初中数学竞赛辅导资料 动态几何的定值五篇范文

时间:2019-05-12 05:25:01下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初中数学竞赛辅导资料 动态几何的定值》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初中数学竞赛辅导资料 动态几何的定值》。

第一篇:初中数学竞赛辅导资料 动态几何的定值

初中数学竞赛辅导资料 动态几何的定值

甲内容提要

1.动态几何是指用运动的观点研究几何图形的位置、大小的相互关系.用动的观点看几何定理,常可把几个定理归为一类.例如:

① 梯形的中位线,当梯形的上底逐渐变小,直到长度为零时,则为三角形的中位线; ② 两圆相交,两个公共点关于连心线对称,所以连心线垂直平分公共弦,当两个交点

距离逐渐变小,直到两点重合时,则两圆相切,这时切点在连心线上;

③ 相交弦定理由于交点位置、个数的变化,而演变为割线定理,切割线定理,切线长

定理等等.2.动态几何的轨迹、极值和定值.几何图形按一定条件运动,有的几何量随着运动的变

化而有规律变化,这就出现了轨迹和极值问题,而有的量却始终保持不变,这就是定值问题.例如:

半径等于RA的圆A与半径为RB(RB>RA)的定圆B内切.那么:

动点A有规律地变化,形成了一条轨迹:以B为圆心,以RB-RA的长为半径的圆.而A,B两点的距离,却始终保持不变:AB=RB-RA.若另有一个半径为RC的圆 C与圆B外切,则A,C两点的距离变化有一定的范围:RB+RC-(RB-RA)≤AC≤RB+RC+(RB-RA).即RC+RA≤AC≤2RB+RC-RA.所以AC有最大值:2RB+RC-RA ; 且有最小值:RC+RA.3.解答动态几何定值问题的方法,一般有两种:

第一种是分两步完成 :

① 先探求定值.它要用题中固有的几何量表示.② 再证明它能成立.探求的方法,常用特殊位置定值法,即把动点放在特殊的位置,找出定值的表达式,然后写出证明.第二种是采用综合法,直接写出证明.乙例题

例1.已知:△ABC中,AB=AC,点P是BC上任一点,过点P作BC的垂线分别交AB,AC或延长线于E,F.求证:PE+PF有定值.分析:(探求定值)用特位定值法.① 把点P放在BC中点上.这时过点P的垂线与AB,AC的交点都是点A,PE+PF=2PA,从而可确定定值是底上的高的2倍.因此原题可转化: 求证:PA+PB=2AD(AD为底边上的高).证明:∵AD∥PF,PEBPPFCPCD+PD=;.ADBDADCDBD

PEPFBPCD+PD2BD+2∴ADADBDBDBD

PE+PF2.即AD∴

∴PE+PF=2AD.② 把点P放在点B上.这时PE=0,PF=2AD(三角形中位线性质),结论与①相同.还可以由PF=BC×tanC,把定值定为:BC×tanC.即求证PE+PF=BC×tanC.(证明略)

同一道题的定值,可以有不同的表达式,只要是用题中固有的几何量表示均可.例2.已知:同心圆为O中,AB是大圆的直径,点P在小圆上

2求证:PA+PB有定值.分析:用特位定值法.设大圆,小圆半径分别为R,r.① 点P放在直径AB上.222222

得PA+PB=(R+r)+(.R-r)=2(R+r).② 点P放在与直径AB垂直的另一条直径上

22222222

也可得PA+PB= R+r+R+r=2(R+r).证明: 设∠POA=α,根据余弦定理,得

PA=R+r-2RrCosα,PB=R+r-2RrCos(180-α).∵Cos(180-α)=Cosα.∴PA+PB=2(R+r).本题一般知道定值是用两个圆的半径来表示的,所以可省去探求定值的步骤,直接列出PA,PB与R, r的关系式,关键是引入参数α.例3.已知:△ABC中,AB=AC,点P在中位线MN上,BP,CP的延长线分别交AC,AB于E,F.求证:

11+有定值,BFCE

分析: 本题没有明显的特殊位置,不过定值一般是用三角形边长a, b, c来表示的, 为便于计算引入参数t, 用计算法证明.证明:设MP为t, 则NP=

∵MN∥BC,a-t.2

C

MPMFNPNE

,.BCBFBCCE

11BFcctatat1即;



