初中数学三角函数综合练习题

时间:2019-05-14 10:34:32下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初中数学三角函数综合练习题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初中数学三角函数综合练习题》。

第一篇:初中数学三角函数综合练习题

三角函数综合练习题

一.选择题(共10小题)

1.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()

A.2 B. C.

D.

2.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()

A. B. C.

D.

3.如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()

A.msin35° B.mcos35° C.

D.

4.如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosA的值为()

第1页(共26页)

A. B. C. D.

5.如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()

A.5sin36°米 B.5cos36°米 C.5tan36°米 D.10tan36°米

6.一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()

A.米 2B.米

2C.(4+)米 D.(4+4tanθ)米

227.如图,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120m,则这栋楼的高度为()

A.160m B.120m C.300m D.160

m 8.如图,为了测量某建筑物MN的高度,在平地上A处测得建筑物顶端M的仰角为30°,向N点方向前进16m到达B处,在B处测得建筑物顶端M的仰角为45°,则建筑物MN的高度等于()

第2页(共26页)

A.8()m B.8()m C.16()m D.16()m 9.某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()

A.8.1米 B.17.2米 C.19.7米 D.25.5米

10.如图是一个3×2的长方形网格,组成网格的小长方形长为宽的2倍,△ABC的顶点都是网格中的格点,则cos∠ABC的值是()

A.

二.解答题(共13小题)11.计算:(﹣)+()

12.计算:

第3页(共26页)

0

﹣1B. C. D.

﹣|tan45°﹣|

13.计算:

sin45°+cos30°﹣

2+2sin60°.

14.计算:cos45°﹣

15.计算:

sin45°+2

+cot30°.

sin60°﹣2tan45°.

16.计算:cos45°+tan60°•cos30°﹣3cot60°.

第4页(共26页)

17.如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;

(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈,cos22°,tan22)

18.某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)

第5页(共26页)

19.如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡的高度EF;(2)求山峰的高度CF.(1.414,CF结果精确到米)

20.如图所示,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得C的仰角为45°,已知OA=200米,山坡坡度为(即tan∠PAB=),且O,A,B在同一条直线上,求电视塔OC的高度以及此人所在的位置点P的垂直高度.(侧倾器的高度忽略不计,结果保留根号)

第6页(共26页)

21.如图,为了测量出楼房AC的高度,从距离楼底C处60一水平面上)出发,沿斜面坡度为i=1:

米的点D(点D与楼底C在同的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).

22.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)

第7页(共26页)

23.某型号飞机的机翼形状如图,根据图示尺寸计算AC和AB的长度(精确到0.1米,≈1.41,≈1.73).

第8页(共26页)

2016年12月23日三角函数综合练习题初中数学组卷

参考答案与试题解析

一.选择题(共10小题)

1.(2016•安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()

A.2 B. C.

D.

【分析】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.

【解答】解:如图:由勾股定理,得 AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B=故选:D.

【点评】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.

2.(2016•攀枝花)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()=,第9页(共26页)

A. B. C.

D.

【分析】连接CD,可得出∠OBD=∠OCD,根据点D(0,3),C(4,0),得OD=3,OC=4,由勾股定理得出CD=5,再在直角三角形中得出利用三角函数求出sin∠OBD即可. 【解答】解:∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,连接CD,如图所示: ∵∠OBD=∠OCD,∴sin∠OBD=sin∠OCD=故选:D.

=.

【点评】本题考查了圆周角定理,勾股定理、以及锐角三角函数的定义;熟练掌握圆周角定理是解决问题的关键.

3.(2016•三明)如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()

第10页(共26页)

A.msin35° B.mcos35° C. D.

【分析】根据正弦定义:把锐角A的对边a与斜边c的比叫做∠A的正弦可得答案. 【解答】解:sin∠A=∵AB=m,∠A=35°,∴BC=msin35°,故选:A.

【点评】此题主要考查了锐角三角函数,关键是掌握正弦定义.

4.(2016•绵阳)如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosA的值为(),A. B.

C.

D.

【分析】先根据等腰三角形的性质与判定以及三角形内角和定理得出∠EBC=36°,∠BEC=72°,AE=BE=BC.再证明△BCE∽△ABC,根据相似三角形的性质列出比例式求出AE,然后在△ADE中利用余弦函数定义求出cosA的值. 【解答】解:∵△ABC中,AB=AC=4,∠C=72°,∴∠ABC=∠C=72°,∠A=36°,∵D是AB中点,DE⊥AB,∴AE=BE,∴∠ABE=∠A=36°,∴∠EBC=∠ABC﹣∠ABE=36°,∠BEC=180°﹣∠EBC﹣∠C=72°,∴∠BEC=∠C=72°,∴BE=BC,∴AE=BE=BC.

第11页(共26页)

=,设AE=x,则BE=BC=x,EC=4﹣x. 在△BCE与△ABC中,∴△BCE∽△ABC,∴=,即=,(负值舍去),. 解得x=﹣2±2∴AE=﹣2+2在△ADE中,∵∠ADE=90°,∴cosA=故选C.

