第一篇:初中数学竞赛几何练习题
初二数学竞赛基本几何题
1、如图1,在△ABC中,AD⊥BC 于D,AB+BD=CD。证明∠B=2∠C。
AC
DB
2、如图2,在△ABC中,AB=AC。D,E分别是BC,AC 上的点。问∠BAD与∠CDE满足什么条件时,AD=AE。
ABDEC3、如图3,六边形ABCDEF 中,∠A=∠B=∠C=∠D=∠E=∠F,且AB+BC=11,FA-CD=3。求BC+DE 的值。
FAEDB
4.如图4,在凸四边形ABCD中,∠ABC=300,∠ADC=600,AD=DC。证明BD2 =AB2 +BC
2AC
DCB
5、如图5,P是△ABC边BC上一点,PC=2PB。已知∠ABC=450,∠APC=600。求∠ACB 的度数。
AB
PC
6、如图6中,在△ABC中,BC=a,AC=b,以AB为边向外作等边三角形△ABD。问∠ACB为多少度时,点C与点D的距离最大?
CABD
7、如图7,在等腰△ABC中,AB=AC,延长AB到D,延长CA到E,连DE,有AD=BC=CE=DE。证明:∠BAC=100°。
EABD第七题C
8、如图8,在△ABC中,AD是边BC上的中线,AB=√2,AD=√6,AC=√26。求∠ABC的度数。
AC
B
D9、如图9,在△ABC的外面作正方形ABEF和ACGH,AD⊥BC于D。延长DA 交FH于M。证明:FM=HM。
10、如图10,P,Q,R分别是等边△ABC三条边的中点。M是BC上一点。以MP为一边在BC同侧作等边△PMS。连SQ。证明 RM=SQ.ASPQB
RMC
11、如图11,在四边形ABCD 中,AB=a,AD=b,BC=CD.对角线AC平分∠BAD。问a与b符合什么条件时,有∠D+∠B=180°
DCAB
12、如图12,在等腰△ABC中,AD是边BC 上的中线,E是△ADB内任一点,连 AE,BE,CE。证明:∠AEB>∠AEC。
AEB13、如图,在凸四边形ABCD中,AB=AD,∠BAD=60°,DC
∠BCD=120°证明:BC+CD=AC。
ABCD
14、如图14,在△ABC中,AD是边BC上的中线,点M在AB上,点N在AC上。已知∠MDN=90°,BM2+CN2=DM2+DN2。证明:AD2= 1/4(AB2+AC2)
ANMBDC
15、如图,在△ABC中,∠A=90°AD垂直BC交于D,∠BCA的平分线交AD于F,交AB于E,FG∥BC,交AB于G,AE=4,AB=14,求BG的长。
CDFA
16.如图Rt△ABC中,∠A=90°,AB=AC,BD平分∠ABC交AC于D,作CE垂直BD交BD延长线于E,过A作AH⊥BC交BD于M,试猜想BM与CE的大小关系,并证明你的结论。
EGB
CEHDMAB
第二篇:初中几何证明练习题
初中几何证明练习题
1.如图,在△ABC中,BF⊥AC,CG⊥AD,F、G是垂足,D、E分别是BC、FG的中点,求证:DE⊥FG
2.如图,AE∥BC,D是BC的中点,ED交AC于Q,ED的延长线交AB的延长线于P,求证:PD·QE=PE·QD
求证:PAC~PDB
3.如图,已知点P是圆O的直径AB上任一点,APCBPD,其中C,D为圆上的点,O B
P
4.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG 求证:S△ABCS△AEG
5.已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.
求证:∠DEN=∠F.
6.设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q. 求证:AP=AQ.
7、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:
设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q.
求证:AP=AQ.
8.设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD
9.如图,⊙O中弦AC,BD交于F,过F点作EF∥AB,交DC延 切线EG,G为切点,求证:EF=EG
10.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接BE,CG 求证:
(1)BE=CG(2)BE⊥CG
11.如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.
求证:四边形A2B2C2D2是正方形.