1aBFaBFBFac2

11111atCEbatbat

1 

1aCEaCECEab2

1atat

113+∴=

1BFCEcac

3∵c 是定线段,∴是定值.c31

1+即有定值.cBFCE

C例4.已知:在以AB为弦的弓形劣弧上取一点M(不包括A、B两点),以M为圆心作圆M

和AB相切,分别过A,B作⊙M的切线,两条切线相交于点C.求证:∠ACB有定值.分析: ⊙M是△ABC的内切圆,∠AMB是以定线段AB为弦的定弧所含的圆周角,它是个定角.(由正弦定理Sin∠AMB=所求定值可用它来表示.证明:在△ABC中,∠MAB+∠MBA=180-∠AMB,∵M是△ABC的内心,∴∠CAB+∠CBA=2(180-∠AMB).∴∠ACB=180-(∠CAB+∠CBA)

=180-2(180-∠AMB)= 2∠AMB-180.由正弦定理

AB),2R

ABAB

2R,∴Sin∠AMB=.2RSin AMB

∵弧AB所在圆是个定圆,弦AB和半径R都有定值,∴∠AMB有定值.∴∠ACB有定值2∠AMB-180.丙练习

1.用固有的元素表示下列各题中所求的定值(不写探求过程和证明): ①.等腰三角形底边上的任一点到两腰距离的和有定值是___________.②.等边三角形内的任一点到三边距离的和有定值是________.

③.正n边形内的任一点到各边距离的和有定值是_________.④.延长凸五边形A1A2A3A4A5的各边,相交得五个角:∠B1,∠B2,∠B3,∠B4,∠B5它们的度数和是________,延长凸n边形(n≥5)的各边相交,得n个角,它们的度数和是___________.(2001年希望杯数学邀请赛初二试题)

⑤.两个定圆相交于A,B,经过点B任意作一条直线交 一圆于C,交另一圆于D,则

AC

有定值是_____________..AD

⑥.在以AB为直径的半圆内,任取一点P,AP,BP的延长线分别交半圆于C,D,则

AP×AC+BP×BD有定值是_________.⑦.AB是定圆O的任意的一条弦,点P是劣弧AB上的任一点(不含A和B),PA,PB

分别交AB的中垂线于E,F.则OE×OF有定值是__________.2.已知:点P是⊙O直径AB上的任一点,过点P的弦CD和AB相交所成的锐角45.求证:PC+PD有定值.3.已知:点O是等腰直角三角形ABC斜边BC的中点,点P在BC的延长线上,PD⊥BA

交BA延长线于D,PE⊥AC交AC的延长线于E.求证:∠DOE是定角

4.已知:点P是线段AB外一点,PD⊥AB于D,且PD=AB,H是△PAB的垂心,C是AB的中点.求证:CH+DH是定值.5.已知:AB,CD是⊙O的两条直径,点P是⊙O上任一点(不含A,B,C,D)..求证:点P在AB,CD的射影之间的距离是个定值.6.经过∠XOY的平分线上的任一点A,作一直线与OX,OY分别交于P,Q则OP,OQ的倒数和是一个定值.7.△ABC中,AB=AC=2,BC边有100个不同点P1,P2,……,P100,记mi=APi+Bpi×PiC(i=1,2,3,……,100).则m1+m2+……+m100=________.(1990年全国初中数学联赛题)

8..直角梯形ABCD中,AB∥CD,DA⊥AB,AB=26cm,CD=24cm,AD=8cm,有两个动点P和Q,点P在CD上,由D向C以每秒1cm的速度移动,点Q在AB上由B向A以每秒3cm的速度移动.问时间t经过几秒时,①BCPQ为平行四边形?等腰梯形?②PQ与以AD为直径的圆O相切?相离?相交?①腰上的高.②一边上的高或3r3.③ nrn.④ 180度,(n-4)180度.⑤两圆半径比.⑥AB⑦⊙O的半径的平方.2.定值是AB平方的一半,证Rt△COM≌Rt△OBD,OM=DN.3.定值是直角,以PA为直径的圆经过A,O,E,P,D五点,PE=AD,∠AOD=∠POE.4.定值是AB的一半,证明 仿例3.5.定值是⊙O的半径与两直径夹角的正弦的积,证明仿例4.6.定值是

2Cos111

(∠xoy=2α),证明 作AR∥OQ交Dx于R,.OAOQOPAR

7.4×100.