【点评】本题考查了解直角三角形,等腰三角形的性质与判定,三角形内角和定理,线段垂直平分线的性质,相似三角形的判定与性质,难度适中.证明△BCE∽△ABC是解题的关键.

5.(2016•南宁)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()==

A.5sin36°米 B.5cos36°米 C.5tan36°米 D.10tan36°米

【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD的长度.

【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=故选:C.

【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.

第12页(共26页)

,即AD=BD•tan36°=5tan36°(米).

6.(2016•金华)一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()

A.米 2B.米

2C.(4+)米 D.(4+4tanθ)米

22【分析】由三角函数表示出BC,得出AC+BC的长度,由矩形的面积即可得出结果. 【解答】解:在Rt△ABC中,BC=AC•tanθ=4tanθ(米),∴AC+BC=4+4tanθ(米),∴地毯的面积至少需要1×(4+4tanθ)=4+4tanθ(米); 故选:D.

【点评】本题考查了解直角三角形的应用、矩形面积的计算;由三角函数表示出BC是解决问题的关键.

7.(2016•长沙)如图,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120m,则这栋楼的高度为()

2A.160m B.120m C.300m D.160

m 【分析】首先过点A作AD⊥BC于点D,根据题意得∠BAD=30°,∠CAD=60°,AD=120m,然后利用三角函数求解即可求得答案.

【解答】解:过点A作AD⊥BC于点D,则∠BAD=30°,∠CAD=60°,AD=120m,在Rt△ABD中,BD=AD•tan30°=120×在Rt△ACD中,CD=AD•tan60°=120×

=40=120

(m),(m),第13页(共26页)

∴BC=BD+CD=160故选A.(m).

【点评】此题考查了仰角俯角问题.注意准确构造直角三角形是解此题的关键.

8.(2016•南通)如图,为了测量某建筑物MN的高度,在平地上A处测得建筑物顶端M的仰角为30°,向N点方向前进16m到达B处,在B处测得建筑物顶端M的仰角为45°,则建筑物MN的高度等于()

A.8()m B.8()m C.16()m D.16()m 【分析】设MN=xm,由题意可知△BMN是等腰直角三角形,所以BN=MN=x,则AN=16+x,在Rt△AMN中,利用30°角的正切列式求出x的值. 【解答】解:设MN=xm,在Rt△BMN中,∵∠MBN=45°,∴BN=MN=x,在Rt△AMN中,tan∠MAN=∴tan30°=解得:x=8(=,+1),+1)m; 则建筑物MN的高度等于8(故选A.

第14页(共26页)

【点评】本题是解直角三角形的应用,考查了仰角和俯角的问题,要明确哪个角是仰角或俯角,知道仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角;并与三角函数相结合求边的长.

9.(2016•重庆)某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()

A.8.1米 B.17.2米 C.19.7米 D.25.5米

【分析】作BF⊥AE于F,则FE=BD=6米,DE=BF,设BF=x米,则AF=2.4米,在Rt△ABF中,由勾股定理得出方程,解方程求出DE=BF=5米,AF=12米,得出AE的长度,在Rt△ACE中,由三角函数求出CE,即可得出结果. 【解答】解:作BF⊥AE于F,如图所示: 则FE=BD=6米,DE=BF,∵斜面AB的坡度i=1:2.4,∴AF=2.4BF,设BF=x米,则AF=2.4x米,在Rt△ABF中,由勾股定理得:x+(2.4x)=13,解得:x=5,∴DE=BF=5米,AF=12米,∴AE=AF+FE=18米,在Rt△ACE中,CE=AE•tan36°=18×0.73=13.14米,∴CD=CE﹣DE=13.14米﹣5米≈8.1米; 故选:A.

第15页(共26页)

【点评】本题考查了解直角三角形的应用、勾股定理、三角函数;由勾股定理得出方程是解决问题的关键.

10.(2016•广东模拟)如图是一个3×2的长方形网格,组成网格的小长方形长为宽的2倍,△ABC的顶点都是网格中的格点,则cos∠ABC的值是()

A. B. C.

D.

【分析】根据题意可得∠D=90°,AD=3×1=3,BD=2×2=4,然后由勾股定理求得AB的长,又由余弦的定义,即可求得答案.

【解答】解:如图,∵由6块长为

2、宽为1的长方形,∴∠D=90°,AD=3×1=3,BD=2×2=4,∴在Rt△ABD中,AB=∴cos∠ABC=故选D. =.

=5,【点评】此题考查了锐角三角函数的定义以及勾股定理.此题比较简单,注意数形结合思想的应用.

二.解答题(共13小题)

11.(2016•成都模拟)计算:(﹣)+()

0

1﹣|tan45°﹣|

第16页(共26页)

【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 【解答】解:原式=1+3×=1+2=﹣. +1

﹣︳1﹣

【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.