A
2CB2
A
1DD
C
12.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接CE,BG、GE
M、N、P、Q分别是EG、GB、BC、CE的中点 求证:四边形MNPQ是正方形
第三篇:初中数学几何证明题
初中数学几何证明题
分析已知、求证与图形,探索证明的思路。
对于证明题,有三种思考方式:
(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。
(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。
(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。
几何证明题入门难,证明题难做,是许多初中生在学习中的共识,这里面有很多因素,有主观的、也有客观的,学习不得法,没有适当的解题思路则是其中的一个重要原因。掌握证明题的一般思路、探讨证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。在这里结合自己的教学经验,谈谈自己的一些方法与大家一起分享。
一要审题。很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可龋我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。
二要记。这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。
三要引申。难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论(就像电脑一下,你一点击开始立刻弹出对应的菜单),然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。
四要分析综合法。分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有(1.对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。
五要归纳总结。很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。
第四篇:初中数学几何模型
初中数学几何模型大全+经典题型(含答案)
全等变换
平移:平行等线段(平行四边形)
对称:角平分线或垂直或半角
旋转:相邻等线段绕公共顶点旋转
对称全等模型
说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。两边进行边或者角的等量代换,产生联系。垂直也可以做为轴进行对称全等。
对称半角模型
说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
旋转全等模型
半角:有一个角含1/2角及相邻线段
自旋转:有一对相邻等线段,需要构造旋转全等
共旋转:有两对相邻等线段,直接寻找旋转全等
中点旋转:倍长中点相关线段转换成旋转全等问题
旋转半角模型
说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
自旋转模型
构造方法:
遇60度旋60度,造等边三角形
遇90度旋90度,造等腰直角
遇等腰旋顶点,造旋转全等
遇中点旋180度,造中心对称
共旋转模型
说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。通过“8”字模型可以证明。
模型变形
说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。
当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。
中点旋转:
说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。
几何最值模型
对称最值(两点间线段最短)
对称最值(点到直线垂线段最短)
说明:通过对称进行等量代换,转换成两点间距离及点到直线距离。
旋转最值(共线有最值)
说明:找到与所要求最值相关成三角形的两个定长线段,定长线段的和为最大值,定长线段的差为最小值。
剪拼模型
三角形→四边形
四边形→四边形
说明:剪拼主要是通过中点的180度旋转及平移改变图形的形状。
矩形→正方形
说明:通过射影定理找到正方形的边长,通过平移与旋转完成形状改变
正方形+等腰直角三角形→正方形
面积等分
旋转相似模型
说明:两个等腰直角三角形成旋转全等,两个有一个角是300角的直角三角形成旋转相似。
推广:两个任意相似三角形旋转成一定角度,成旋转相似。第三边所成夹角符合旋转“8”字的规律。
相似模型
说明:注意边和角的对应,相等线段或者相等比值在证明相似中起到通过等量代换来构造相似三角形的作用。
说明:(1)三垂直到一线三等角的演变,三等角以30度、45度、60度形式出现的居多。
(2)内外角平分线定理到射影定理的演变,注意之间的相同与不同之处。另外,相似、射影定理、相交弦定理(可以推广到圆幂定理)之间的比值可以转换成乘积,通过等线段、等比值、等乘积进行代换,进行证明得到需要的结论。
说明:相似证明中最常用的辅助线是做平行,根据题目的条件或者结论的比值来做相应的平行线。
初中数学经典几何题(附答案)
经典难题(一)
1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.
求证:CD=GF.(初二)
A
F
G
C
E
B
O
D2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.
A
P
C
D
B
求证:△PBC是正三角形.(初二)
3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.
求证:四边形A2B2C2D2是正方形.(初二)
D2
C2
B2
A2
D1
C1
B1
C
B
D
A
A1
A
N
F
E
C
D
M
B4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.
求证:∠DEN=∠F.
经典难题(二)
1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.
(1)求证:AH=2OM;
·
A
D
H
E
M
C
B
O
(2)若∠BAC=600,求证:AH=AO.(初二)
·
G
A
O
D
B
E
C
Q
P
N
M2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.
求证:AP=AQ.(初二)
3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:
设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q.
