流,情感沟通。
高二文科数学教学计划4
一、学生基本情况
118班共有学生66人,115班共有学生48人。118班学习数学的气氛较浓,但由于高一函数部分基础特别差,对高二乃至整个高中的数学学习有很大的影响,数学成绩尖子生多或少,但若能杂实复习好函数部分,加上学生又很努力,将来前途无量。若能好好的引导,进一步培养他们的学习兴趣,……
二、教学要求
(一)情意目标
(1)通过分析问题的方法的教学、通过不等式的一题多解、多题一解、不等式的一题多证,培养学生的学习的兴趣。
(2)提供生活背景,使学生体验到不等式、直线、圆、圆锥曲线就在身边,培养学数学用数学的意识。
(3)在探究不等式的性质、圆锥曲线的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识
(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。
(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
(6)让学生体验“发现——挫折——矛盾——顿悟——新的发现”这一科学发现历程的幻妙多姿
(二)能力要求
1、培养学生记忆能力。
(1)在对不等式的性质、平均不等式及思维方法与逻辑模式的学习中,进一步培养记忆能力。做到记忆准确、持久,用时再现得迅速、正确。
(2)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。 (3)通过揭示解析几何有关概念、公式和图形直观值见的对应关系,培养记忆能力。
2、培养学生的运算能力。
(1)通过解不等式及不等式组的训练,培养学生的运算能力。
(2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。
(3)通过解析法的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。
(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。
(5)利用数形结合,另辟蹊径,提高学生运算能力。
3、培养学生的思维能力。
(1)通过含参不等式的求解,培养学生思维的周密性及思维的逻辑性。
(2)通过解析几何与不等式的一题多解、多题一解、通过不等式的一题多证,培养思维的灵活性和敏捷性,发展发散思维能力。
(3)通过不等式引伸、推广,培养学生的创造性思维。
(4)加强知识的横向联系,培养学生的数形结合的能力。
(5)通过解析几何的概念教学,培养学生的正向思维与逆向思维的能力。
(6)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。
4、培养学生的观察能力。
(1)在比较鉴别中,提高观察的准确性和完整性。
(2)通过对个性特征的分析研究,提高观察的深刻性。
(三)知识要求
1、掌握不等式的概念、性质及证明不等式的方法,不等式的解法;
2、通过直线与圆的教学,使学生了解解析几何的基本思想,掌握直线方程的几种形式及位置关系,掌握简单线性规划问题,掌握曲线方程、圆的概念。
3、掌握椭圆、双曲线、抛物线的定义、方程、图形及性质。
3、椭圆、双曲线、抛物线的定义,标准方程,简单几何性质。
(二)难点
1、含绝对值不等式的解法,不等式的证明。
2、到角公式,点到直线距离公式的推导,简单线性规划的问题的解法。
3、用坐标法研究几何问题,求曲线方程的一般方法。
三、教学措施
1、教学中要传授知识与培育能力相结合,充分调动学生学习的主动性,培育学生的概括能力,是学生掌握数学基本方法、基本技能。
2、坚持与高三联系,切实面向高考,以五大数学思想为主线,有目的、有计划、有重点,避免面面俱到,减轻学生的学习负担。
3、加强教育教学研究,坚持学生主体性原则,坚持循序渐进原则,坚持启发性原则。研究并采用以“发现式教学模式”为主的教学方法,全面提高教学质量。
4、积极参加与组织集体备课,共同研究,努力提高授课质量
5、坚持向同行听课,取人所长,补己之短。相互研究,共同进步。
6、坚持学法研讨,加强个别辅导(差生与优生),提高全体学生的整体数学水平,培育尖子学生。
7、加强数学研究课的教学研究指导,培养学识的动手能力。
四、课时安排
本学期共81课时
1、不等式18课时
2、直线与圆的方程25课时
3、圆锥曲线20课时
4、研究课18课时
高二文科数学教学计划5
一、教学内容
本学期,按照教育局教研室的要求,教学任务比较繁重。选修1-1,第三章《导数》,按照教研室的计划,应该安排在春节前结束,鉴于临近期末考试,这一章没学,这样本学期教学内容共有以下几部分:选修1-1《导数》,选修1-2共四章《统计案例》、《推理与证明》、《数系的扩充与复数的引入》、《框图》,复习必修1
二、教学策略
按照--年山东省高考数学(文科)考纲的要求,及时调整教学计划,认真抓好学生学习的落实,努力使学生的学成为有效劳动。精心备课,精心辅导,重点抓住目标生不放松,努力使目标生的数学成绩成为有效,积极沟通交流,提高自己的授课水平,同时,认真研究《数学学科课程标准》,学习新课程,应用新课程。
三、具体措施
本学期,我主要从以下几个方面抓好教学:
1、注重学案导学,编好用好学案。注重研究老师如何讲为注重研究学生如何学。
2、尝试分层次作业,尤其是加餐作业,提高优等生的学习成绩。
3、抓好学生作业的落实,不定期检查学生的集锦本、练习本。
4、组织好单元过关,搞好试卷讲评。
5、积极做好目标学生的思想交流,情感沟通
高二文科数学教学计划6