12.(2016•顺义区二模)计算:

【分析】要根据负指数,绝对值的性质和三角函数值进行计算.注意:()﹣1=3,|1﹣|=﹣1,cos45°=

=

=2. 【解答】解:原式=【点评】本题考查实数的运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、二次根式、绝对值等考点的运算.注意:负指数为正指数的倒数;任何非0数的0次幂等于1;二次根式的化简是根号下不能含有分母和能开方的数.

13.(2016•天门模拟)计算:

sin45°+cos30°﹣

2+2sin60°.

【分析】先把各特殊角的三角函数值代入,再根据二次根式混合运算的法则进行计算即可. 【解答】解:原式==+﹣=1+. + •

+()﹣

2+2×

【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.

14.(2016•黄浦区一模)计算:cos45°﹣

+cot30°.

第17页(共26页)

【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.

【解答】解:原式=()﹣

+()

2=﹣+3 =.

【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.

15.(2016•深圳校级模拟)计算:

sin45°+

sin60°﹣2tan45°.

【分析】根据特殊角的三角函数值进行计算. 【解答】解:原式==+3﹣2 =.

【点评】本题考查了特殊角的三角函数值.特指30°、45°、60°角的各种三角函数值. sin30°=; cos30°=sin45°=sin60°=

16.(2016•虹口区一模)计算:cos45°+tan60°•cos30°﹣3cot60°. 【分析】将特殊角的三角函数值代入求解. 【解答】解:原式=(=1.

【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.

17.(2016•青海)如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).

第18页(共26页)

22×+2×﹣2×1

;tan30°=;

;cos45°=;tan45°=1;

. ;cos60°=; tan60°=)+

2×﹣3×()

(1)求办公楼AB的高度;

(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈,cos22°,tan22)

【分析】(1)首先构造直角三角形△AEM,利用tan22°=(2)利用Rt△AME中,cos22°=【解答】解:(1)如图,求出AE即可,求出即可;

过点E作EM⊥AB,垂足为M. 设AB为x.

Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,tan22°=则,=,解得:x=20. 即教学楼的高20m.

(2)由(1)可得ME=BC=x+25=20+25=45.

第19页(共26页)

在Rt△AME中,cos22°=∴AE=,.

即A、E之间的距离约为48m 【点评】此题主要考查了解直角三角形的应用,根据已知得出tan22°=

18.(2016•自贡)某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)

是解题关键

【分析】过C点作AB的垂线交AB的延长线于点D,通过解Rt△ADC得到AD=2CD=2x,在Rt△BDC中利用锐角三角函数的定义即可求出CD的值. 【解答】解:作CD⊥AB交AB延长线于D,设CD=x米.

在Rt△ADC中,∠DAC=25°,所以tan25°=所以AD==0.5,=2x.

Rt△BDC中,∠DBC=60°,由tan 60°=解得:x≈3.

即生命迹象所在位置C的深度约为3米. =,第20页(共26页)

【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.

19.(2016•黄石)如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡的高度EF;(2)求山峰的高度CF.(1.414,CF结果精确到米)

【分析】(1)作BH⊥AF于H,如图,在Rt△ABF中根据正弦的定义可计算出BH的长,从而得到EF的长;

(2)先在Rt△CBE中利用∠CBE的正弦计算出CE,然后计算CE和EF的和即可. 【解答】解:(1)作BH⊥AF于H,如图,在Rt△ABF中,∵sin∠BAH=∴BH=800•sin30°=400,∴EF=BH=400m;

(2)在Rt△CBE中,∵sin∠CBE=∴CE=200•sin45°=100

≈141.4,,∴CF=CE+EF=141.4+400≈541(m).

答:AB段山坡高度为400米,山CF的高度约为541米.

【点评】本题考查了解直角三角形的应用﹣坡度与坡角问题:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写

第21页(共26页)

成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i═tanα.

20.(2016•天水)如图所示,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得C的仰角为45°,已知OA=200米,山坡坡度为(即tan∠PAB=),且O,A,B在同一条直线上,求电视塔OC的高度以及此人所在的位置点P的垂直高度.(侧倾器的高度忽略不计,结果保留根号)

【分析】在直角△AOC中,利用三角函数即可求解;在图中共有三个直角三角形,即RT△AOC、RT△PCF、RT△PAE,利用60°、45°以及坡度比,分别求出CO、CF、PE,然后根据三者之间的关系,列方程求解即可解决.

【解答】解:作PE⊥OB于点E,PF⊥CO于点F,在Rt△AOC中,AO=200米,∠CAO=60°,∴CO=AO•tan60°=200

(2)设PE=x米,∵tan∠PAB=∴AE=3x. 在Rt△PCF中,∠CPF=45°,CF=200∵PF=CF,∴200+3x=200解得x=50(﹣x,﹣1)米.

米,所在位置点P的铅直高度是50(﹣1)米. ﹣x,PF=OA+AE=200+3x,=,(米)

答:电视塔OC的高度是200

第22页(共26页)

【点评】考查了解直角三角形的应用﹣仰角俯角问题以及坡度坡角问题,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.