·
O
Q
P
B
D
E
C
N
M
·
A
求证:AP=AQ.(初二)
4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点.
P
C
G
F
B
Q
A
D
E
求证:点P到边AB的距离等于AB的一半.(初二)
经典难题(三)
1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.
A
F
D
E
C
B
求证:CE=CF.(初二)
2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.
求证:AE=AF.(初二)
E
D
A
C
B
F3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.
D
F
E
P
C
B
A
求证:PA=PF.(初二)
O
D
B
F
A
E
C
P4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.(初三)
经典难题(四)
1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.
A
P
C
B
求:∠APB的度数.(初二)
2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.
求证:∠PAB=∠PCB.(初二)
P
A
D
C
B3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.(初三)
C
B
D
A4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且
AE=CF.求证:∠DPA=∠DPC.(初二)
F
P
D
E
C
B
A
经典难题(五)
1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:≤L<2.
2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.
A
C
B
P
D
A
P
C
B
A
C
B
P
D3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.
E
D
C
B
A4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.
经典难题(一)
1.如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得==,又CO=EO,所以CD=GF得证。
2.如下图做△DGC使与△ADP全等,可得△PDG为等边△,从而可得
△DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150
所以∠DCP=300,从而得出△PBC是正三角形
3.如下图连接BC1和AB1分别找其中点F,E.连接C2F与A2E并延长相交于Q点,连接EB2并延长交C2Q于H点,连接FB2并延长交A2Q于G点,由A2E=A1B1=B1C1=
FB2,EB2=AB=BC=FC1,又∠GFQ+∠Q=900和
∠GEB2+∠Q=900,所以∠GEB2=∠GFQ又∠B2FC2=∠A2EB2,可得△B2FC2≌△A2EB2,所以A2B2=B2C2,又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2,从而可得∠A2B2
C2=900,同理可得其他边垂直且相等,从而得出四边形A2B2C2D2是正方形。
4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F。
经典难题(二)
1.(1)延长AD到F连BF,做OG⊥AF,又∠F=∠ACB=∠BHD,可得BH=BF,从而可得HD=DF,又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM
(2)连接OB,OC,既得∠BOC=1200,从而可得∠BOM=600,所以可得OB=2OM=AH=AO,得证。
3.作OF⊥CD,OG⊥BE,连接OP,OA,OF,AF,OG,AG,OQ。
由于,由此可得△ADF≌△ABG,从而可得∠AFC=∠AGE。
又因为PFOA与QGOA四点共圆,可得∠AFC=∠AOP和∠AGE=∠AOQ,∠AOP=∠AOQ,从而可得AP=AQ。
4.过E,C,F点分别作AB所在直线的高EG,CI,FH。可得PQ=。
由△EGA≌△AIC,可得EG=AI,由△BFH≌△CBI,可得FH=BI。
从而可得PQ=
=,从而得证。
经典难题(三)
1.顺时针旋转△ADE,到△ABG,连接CG.由于∠ABG=∠ADE=900+450=1350
从而可得B,G,D在一条直线上,可得△AGB≌△CGB。
推出AE=AG=AC=GC,可得△AGC为等边三角形。
∠AGB=300,既得∠EAC=300,从而可得∠A
EC=750。
又∠EFC=∠DFA=450+300=750.可证:CE=CF。
2.连接BD作CH⊥DE,可得四边形CGDH是正方形。
由AC=CE=2GC=2CH,可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150,又∠FAE=900+450+150=1500,从而可知道∠F=150,从而得出AE=AF。
3.作FG⊥CD,FE⊥BE,可以得出GFEC为正方形。
令AB=Y,BP=X,CE=Z,可得PC=Y-X。
tan∠BAP=tan∠EPF==,可得YZ=XY-X2+XZ,即Z(Y-X)=X(Y-X),既得X=Z,得出△ABP≌△PEF,得到PA=PF,得证。
经典难题(四)
1.顺时针旋转△ABP
600,连接PQ,则△PBQ是正三角形。
可得△PQC是直角三角形。
所以∠APB=1500。
2.作过P点平行于AD的直线,并选一点E,使AE∥DC,BE∥PC.可以得出∠ABP=∠ADP=∠AEP,可得:
AEBP共圆(一边所对两角相等)。
可得∠BAP=∠BEP=∠BCP,得证。
3.在BD取一点E,使∠BCE=∠ACD,既得△BEC∽△ADC,可得:
=,即AD•BC=BE•AC,①
又∠ACB=∠DCE,可得△ABC∽△DEC,既得
=,即AB•CD=DE•AC,②
由①+②可得:
AB•CD+AD•BC=AC(BE+DE)=
AC·BD,得证。
4.过D作AQ⊥AE,AG⊥CF,由==,可得:
=,由AE=FC。
可得DQ=DG,可得∠DPA=∠DPC(角平分线逆定理)。
第五篇:初中数学几何怎么样学
初中数学几何怎么样学?