一.指导思想
高二文科第一学期包括了必修三和选修1-1两本教材,通过这一学期的教学,重点要培养学生利用数学各部分内容间的联系,特别是蕴含在数学知识中的数学思想方法,启发和引导学生学习类比、推广、特殊化、化归等数学思考的常用逻辑方法,使学生学会数学思考与推理,不断提高数学思维能力。
二.学情分析
本学期我担任高二(1、3)班的数学教学工作,在经历了文理科分科之后,我对两个班上所有学生的数学学习情况有了更进一步的了解。两个班中,女生占了将近70%,两个班的数学成绩可以说都很不理想,大部分的学生基础都很薄弱。一班的学生数学基础相对三班而言较好一点,但仍然缺乏自主学习的能力;三班中有很多的学生甚至有厌学、甚至弃学的现象。为了改变这种不良局面,使两班的学生成绩赶上来,针对学生的特点及班级的实际情况,特制订如下教学计划。
三.教学内容分析
本学期共有六章内容
必修三
1.算法初步
2.统计
3.概率
选修1-1
1.常用逻辑用语
2.圆锥曲线方程
3.导数及其应用
本学期的重点章节为必修三中的概率和选修1-1中的圆锥曲线方程和导数及其应用,其它章节相对来说高考的要求较低一些。
四.具体的教学措施
1.深入钻研教材,以教材为核心,以纲为纲,以本为本深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系和网络结构,细致领会教材改革的精髓,把握通性通法,逐步明确教材对教学形式、内容和教学目标的影响。做到对知识全面掌握,从而在教学中能有的放矢。
2.坚持向课堂45分钟要效益,立足课堂,加强课堂中的教学引导,激发和培养学生的学习兴趣和学习能力。
3.坚持每章一测的原则,让学生通过不断地考试练习,从而能够熟练地掌握和应用所学的知识,并且为后续的学习做好铺垫。
4.对学习能力较强、成绩较好的学生要加强其能力培养,为两年后的高考夯实基础。
5.对学习成绩处在中等水平的学生要狠抓基础落实,使他们将知识掌握并且能够进行基本初等应用。
6.对学习已经出现困难的学生则首先要求其掌握基础,能够对基础知识进行熟练掌握,并在此基础上进行提高。
7.对于厌学、甚至弃学的学生则要从培养他们的.兴趣入手,兴趣是最好的老师,让这些学生首先对数学产生兴趣才能够进行更进一步的学习。
五.上学期工作中的优点和不足
高一整个学年中每学期都有两本必修教材,时间紧,能够做到的就是保质保量地上好每一节课,课后的作业进行认真布置和批改,并且能够及时的对固学案上的较难题目进行详细的讲解。
不足之处在于时间上的不足,导致不能够及时的对章节内容进行检测导致月考和期末成绩的不尽人意,部分学生也会产生懈怠的情绪。
高二文科数学教学计划7
一、指导思想:
在我校整体建构和谐教学模式下,使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、教材特点:
我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:
1.“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。
2.“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3.“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。
4.“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。
三、教法分析:
1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。
2.通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
四、学情分析:
高一班学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。
五、教学措施:
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻整体建构,和谐教学。
6、重视数学应用意识及应用能力的培养。
高二文科数学教学计划8
一、指导思想
在学校、数学组的领导下,严格执行学校的各项教育教学制度和要求,认真完成各项任务,严格执行“三规”、“五严”。利用有限的时间,使学生在获得所必须的基本数学知识和技能的同时,在数学能力方面能有所提高,为学生今后的发展打下坚实的数学基础。
二、教学措施
1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。
2、坚持每一个教学内容集体研究,充分发挥备课组集体的力量,精心备好每一节课,努力提高上课效率。调整教学方法,采用新的教学模式。
3、脚踏实地做好落实工作。当日内容,当日消化,加强每天、每月过关练习的检查与落实。坚持每周一周练,每章一章考。通过周练重点突破一些重点、难点,章考试一章的查漏补缺,章考后对一章的不足之处进行重点讲评。
4、周练与章考,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重能力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的力度。每一次考试试题坚持集体研究,努力提高考试的效率。
5.注重对所选例题和练习题的把握:
6.周密计划合理安排,现数学学科特点,注重知识能力的提高,提升综合解题能力,加强解题教学,使学生在解题探究中提高能力.