21.(2016•泸州)如图,为了测量出楼房AC的高度,从距离楼底C处60与楼底C在同一水平面上)出发,沿斜面坡度为i=1:

米的点D(点D的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).

【分析】如图作BN⊥CD于N,BM⊥AC于M,先在RT△BDN中求出线段BN,在RT△ABM中求出AM,再证明四边形CMBN是矩形,得CM=BN即可解决问题. 【解答】解:如图作BN⊥CD于N,BM⊥AC于M. 在RT△BDN中,BD=30,BN:ND=1:∴BN=15,DN=15,∵∠C=∠CMB=∠CNB=90°,∴四边形CMBN是矩形,∴CM=BM=15,BM=CN=60

﹣1

5=45,在RT△ABM中,tan∠ABM=∴AM=60,.

=,∴AC=AM+CM=15+60

第23页(共26页)

【点评】本题考查解直角三角形、仰角、坡度等概念,解题的关键是添加辅助线构造直角三角形,记住坡度的定义,属于中考常考题型.

22.(2016•昆明)如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)

【分析】如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解直角△AFD得到DF的长度;通过解直角△DCE得到CE的长度,则BC=BE﹣CE.

【解答】解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H. 则DE=BF=CH=10m,在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,∴DF=AF=70m.

在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE===10

(m),∴BC=BE﹣CE=70﹣10≈70﹣17.32≈52.7(m).

答:障碍物B,C两点间的距离约为52.7m.

第24页(共26页)

【点评】本题考查了解直角三角形﹣仰角俯角问题.要求学生能借助仰角构造直角三角形并解直角三角形.

23.(2016•丹东模拟)某型号飞机的机翼形状如图,根据图示尺寸计算AC和AB的长度(精确到0.1米,≈1.41,≈1.73).

【分析】在Rt△CAE中,∠ACE=45°,则△ACE是等腰直角三角形即可求得AC的长;在Rt△BFD中已知∠BDF与FB的长,进而得出AB的长. 【解答】解:在Rt△CAE中,∠ACE=45°,∴AE=CE=5(m),∴AC=CE=5≈5×1.414≈7.1(m),在Rt△BFD中,∠BDF=30°,∴BF=FD•tan30° =5×≈5×

≈2.89(m),∵DC=EF=3.4(m),∴AF=1.6m,则AB=2.89﹣1.6=1.29≈1.3(m),答:AC约为7.1米,BA约为1.3米.

第25页(共26页)

【点评】此题考查了三角函数的基本概念,主要是正切函数的概念及运算,关键把实际问题转化为数学问题加以计算.

第26页(共26页)

第二篇:初中数学分式方程应用综合练习题

2、某化肥厂计划在规定日期内生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨与原计划生产120吨的时间相等,求计划每天生产多少吨化肥?

3、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。求A、B每小时各做多少个零件。

4、陈明同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元,后因人数增加到原定人数的2倍,享受优惠,一共只需480元,参加活动的每个同学平均分摊的费用比原计划少4元,求原定的人数是多少?

5、甲、乙两个工程队共同完成一项工程,乙队先单独做1天, 再由两队合作2天就完成全部工程,已知甲队与乙队完成此工作时间比是2:3,求甲、乙两队单独完成此项工程各需多少天?

6、市政工程公司修建6000米长的河岸,修了30天后,从有关部门获知汛期将提前,公司决定增派施工人员以加快速度,工效比原来提高了20%,工程恰好比原计划提前5天完成。求该公司完成这项工程实际的天数。

8、已知轮船在静水中每小时行20千米,如果此船在某江中顺流航行72千米所用的时间与逆流航行48千米所用的时间相同,那么此江水每小时的流速是多少千米?

9、A,B两地相距135千米,有大,小两辆汽车同时从A地开往B地,大汽车比小汽车晚到4小时30分钟.已知大、小汽车速度的比为2:5,求两辆汽车的速度.12、A、B两地距80千米,一公共汽车从A到B,2小时后又从A同方向开出一辆小汽车,小汽车车速是公共汽车的3倍,结果小汽车比公共汽车早40分钟到达B地,求两车速度。

13、某市为了进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路,为使工程能提前3个月完成,需要将原定的工作效率提高12%。问原计划这项工程用多少个月。

14、.某空调厂的装配车间,原计划用若干天组装150台空调,厂家为了使空调提前上市,决定每天多组装3台,这样提前3天超额完成了任务,总共比原计划多组装6台,问原计划每天组装多少台?

16、某人在公路上匀速行走,环路公共汽车每隔4分钟就有一辆与之迎面相遇;每隔6分钟就有一辆从后越过此人;汽车站每隔几分钟双向各发一辆车?