第二篇:0初中数学竞赛辅导资料

初中数学竞赛辅导资料

初中数学竞赛辅导资料

初一上目录数的整除

(一)2倍数约数3 质数合数4 零的特性5a的个位数

6数学符号7用字母表示数8抽屉原则

初一下目录

9一元一次方程解的讨论10二元一次方程的整数解11二元一次方程组解的讨论12用交集解题13用枚举法解题14经验归纳法15乘法公式16整数的一种分类

初二上目录奇数偶数18 式的整除19 因式分解20 恒等式证明21 比较大小22 分式23 递推公式24 连续正整数25 十进制的记数法26 选择题解法(一)27识图28三角形边角性质 初中数学竞赛辅导资料

初二下目录

29概念的定义30概念的分类 31勾股定理 32中位线33同一法34 反证法 35两种对称36三点共线37不等关系

38、垂直平行39线段、角相等40线段、角和差倍分41线段的比、积、幂 42形如1/a+1/b=1/c问题的证明43面积法44数的整除

(二)初三上目录

45一元二次方程46完全平方式(数)47配方法48非负数49对称式50 基本对称式51待定系数52换元法53 条件等式54整数解55未知数多于方程的个数56列表法57逆推法58观察法59“或者”“并且”60解三角形

初三下目录

61函数的图象62绝对值63动态几何的定值64最大 最小值65图象法66辅助圆67参数法证平几68选择题(二)69数的整除(三)70正整数简单性质的复习

n

第三篇:初中数学竞赛几何练习题

初二数学竞赛基本几何题

1、如图1,在△ABC中,AD⊥BC 于D,AB+BD=CD。证明∠B=2∠C。

AC

DB

2、如图2,在△ABC中,AB=AC。D,E分别是BC,AC 上的点。问∠BAD与∠CDE满足什么条件时,AD=AE。

ABDEC3、如图3,六边形ABCDEF 中,∠A=∠B=∠C=∠D=∠E=∠F,且AB+BC=11,FA-CD=3。求BC+DE 的值。

FAEDB

4.如图4,在凸四边形ABCD中,∠ABC=300,∠ADC=600,AD=DC。证明BD2 =AB2 +BC

2AC

DCB

5、如图5,P是△ABC边BC上一点,PC=2PB。已知∠ABC=450,∠APC=600。求∠ACB 的度数。

AB

PC

6、如图6中,在△ABC中,BC=a,AC=b,以AB为边向外作等边三角形△ABD。问∠ACB为多少度时,点C与点D的距离最大?

CABD

7、如图7,在等腰△ABC中,AB=AC,延长AB到D,延长CA到E,连DE,有AD=BC=CE=DE。证明:∠BAC=100°。

EABD第七题C

8、如图8,在△ABC中,AD是边BC上的中线,AB=√2,AD=√6,AC=√26。求∠ABC的度数。

AC

B

D9、如图9,在△ABC的外面作正方形ABEF和ACGH,AD⊥BC于D。延长DA 交FH于M。证明:FM=HM。

10、如图10,P,Q,R分别是等边△ABC三条边的中点。M是BC上一点。以MP为一边在BC同侧作等边△PMS。连SQ。证明 RM=SQ.ASPQB

RMC

11、如图11,在四边形ABCD 中,AB=a,AD=b,BC=CD.对角线AC平分∠BAD。问a与b符合什么条件时,有∠D+∠B=180°

DCAB

12、如图12,在等腰△ABC中,AD是边BC 上的中线,E是△ADB内任一点,连 AE,BE,CE。证明:∠AEB>∠AEC。

AEB13、如图,在凸四边形ABCD中,AB=AD,∠BAD=60°,DC

∠BCD=120°证明:BC+CD=AC。

ABCD

14、如图14,在△ABC中,AD是边BC上的中线,点M在AB上,点N在AC上。已知∠MDN=90°,BM2+CN2=DM2+DN2。证明:AD2= 1/4(AB2+AC2)

ANMBDC

15、如图,在△ABC中,∠A=90°AD垂直BC交于D,∠BCA的平分线交AD于F,交AB于E,FG∥BC,交AB于G,AE=4,AB=14,求BG的长。

CDFA

16.如图Rt△ABC中,∠A=90°,AB=AC,BD平分∠ABC交AC于D,作CE垂直BD交BD延长线于E,过A作AH⊥BC交BD于M,试猜想BM与CE的大小关系,并证明你的结论。