7.多从“贴近教材、贴近学生、贴近实际”角度,选择典型的数学联系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的训练,多给学生锻炼各种能力的机会,从而达到提升学生数学综合能力之目的不脱离基础知识来讲学生的能力,基础扎实的学生不一定能力强.教学中不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合能力.
三、对自己的要求——落实教学的各个环节
1.精心上好每一节课
备课时从实际出发,精心设计每一节课,备课组分工合作,利用集体智慧制作课件,充分应用现代化教育手段为教学服务,提高四十五分钟课堂效率。
2.严格控制测验,精心制作每一份复习资料和练习
教学中配备资料应要求学生按教学进度完成相应的习题,老师要给予检查和必要的讲评,老师要提前向学生指出不做的题,以免影响学生的学习。三类练习(大练习、限时训练、月考)试题的制作分工落实到每个人(备课组长出月考卷,其他教师出大练习、限时训练卷),并经组长严格把关方可使用.注重考试质量和试卷分析,定期组织备课组教师进行学情分析,发现问题,寻找对策,及时解决,确保学生的学习积极性不断提高。
3.做好作业批改和加强辅导工作
高二文科数学教学计划9
一、教学内容
本学期文科数学内容为苏教版普通高中课程标准实验教科书(必修)3、选修系列1-1两册全部内容,根据情况决定是否上一点系列3的选讲内容。
二、教学指导
1、认真研究和学习新课程数学课程标准的教学要求。通过学习,明确高中数学课程的总目标和具体目标,准确把握每一个知识点的教学难度,切实领会新大纲、新教材的意图,力求恰到好处的教学成效。
2、教学应注意突出新课程理念,要突出新课程的教学六环节,特别是情境创设、问题建构、学生活动,但反对盲目套用,要重视让学生体会、发现知识的发生过程,要注重培养学生数学地提出问题、分析问题和解决问题的能力,发展学生的创新意识和应用意识,要提高数学探究能力、建模能力和交流能力,进一步发展学生的数学实践能力,这也是新课程标准的核心要求。
3、教学要注重基本知识、基本技能、基本方法的掌握,要面向全体学生,绝不能将新授课上成高三的复习课,练习要以课本为主,适当补充难易适中的课外习题,保证学生经过自身努力能基本完成。要体会教材循序渐进、螺旋上升的编写意图,更要领会《标准》和《教学要求》的精神,准确把握好“度”,切忌将选修内容纳入必修课程。
4、教学要注重激发学生学习数学的兴趣,使学生树立学好数学的信心,形成实事求是的科学态度和锲而不舍的钻研精神,认识数学的科学价值和人文价值,从而进一步树立辨证唯物主义的世界观,实实在在地在培养学生数学素养上下功夫。
5、要尽可能在每学期结束按要求完成教学任务,既不要提前,也不要滞后。以便于全区统一调查测试。要准确理解改革以后的高考新导向和08年广东省高考方案,使教学确实具有实效性、针对性和科学性。
6、系列3的课程可以按讲座形式开设,每本书开设一、两次即可,主要是布置任务以学生自学为主,以拓宽学生的知识面为目的。另外,望能结合教学内容,安排适度的阅读、调研、实践等研究性学习活动。
7、月考单独出题。命题原则是面向全体学生,以课本例、习题为主,采用高考试卷模式,适当渗透高考要求,充分保护学生学习数学的积极性。
8、试卷分值、试卷结构、考试时间待定,难度系数为0.60—0.65。
9、培优补差按分部要求安排。在期末对培训内容进行一次质量检测。
三.教研活动
1.充分利用有利条件——课组成员在一个办公室,每天研究讨论第二天的内容,教法。总结当天的得失之处。
2.每周四开本组教研会,集体备课并讨论研究布置下周的教育教学此文转自任务。
3.本学期每人上一堂公开课,计划上交教学处。
4.培优补差任务按轮流负责知识点的方法。培优内容为必修五,补差内容为本学期难点。
5.每个知识点的学案,单元检测,假期作业,各种考试试卷轮流出题,具体安排每周课组会上讨论通过。
6.争取做一个课题,具体内容与安排由科组合议。
第四篇:2018数学高二寒假作业测试题
2018数学高二寒假作业测试题
亲爱的同学们,转眼间你们又度过了一学期,可以回家轻轻松松的享受寒假了,查字典数学网为大家准备了数学高二寒假作业测试题,欢迎阅读与选择!