17、甲乙两人分别从A、B两地同时出发,相向而行。甲走8米后两人第一次相遇,然后甲继续向前到B立即返回,乙继续向前走到A立即返回,两人在距离B地6米处第二次相遇,求A、B两地的距离。

18、重量相同的两种商品,分别价值900元和1500元,已知第一种商品每千克的价值比第二种少300元,分别求这两种商品每千克的价值。

20、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达。已知B的速度是A的速度的3倍,求两车的速度。

21、一台甲型拖拉机4天耕完一块地的一半,加一台乙型拖拉机,两台合耕,1天耕完这块地的另一半。乙型拖拉机单独耕这块地需要几天?

22、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。求A、B每小时各做多少个零件。

23、甲有25元,这些钱是甲、乙两人总数的20%。乙有多少钱?

24、某甲有钱400元,某乙有钱150元,若乙将一部分钱给甲,此时乙的钱是甲的钱的10%,问乙应把多少钱给甲?

25、我部队到某桥头狙击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度。

26、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。已知水流的速度是3千米/时,求轮船在静水中的速度。

27、某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作。求先遣队和大队的速度各是多少?

28、某人现在平均每天比原计划多加工33个零件,已知现在加工3300个零件所需的时间和原计划加工2310个零件的时间相同,问现在平均每天加工多少个零件。

29、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。

32、某项紧急工程,由于乙没有到达,只好由甲先开工,6小时后完成一半,乙到来后俩人同时进行,1小时完成了后一半,如果设乙单独x小时可以完成后一半任务,那么x应满足的方程是什么?

33、走完全长3000米的道路,如果速度增加25%,可提前30分到达,那么速度应达到多少?

34、对甲乙两班学生进行体育达标检查,结果甲班有48人合格,乙班有45人合格,甲班的合格率比乙班高5%,求甲班的合格率?

35、某种商品价格,每千克上涨1/3,上回用了15元,而这次则是30元,已知这次比上回多买5千克,求这次的价格。

36、小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书,科普书的价格比文学书的价格高出一半,因此他们买的文学书比科普书多一本,这种科普和文学书的价格各是多少?

37、甲种原料和乙种原料的单价比是2:3,将价值2000元的甲种原料有价值1000元的乙混合后,单价为9元,求甲的单价。

38、某商品每件售价15元,可获利25%,求这种商品的成本价。

39、某商店甲种糖果的单价为每千克20元,乙种糖果的单价为每千克16元,为了促销,现将10千克的乙种糖果和一包甲种糖果混合后销售,如果将混合后的糖果单价定为每千克17.5元,那么混合销售与分开销售的销售额相同,这包甲糖果有多少千克?

40、两地相距360千米,回来时车速比去时提高了50%,因而回来比去时途中时间缩短了2小时,求去时的速度

41、某车间加工1200个零件,采用新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用10小时,采用新工艺前后每时分别加工多少个零件?

42.某水泵厂在一定天数内生产4000台水泵,工人为支援四化建设,每天比原计划增产25%,可提前10天完成任务,问原计划日产多少台?

43.现要装配30台机器,在装配好6台后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务。求原来每天装配的机器数.44.某车间需加工1500个螺丝,改进操作方法后工作效率是原计划的21倍,所以加工完比原计划少用9小时,求原计划和改进操2作方法后每小时各加工多少个螺丝?

45.打字员甲的工作效率比乙高25%,甲打2000字所用时间比乙打1800字的时间少5分钟,求甲乙二人每分钟各打多少字?

46.某人骑自行车比步行每小时多走8千米,已知他步行12千米所用时间和骑自行车走36千米所用时间相等,求这个人步行每小时走多少千米?

47.某校少先队员到离市区15千米的地方去参加活动,先遣队与大队同时出发,但行进的速度是大队的1.2倍,以便提前半小时到达目的地做准备工作,求先遣队和大队的速度各是多少.48.供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度.49.轮船顺流航行66千米所需时间和逆流航行48千米所需时间相等,已知水流速度每小时3千米,求轮船在静水中的速度.51.一个两位数,个位上的数比十位上的数大4,用个位上的数去除这个两位数商是3,求这个两位数.52.大小两部抽水机给一块地浇水,两部合浇2小时后,由小抽水机继续工作1小时完成.已知小抽水机独浇这块地所需时间等于大抽水机独浇这块地所需时间的1

53.一船自甲地顺流航行至乙地,用2.5小时,再由乙地返航至距甲地尚差2千米处,已用了3小时,若水流速度每小时2千米,求船在静水中的速度.1倍,求单独浇这块地各需多少时间? 2

第三篇:数学三角函数

1.(2010·天津高考理科·T7)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2b2,sinCB,则A=()

(A)300(B)600(C)1200(D)1500

2.(2010·北京高考文科·T7)某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为的四个等腰三角形,及其底边构

方形所组成,该八边形的面积为()

(A)2sin2cos2;

(B)sin

3(C)3sin

1(D)2sincos1

3.(2010·湖南高考理科·T4)在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120

°,c,则()

A、a>bB、a

4.(2010·北京高考理科·T10)在△ABC中,若b = 1,C则a=。

5.(2010·广东高考理科·T11)已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若

则sinC=.6.(2010·山东高考理科·T15)在ABC中,角A,B,C所对的边分别为a,b,2,3成的正c,若ab

2,sinBcosBA的大小为.