怎样学好初中数学
怎样学好数学,是刚步入初中的同学面临的共同问题。大家在小学学习数学时,往往偏重于模仿,依赖性较强,独立思考和自学的能力不够,很少去探究知识间的联系和应用。到了中学,这种学习方法必须改变。那么如何学好数学呢?下面从“四多”谈一谈我的建议。
一、多看
主要是指认真阅读数学课本。许多同学没有养成这个习惯,把课本当成练习册;也有一部分同学不知怎么阅读,这是他们学不好数学的主要原因之一。一般地,阅读可以分以下三个层次:
1.课前预习阅读。预习课文时,要准备一张纸、一支笔,将课本中的关键词语、产生的疑问和需要思考的问题随手记下,对定义、公理、公式、法则等,可以在纸上进行简单的复述。重点知识可在课本上批、划、圈、点。这样做,不但有助于理解课文,还能帮助我们在课堂上集中精力听讲,有重点地听讲。
2.课堂阅读。预习时,我们只对所要学的教材内容有了一个大概的了解,不一定都已深透理解和消化吸收,因此有必要对预习时所做的标记和批注,结合老师的讲授,进一步阅读课文,从而掌握重点、关键,解决预习中的疑难问题。
3.课后复习阅读。课后复习是课堂学习的延伸,既可解决在预习和课堂中仍然没有解决的问题,又能使知识系统化,加深和巩固对课堂学习内容的理解和记忆。一节课后,必须先阅读课本,然后再做作业;一个单元后,应全面阅读课本,对本单元的内容前后联系起来,进行综合概括,写出知识小结,进行查缺补漏。
二、多想
主要是指养成思考的习惯,学会思考的方法。独立思考是学习数学必须具备的能力,同学们在学习时,要边听(课)边想,边看(书)边想,边做(题)边想,通过自己积极思考,深刻理解数学知识,归纳总结数学规律,灵活解决数学问题,这样才能把老师讲的、课本上写的变成自己的知识。
三、多做
主要是指做习题,学数学一定要做习题,并且应该适当地多做些。做习题的目的首先是熟练和巩固学习的知识;其次是初步启发灵活应用知识和培养独立思考的能力;第三是融会贯通,把不同内容的数学知识沟通起来。在做习题时,要认真审题,认真思考,应该用什么方法做?能否有简便解法?做到边做边思考边总结,通过练习加深对知识的理解。
四、多问
是指在学习过程中要善于发现和提出疑问,这是衡量一个学生学习是否有进步的重要标志之一。有经验的老师认为:能够发现和提出疑问的学生才更有希望获得学习的成功;反之,那种一问三不知,自己又提不出任何问题的学生,是无法学好数学的。那么,怎样才能发现和提出问题呢?第一,要深入观察,逐步培养自己敏锐的观察能力;第二,要肯动脑筋,不愿意动脑筋,不去思考,当然发现不了什么问题,也提不出疑问。发现问题后,经过自己的独立思考,问题仍得不到解决时,应当虚心向别人请教,向老师、同学、家长,向一切在这个问题上比自己强的人请教。不要有虚荣心,不要怕别人看不起。只有善于提出问题、虚心学习的人,才有可能成为真正的学习上的强者。
学习方法是灵活多样、因人而异的,能不断改进自己的学习方法,是你学习能力不断提高的表现。