EGB

CEHDMAB

第四篇:初中几何动态教学初探[原创]

初中几何动态教学初探

“九年义务教育全日制初级中学《数学教学大纲》(试用)”中提出,初中数学的教学目的之一:培养学生良好的个性品质和初步辨证唯物主义观点。良好的个性品质是指:正确的学习目的,浓厚的学习兴趣,顽强的学习毅力,实事求是的科学态度,独立思考、勇于创新的精神和良好的学习习惯;而初中数学中的辨证唯物主义教育因素之一是:数学内容中,普遍存在的运动变化、相互联系、相互转化等观点。本文想就初中几何教学中如何通过几何动态教学对学生进行辨证唯物主义思想教育,谈谈我的粗浅认识。

我们经常会听到老师和学生有这样的反映,几何难教,几何难学。“难”的原因之一就是图形关系复杂,变化多样。老师在几何教学中演示的图形都是静态的,不能将图形的任意位置展示给学生,在给出一个或有限的几个图形之后,就将一些重要的几何规律简单地介绍给了学生。而学生在作题时,由于图形位置变化,或位置关系复杂,就变得茫然不知所措了,这时老师也开始变得急燥了,觉得概念已讲得很清楚了,怎么还不会,几何难教难学的矛盾就产生了。

如何解决这个矛盾呢?我想还是要从几何的精髓问题入手。“几何就是在不断变化的几何图形中,研究不变的几何规律”。比如 图1

1.不论三角形的位置、大小、形状和方向如何变化,三角形的3条高线都交于一点(如图1); 图2

2.不论四边形如何变化,四边形的四边中点顺序连接成的图形永远是平行四边形(如图2)等等,不胜枚举。对于第一个问题,传统教学中都是利用尺子作图,各种情况只作一个图形,很有限,不能说明问题;对于第二个问题,在以往的教学中绝大多数老师都是以例题形式给让学生证明。我现在想办法让三角形或四边形任意动起来,让学生观察:三角形的3条高线交于一点;四边中点顺序连接成的图形永远是平行四边形。有了这样一个感性认识,再深入研究就成为自觉自愿的了。学生从运动的几何图形中找出的几何规律,印象会很深,而且几何图形有这样的动态效果,很容易吸引这些初中学生,让他们觉得几何课有意思,从而愿意上几何课。

我的这些想法是有理论根据的,因为运动的观点是现代数学思想的一个重要方面,在中学几何教学中应加强运动观点的建立。现代教育理论认为:数学知识不是老师教会的,而是学生必须经过头脑想象和理解椉唇ü箺才能真正学会的。老师传递给学生的只是知识信息,学生通过接收这些信息,联系他们头脑中旧有的知识结构,构造出他所能理解掌握的新知识,在几何教学中,对于那些相对于学生来说复杂而又抽象的图形,需要在老师的引导下,从不断运动变化的图形中,从不同的角度反复观察、探索、发现,找出规律,“从而建立起学生自己的‘经验体系’棗即猜想可能的结论,最后再在老师和书本的帮助下证明猜想的结论,从而建立起学生自己的‘逻辑思维体系’。即完成‘在变化的图形中发现恒定不变的几何规律’”。

对于一个几何图形来说,各种元素之间的位置关系实际上是处于变化的相互依存的状态,动是绝对的,静是相对的,这就产生了几何变换。在初中平面几何中,常见的几何变换有:全等变换、相似变换和等积变换等。在实际教学中,要想办法创造有变有不变的状态,让有利于解题的条件保持不变,而将不利于解题的条件变为有利的,这就是利用运动变化中不变的规律解题的主要思想。

如何实现让几何图形动起来,让学生在“动中找静”,以往的几何教学很难做到,因为在传统的几何教学中,用常规作图工具(纸、笔、尺)手工绘制的图形都是静态的,虽然它能教给学生规范作图,但这样很容易掩盖极其重要的几何规律。有的老师可以制作很精制的投影抽拉片,使部分图形动起来,却很难体现图形的任意性,以及图形各部分之间的密切联系。针对这个问题,我们可利用计算机辅助数学教学,利用一个软件工具棗“几何画板”制作我们需要的几何图形,并使之任意运动和动画,在图形不停地变化过程中,让学生观察,发现不变的几何规律,让学生认识到几何规律是实实在在的科学,不是凭空任意造出来的,要用科学的头脑,去分析动态的几何图形,从而得到“静态”的几何规律。