7.(2010·江苏高考·T13)在锐角三角形ABC中,角A、B、C的对边分别为a、b、c,若b

aatanCtanC的值是_________。6cosC,则btanAtanB

8.(2010·辽宁高考文科·T17)在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(Ⅰ)求A的大小;

(Ⅱ)若sinB +sinC=1,试判断△ABC的形状.9.(2010·浙江高考文科·T18)在△ABC中,角A,B,C所对的边分别为

a,b,c,设S为△ABC的面积,满足S

(Ⅰ)求角C的大小; 2(ab2c2)。

4(Ⅱ)求sinAsinB的最大值。

10.(2010·辽宁高考理科·T17)在△ABC中,a, b, c分别为内角A, B, C的对边,且2asinA(2ac)sinB(2cb)sinC.(Ⅰ)求A的大小;

(Ⅱ)求sinBsinC的最大值.11.(2010·浙江高考理科·T18)在△ABC中,角A、B、C所对的边分别为a,b,c,1已知cos2C

4(I)求sinC的值;

(Ⅱ)当a=2,2sinA=sinC时,求b及c的长.

一、选择题

1.(2011·浙江高考文科·T5)在ABC中,角A,B,C所对的边分别为a,b,c.若acosAbsinB,则sinAcosAcos2B(A)-11(B)(C)-1(D)1 222.(2011·安徽高考理科·T14)已知ABC 的一个内角为120o,并且三边长

构成公差为4的等差数列,则ABC的面积为_______________

3.(2011·福建卷理科·T14)如图,△ABC中,AB=AC=2,BC=D 在BC边上,∠ADC=45°,则AD的长度等于______.4.(2011·福建卷文科·T14)若△ABC的面积为,BC=2,C=60,则边AB的长度等于_____________.5.(2011·新课标全国高考理科·T16)在V

ABC中,B60,ACAB2BC的最大值为6.(2011·新课标全国文科·T15)△ABC中,B=120°,AC=7,AB=5,则△

ABC的面积为_________

7.(2011·北京高考理科·T9)在ABC中,若b5,B

sinA;a4,tanA2,则

8.(2011·北京高考文科·T9)在ABC中,若b5,B1,sinA,则43a9.(2011·安徽高考文科·T16)在ABC中,a,b,c分别为内角A,B,C所对的边长,,12cos(BC)0,求边BC上的高

10.(2011·辽宁高考文科·T17)(本小题满分12分)△ABC的三个内角A,B,C所对的边分别为a、b、c,asinAsinBbcos2A2a.

(I)求b;(II)若c2=b

2a2,求B. a

cosA-2cosC2c-a.=cosBb11.(2011·山东高考理科·T17)(本小题满分12分)在ABC中,内角A,B,C的对边分别为a,b,c.已知

(Ⅰ)求sinC1的值;(Ⅱ)若cosB=,b=2, 求△ABC的面积S.sinA

4cosA-2cosC2c-a.=cosBb12.(2011·山东高考文科·T17)(本小题满分12分)在△ABC中,内角A,B,C的对边分别为a,b,c.已知

sinC的值; sinA

1(Ⅱ)若cosB=,ABC的周长为5,求b的长.4(Ⅰ)求

13.(2011·湖南高考理科·T17)(12分)在ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.(1)求角C的大小;

(2)求sinAcos(B

4)的最大值,并求取得最大值时角A,B的大小.14.(2011·陕西高考理科·T18)(本小题满分12分)

叙述并证明余弦定理.

【思路点拨】本题是课本公式、定理、性质的推导,这是高考考查的常规方向和考点,引导考生回归课本,重视基础知识学习和巩固.

15.(2011·天津高考文科·T16)在△ABC中,内角A,B,C的对边分别为a,b,c,已知B=C,2b=.(Ⅰ)求cosA的值;(Ⅱ)cos(2A)的值 4

16.(2011·浙江高考理科·T18)(本题满分14分)在ABC中,角A,B,C所对的边分别为a,b,c.1已知sinAsinCpsinBpR,且acb2.4

5(Ⅰ)当p,b1时,求a,c的值; 4

(Ⅱ)若角B为锐角,求p的取值范围;

第四篇:高中数学三角函数及数列练习题

一、选择题(每题5分,共35分)1.若sin θcos θ>0,则θ在().

A.第一、二象限

C.第一、四象限

B.第一、三象限 D.第二、四象限

2、已知函数f(x)(1cos2x)sin2x,xR,则f(x)是()A、奇函数 B、非奇非偶函数 C、偶函数 D、不能确定

3.设Sn是等差数列an的前n项和,已知a23,a611,则S7等于()A.13

B.35

C.49

D. 63

4.函数f(x)(13tanx)cosx的最小正周期为()A.2 B.