选择题(每个题5分,共10小题,共50分)
1、抛物线 上一点 的纵坐标为4,则点 与抛物线焦点的距离为()
A 2 B 3 C 4 D 5
2、对于抛物线y2=2x上任意一点Q, 点P(a, 0)都满足|PQ|≥|a|, 则a的取值范围是()
A(0, 1)B(0, 1)C D(-∞, 0)
3、抛物线y2=4ax 的焦点坐标是()
A(0, a)B(0,-a)C(a,0)D(-a, 0)
4、设A(x1,y1),B(x2,y2)是抛物线y2=2px(p>0)上的两点,并且满足OA⊥OB.则y1y2等于()
A – 4p2 B 4p2 C – 2p2 D 2p2
5、已知点P在抛物线y2 = 4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为()
A.(,-1)B.(,1)C.(1,2)D.(1,-2)
6、已知抛物线 的焦点为,准线与 轴的交点为,点 在 上且,则 的面积为()
(A)(B)(C)(D)
7、直线y=x-3与抛物线 交于A、B两点,过A、B两点向
抛物线的准线作垂线,垂足分别为P、Q,则梯形APQB的面积为()
(A)48.(B)56(C)64(D)72.8、(2018年高考广东卷文科8)设圆C与圆 外切,与直线 相切.则C的圆心轨迹为()
A.抛物线 B.双曲线 C.椭圆 D.圆
9、已知双曲线 : 的离心率为2.若抛物线 的焦点到双曲线 的渐近线的距离为2,则抛物线 的方程为
10、(2018年高考山东卷文科9)设M(,)为抛物线C: 上一点,F为抛物线C的焦点,以F为圆心、为半径的圆和抛物线C的准线相交,则 的取值范围是
(A)(0,2)(B)[0,2](C)(2,+∞)(D)[2,+∞)
小编为大家提供的数学高二寒假作业测试题就到这里了,愿大家都能在学期努力,丰富自己,锻炼自己。
第五篇:高二文科数学期末考试题
2011-2012学年第一学期期末阳春五中高二文科数学试卷
总分:150分时间:120分钟
一、选择题(每小题只有一个正确选项;每小题5分,共50分)
1、一个三角形的三边之比为6:7:9,那么这个三角形是()
A、钝角三角形B、锐角三角形
C、直角三角形D、等腰三角形
2、已知ΔABC的面积是3
2,b=2,c=3,则()
A、A300B、A600C、A300或1500D、A600或12003、数列1,4,7,10,13,……的一个通项公式是()
A、an5n4B、an3n2C、an4n3D、an6n54、在等差数列an中,已知a32,则该数列前5项和为()
A、10B、16C、20D、325、设a0,b0.若2是2a与2b的等比中项,则11
ab的最小值是(A、8B、4C、2D、16、当a0时不等式42x2axa20的解集为()
A、aaaa
x|6x7B、x|7x6
C、x|a
6xaaa
7D、x|7x6
7、不等式组(x2y1)(xy3)0
0x3表示的平面区域是()
A、矩形B、三角形C、梯形D、平行四边形
8、下列命题为假命题的是()
A、x2是x24x40的必要条件)
B、圆心到直线的距离等于半径是这条直线为圆的切线的充要条件
C、sinsin是的充分条件
D、ab0是a0的充分条件
9、已知x3,则函数yx1的最小值是()x3
A、2B、3C、4D、5
x2y2
1表示双曲线,则k的取值范围是()
10、已知方程1k1k
A、1k1B、k0C、k0D、k1或k1
二、填空题(把答案写在题中的横线上;每小题5分,共20分)
x2y211、若双曲线以椭圆1的焦点为顶点,以椭圆的顶点为焦点,85
则双曲线的方程是________________________.12、命题“xN,x3x2”的否定是__________________________.yx