3 C. D. 225.已知an为等差数列,且a7-2a4=-1, a3=0,则公差d=()A.-2 B.-C.D.2 226.函数f(x)cos2x2sinx的最小值和最大值分别为()A.-3,1

B.-2,2

C.-3,32 D.-2,7.把函数y=sin x(x∈R)的图象上所有点向左平行移动象上所有点的横坐标缩短到原来的 A.y=sin2x - ,x∈R

C.y=sin2x + ,x∈R π3π3π个单位,再把所得图332

1倍(纵坐标不变),得到函数图象是(). 2

262πD.y=sin2x + ,x∈R

3xπB.y=sin + ,x∈R

二、填空题(每题5分,共10分)

8.在等差数列{an}中,a37,a5a26,则a6____________ 9.已知函数f(x)sin(x)(0)的图象如图所示, 则 =

三、计算题(共55分)10.求函数f(x)=lgsin x+

11.已知函数f(x)sinxsin(x),xR.(10分)

2(5分)2cosx1的定义域.(I)求f(x)的最小正周期;(II)求f(x)的的最大值和最小值;

12.求函数y=sin2x - 的图象的对称中心和对称轴方程.(5分)

13.已知等差数列{an}中,a2=8,前10项和S10=185.,求通项;(10分)

14.在等差数列{an}中,a1=-60,a17=-12.(10分)

(1)求通项an;(2)求此数列前30项的绝对值的和.15.设数列an满足a12,an1an322n1(15分)

(1)求数列an的通项公式;(2)令bnnan,求数列的前n项和Sn

π6

第五篇:初中数学因式分解练习题

1.(2014•黔南州)下列计算错误的是()A.a•a2=a3 C.2m+3n=5mn

A.a2+4a-21=a(a+4)-21 C.(a-3)(a+7)=a2+4a-21 A.a2+1 A.-3

B.a2-6a+9 B.-1

B.a2b-ab2=ab(a-b)D.(x2)3=x6

B.a2+4a-21=(a-3)(a+7)D.a2+4a-21=(a+2)2-25 C.x2+5y C.1

D.x2-5y D.3

16.(2014•攀枝花)因式分解a2b-b的正确结果是()A.b(a+1)(a-1)A.x(x2-9)A.a(x-6)(x+2)A.x2+y2

A.(x+y)2=x2+y2 C.x2y+xy2=(xy)3 A.(a2+1)2 A.(x+2)(x-2)A.(x-2)2 A.m2+n2=(m+n)2

D.(a-2)(a+1)

C.(a-b)2=a2-2ab+b2 A.(x2)3=x6 C.x2-2xy+y2=(x-y)2 A.x2+2x-1=(x-1)2 C.(x+1)2=x2+2x+1 A.x2-xy A.x(x2-4)A.y(x-y)2 A.a2(a-2)+a

D.y(x+y)(x-y)D.2(x+9)(x-9)

A.x2+2x-1=(x-1)2 C.x3-4x=x(x+2)(x-2)

B.x2+xy

B.x(x+4)(x-4)B.y(x+y)(x-y)B.a(a2-2a)B.(a2-1)2 B.(x+2)2 B.x2

B.a(b+1)(b-1)B.x(x-3)2 B.a(x-3)(x+4)B.x2-y

C.b(a2-1)C.x(x+3)2 C.a(x2-4x-12)C.x2+x+1 B.x2y2=(xy)4 D.x4÷x2=x2 C.a2(a2-2)C.(x-4)2 C.(x-1)2

D.(a+1)2(a-1)2 D.(x-2)2 D.x(x-2)D.b(a-1)2 D.x(x+3)(x-3)D.a(x+6)(x-2)D.x2-2x+1

17.(2014•广东)把x3-9x分解因式,结果正确的是()18.(2014•怀化)多项式ax2-4ax-12a因式分解正确的是()19.(2014•玉林)下面的多项式在实数范围内能因式分解的是()21.(2014•官渡区一模)下列运算正确的是()

2.(2014•海南)下列式子从左到右变形是因式分解的是()

3.(2014•安徽)下列四个多项式中,能因式分解的是()

4.(2014•台湾)若x2-4x+3与x2+2x-3的公因式为x-c,则c之值为何?()

5.(2014•台湾)(3x+2)(-x6+3x5)+(3x+2)(-2x6+x5)+(x+1)(3x6-4x5)与下列哪一个式子相同?()A.(3x-4x)(2x+1)C.-(3x6-4x5)(2x+1)A.x2-1 A.-1 A.a(a-1)

22.(2014•下城区一模)分解因式a4-2a2+1的结果是()

23.(2014•衡阳二模)把代数式x2-4x+4分解因式,下列结果中正确的是()24.(2014•滨湖区二模)分解因式(x-1)2-1的结果是()25.(2014•上城区二模)下列因式分解正确的是()