13、设变量x、y满足约束条件xy1,则z2xy的最大值为______.y1
2-1-m)xm0没有实数根,则m14、若关于x的一元二次方程mx(的取值范围为____________________________.三、解答题(本大题共6小题,共80分;解答应写出文字说明、证明过程或演算步骤)
15、(本小题12分)已知在ABC中,b3,c3,B300,求解三角形。
16、(本小题12分)在等比数列an中,已知其前4项和
S440,且a1a428,求其公比q.17、(本小题14分)已知等差数列an的公差为负数,若a1a2a318,a1a2a3192
(1)求这个数列的前n项和Sn;
(2)求这个数列前多少项之和最大,并求出最大值。
18、(本小题14分)椭圆经过点P(-22,0),Q(0,5)
(1)求椭圆的标准方程;
(2)若过椭圆的右焦点F2作一条斜率为2的直线与椭圆交与A、B
两点,求ABF1周长。
19、(本小题14分)设数列an的前n项和Sn2n2,bn是等比数列,且a1b1,b2(a2a1)b1
(1)求数列an和bn的通项公式;
(2)设cnan,求数列cn的前n项和Tn。bn
2x2y220、(本小题14分)抛物线y2px的焦点与椭圆1的右焦点65
重合(1)求抛物线的标准方程;
(2)若斜率为1的直线l经过抛物线的焦点,且与抛物线相交于A、B两点,求线段AB的长。
2011-2012学年第一学期期末阳春五中高二文科数学试卷答案
一、选择题
1、B2、D3、B4、A5、B6、A7、C8、C9、D10、D
二、填空题
11、x2
3y2
5112、x0N,x3
0x
2三、解答题
15、解:由b2a2c22accosB
得9a22723acos300
即a29a180
解之,得a6或a3
当a6ab
sinAsinB
得sinAasinB6b31
从而A900,故C600.当a3时,AB300,则C120016、解:由已知得q1
因a1(1q4)
1q401
a1a1q3282
(1)2
2)得1q10
1qq27
即3q210q30
解之,得q3或q13、314、m1或m13 1317、解:
(1)在等差数列an中
因a1a32a2且a1a2a318
则a26
a1a312a14a18因而得解之,得或a38a34a1a332
a3a184当a14,a38时d20,应舍去;312
a3a148当a18,a34时d-2312
n(n1)n(n1)故Snna1d8n(2)22
n29n
928122(2)由(1)知Sn9n(-n9n)(n)n24
81当n4或5时,S.n418、解:(1)由已知得a22,bx2y2故椭圆的标准方185
(2)CAF1AF2BF1BF2 ABF1
2a2a4a82
故ABF的周长82.119、解:(1)当n1时S12
当n2时anSnSn12n22(n1)24n2
此时a12S1
故an的通项公式为an4n(其中2a12,d4)
1设bn的公比为q,则b1qdb1又d4则q4
1n12从而bn的通项公式是bn2()n144
an4n2(2)因cn(2n1)4n1
bn
4n1
故Tnc1c2c3...cn1341542...(2n1)4n14Tn14342543...(2n3)4n1(2n1)4n两式相减,得
23n1n13Tn12(444...4)(2n1)4(6n5)4n53
1故Tn(6n5)4n59
解:(1)椭圆的右焦点为F(1,0)则抛物线的焦点为F(1,0)2
p即1从而p2故抛物线的标准方程为y24x220、(2)设A(x1,y1),B(x2,y2)
yx1由2消去y得x26x10则x1x26
y4x
pp故ABAFBFx1x2x1x2p62822