B.m2-4n2=(m-2n)(m+2n)D.a2-3a+1=a(a-3)+1 B.x2•x3=x5 D.3x-2x=1

B.-x2+(-2)2=(x-2)(x+2)D.x2-4x=x(x+2)(x-2)C.x2+y2

C.x(x+2)(x-2)C.y(x+y)2 C.a(a-1)2

D.x2-y2

D.(x+2)(x-2)D.y(x2-2xy+y2)D.a(a+1)(a-1)

B.(3x-4x)(2x+3)D.-(3x6-4x5)(2x+3)C.x2-2x+1 C.1

C.(a-2)(a-1)B.(x-4)x=x-4x D.m2-2mn+n2=(m+n)2

6.(2014•威海)将下列多项式分解因式,结果中不含因式x-1的是()

B.x(x-2)+(2-x)B.0 B.a(a-2)

D.x2+2x+1 D.2

7.(2014•漳州)若代数式x2+ax可以分解因式,则常数a不可以取()8.(2014•仙桃)将(a-1)2-1分解因式,结果正确的是()9.(2014•常德)下面分解因式正确的是()A.x+2x+1=x(x+2)+1 C.ax+bx=(a+b)x

10.(2014•河北)计算:852-152=()A.70

A.x2-y2=(x-y)2 C.xy-x=x(y-1)

B.700

C.4900

B.a2+a+1=(a+1)2 D.2x+y=2(x+y)

D.7000

11.(2014•岳阳)下列因式分解正确的是()

26.(2014•郯城县模拟)下列运算错误的是()

27.(2014•路北区二模)下列各因式分解正确的是()

29.(2014•长清区一模)下列多项式中,能运用公式法因式分解的是()30.(2014•天桥区二模)把多项式x3-4x分解因式所得的结果是()

31.(2014•朝阳区一模)把多项式x2y-2xy2+y3分解因式,正确的结果是()32.(2014•邢台一模)分解因式:a3-2a2+a=()33.(2014•南充模拟)下列各因式分解正确的是()

12.(2014•衡阳)下列因式分解中,正确的个数为()

①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③-x2+y2=(x+y)(x-y)A.3个

B.2个

C.1个

B.x2+2x-1=(x-1)2 D.x-x+2=x(x-1)+2

B.y(x-y)B.2(x-3)2

D.0个

13.(2014•毕节地区)下列因式分解正确的是()A.2x2-2=2(x+1)(x-1)C.x+1=(x+1)A.y(x+y)A.2(x2-9)

14.(2014•泉州)分解因式x2y-y3结果正确的是()

C.y(x-y)C.2(x+3)(x-3)

B.-x2+(-2)2=(x-2)(x+2)D.(x+1)2=x2+2x+1

15.(2014•义乌市)把代数式2x2-18分解因式,结果正确的是()

下载初中数学三角函数综合练习题word格式文档
下载初中数学三角函数综合练习题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初中数学因式分解(练习题)

    初中因式分解的常用方法例1、分解因式:amanbmbn 例2、分解因式:2ax10ay5bybx 练习:分解因式1、a2abacbc2、xyxy1例3、分解因式:x2y2axay 例4、分解因式:a22abb2c2 练习:分解因式3......

    三角函数诱导公式练习题含答案

    三角函数定义及诱导公式练习题1.将120o化为弧度为A.B.C.D.2.代数式的值为A.B.C.D.3.A.B.C.D.4.已知角α的终边经过点(3a,-4a)(a......

    三角函数基础练习题二(含答案)

    三角函数基础练习题二学生:用时:分数一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)1. 若 –π/2......

    五年级下册数学综合练习题

    五年级下册数学综合练习题(一) 一、 填空: 1、把7米的长绳平均分成9段,每段是这根绳子的( ),每段长( )。 2、把一根绳子平均分成9段,每段占这根绳子的( )。 3、78表示( 4、),取这样的。)平均......

    小学数学四年级综合练习题

    一、直接写出得数: 3.7+8.4=0.58+3.2=6-3.3=5.4-2.8= 25×16=6.68-2.5=6.38+8.62=3.92-0.2= 0.225×10=1 100×2.03=6.2÷10=123÷100= 0.025×100=13-2.3-3.7=4×28×25=36......

    小学数学三年级综合练习题

    1,电视机厂要生产120台电视机,已经生产了6天,还差30台,平均每天生产多少台? 2,水泥厂有一批水泥,已经运走了268袋,剩下的比运走的少68袋。这批水泥有多少袋? 3,王大伯家养了20只鹅,......

    五年级数学下册综合练习题

    五年级数学综合练习 一、填空: 1.8 7 分数单位是,它有个这样的分数单位, 再加上个这样的单位就是最小的质数。 2.在1、2、8、9、11、25各数中,奇数有;质数有,合数有,2和合数组成互质......

    初中英语语法综合练习题(有答案)

    初中英语语法综合练习题(有答案) 、单项选择 1、The boy likes questions. A.ask B.answer C.to ask 2、We'll try there on time. A.to get B.getting C.got 3、They hoped......