下面结合例子来说明如何对初中几何进行动态教学。(主要设计思路)

例1.初中几何教材P125 *7.12 和圆有关的比例线段,这一节的内容是相交弦定理,切割线定理及其推论(即圆幂定理)一.相交弦定理:

1.弦AB、CD相交于圆内一点P,几何画板测算PA、PB、PC、PD,并计算PA*PB, PA*PC, PA*PD, PB*PC, PB*PD, PC*PD, 图形运动,让学生观察6个乘积,反复几次,学生得出结论:只有PA*PB=PC*PD(如图3)图3:

教师给出相交弦定理:圆内的两条相交弦, 被交点分成的两条线段的长的积相等。

要引导学生证明(略)

2·将D点向B点运动,C、A、B固定,学生观察,PD逐渐变短,当测算值PD=0时,同时PB=0,此时P、B、D三点重合。问学生结论是否成立。(如图4)

图4:

3.让AB运动至过圆心时停住,AB为直径,让CD任意与AB垂直,此时观察四个测算值,总有PC=PD,让学生修改结论PC² =PA*PB。引导学生用语言叙述:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。(如图5)图5:

二.割线定理:

图6:

将P点运动,在P点从圆内到圆外之间反复运动的过程中,让学生观察6个乘积,发现依然有PA*PB=PC*PD。引导学生叙述:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。(注:此处与教材讲解顺序不一样,有待探讨)。

通过观察分析,比较图形,引导学生归纳出相交弦定理与割线定理的相同点:0 ①定理中的条件都是两条相交直线分别与圆相交

②定理中的结论都是两条直线的交点到各弦两端的距离之积相等。于是,可以把相交弦定理和割线定理统一如下形式:

两条相交直线分别与圆相交,则两直线的交点到各弦两端的距离之积相等

3、切割线定理

1.将PA绕P点运动,让学生观察A、B重合时,有 ⑴PA=PB ⑵PA*PB=PC*PD 由学生修改结论:PA² =PC*PD(注:教材上是PT² =PA*PB)(如图7)图7:

引导学生用语言叙述:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

2.将PD绕P点运动,C、D重合时观察时:(1)PC=PD=PA=PB PA*PB=PC*PD(如图8)图8: 由学生修改 PA² =PC² ∴PA=PC

正是前面学过的切线长定理 四.深入讨论

进一步引导学生:点P到各弦两端的距离之积相等,等于什么?有没有一般规律?(这是课本P134习题T 7.4 B组4)

引导学生分析当点P固定,∵过P点的弦有无数条,选一条过圆心的弦,即直径:1.当P点在圆内时,引导学生: ∵PA*PB=PC*PD 又PB=R-OP PA=R+OP ∴PA.PB=(R+OP)(R-OP)= R² -OP²

当P为定点时, OP和R均为定值(如图9)图9:

当P点在圆外时, 学生独立完成。

图10:

3.归纳总结:

一直线与半径为R的⊙0相交, 在直线上取一不在圆周上的点P, 则该点到弦两端的距离之积是定值│R²-OP²│

告诉学生:你们和我一起讨论并验证的这个问题实际上是直线与圆这一节中一个重要定理。一方面不仅使学生数学思维得到发展,也使他们从中 获得成功的喜悦;另一方面,可以使学生从不断变化的几何图形中发现不变的几何规律。

例2.①同底等高的一组三角形,底BC固定不动,顶点A在平行于底边的直线上滑动,观察重心的位置及重心轨迹(计算机动画演示)图:11 观察发现:

⑴不论三角形如何变化,重心永远在三角形内。

⑵同底等高的一组三角形的重心轨迹是一条直线(证明略)。

②同底等高的一组三角形,底BC固定不动,顶点A在平行于底边的直线上滑动,观察垂心的位置及垂心轨迹(计算机动画演示)

观察发现:

⑴锐角三角形的垂心在锐角三角形的内部;直角三角形 的垂心在直角三角形的直角顶点处;钝角三角形的垂心在钝角三角形的外部。

⑵ 同底等高的一组三角形垂心的轨迹是一条抛物线。(证明略)等等。

尽管在初中几何中不涉及轨迹问题,我们也可以不提它,但它确是计算机演示实验的结果,可以给学生看,引起学生的兴趣。

以上是我对初中几何进行动态教学的粗浅看法,得到多名老师的一致认可,同时我也给亲戚朋友的孩子(初三学生)进行了课余辅导,效果不错,这些学生在做习题时,大部分首先回忆的是计算机演示的图形。然后是定理,并很快结合已知条件做出了习题。我想这就达到了目的,学生知道从变化的图形中找出不变的规律为自己所用。在介绍知识的同时,渗透了辩证唯物主义思想。文中出现不妥之处,请专家和同行批评指正。

第五篇:八年级数学竞赛辅导资料一

八年级数学竞赛辅导资料一

一、新课标下的数学试题研究:

数学试题中的牛吃草问题

近年来,出现了以竞赛数学为背景的牛吃草问题,许多考生因缺乏必要的学习与训练,而无从下手。为此,本文以具体案例分析为切点,诠释牛吃草问题的解题策略。

所谓牛吃草问题,源于世界著名科学家牛顿所著的《普通算术》一书中的一道题目:

一个牧场,12头牛4周吃草10/3格尔,21头牛9周吃草10格尔,问24格尔牧草,多少头牛18周吃完?(注:格尔——牧场的面积单位)

例1某玩具工厂有四个车间,某周是质量检查周,现每个车间都原有a(a﹥0)个成品,且每个车间每天都生产b(b﹥0)个成品,质检科派出若干名检验员星期

一、星期二检验其中两个车间原有的和这两天生产的所有的成品,然后,星期三至星期五检验另两个车间原有的和本周生产的所有成品,假定每个检验员每天检验的成品数相同。

⑴这若干名检验员1天检验多少个成品?(用含a、b的代数式表示)⑵试求出用b表示a的关系式;

⑶若1名质检员1天能检验4b/5个成品,则质检科至少要派出多少名检验员?

练习某企业有九个生产车间,现在每个车间原有的成品一样多,每个车间每天生产的成品也一样多,有A、B两组检验员,其中A组有8名检验员,他们先用两天将第一、第二两个车间的所有成品(指原有的和后来生产的)检验完毕后,再去检验第三、第四两个车间的所有成品,又用去了三天时间;同时,用这五天时间,B组检验员边检验完余下的五个车间的所有成品,如果每个检验员的检验速度一样快,每个车间原有的成品为a件,每个车间每天生产b件成品。

⑴试用a、b表示B组检验员检验的成品总数;⑵求出B组检验员人数。(答案依次为5a+25b件,12人)

二、新课标下的中考数学试题研究

例2在车站开始检票时,有a(a﹥0)名旅客在候车室排队等候检票进站。检票开始后,仍有旅客继续前来排队检票进站。设旅客按固定的速度增加,检票口检票的速度也是固定的。若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10分钟便可将排队等候检票的旅客全部检票完毕;如果要在5分钟内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,至少要同时开放几个检票口?

例3某地防汛部门为做好当年的防汛工作,根据本地往年汛期特点和当年气象信息分析,利用当地一水库的水量调节功能,制订当年的防汛计划:

从6月10日零时起,开启水库1号入水闸蓄水,每天经过1号水闸流入水库的水量为6万立方米;从6月15日零时起,打开水库的泄水闸泄水,每天从水库流出的水量为4万立方米;从6月20日零时起再开启水库2号入水闸,每天经过2号入水闸流入水库的水量为3万立方米;到6月30日零时起,入水闸和泄水闸全部关闭。根据测量,6月10日零时,该水库的蓄水量为96万立方米。⑴ 设开启2号入水闸后的第x天的零时,水库的蓄水量为y万立方米,写出y(万立方米)与x(天)之间的函数关系式(只要求写出解析式);⑵ 如果该水库的最大蓄水量为200万立方米,该地防汛部门的当年汛期(到6月30日零时)的防汛计划能否保证水库的安全(水库的蓄水量不超过的最大蓄水量)?请说明理由。

[问题]

由于打字员的辞职,一个公司积压了一批需要打印的材料,而且每天还要新增加固定数量需要打印的材料。假设材料以页计数,每个打字员的打字速度是相

同的,固定的(单位可以是页/天)。如果公司聘任5名打字员,24天就恰好打完所有材料;如公司聘任9名打字员,12天就恰好打完所有材料。现在公司聘任了若干名打字员,工作8天之后,由于业务减少,每天新增加的需打印的材料少了一半,结果这些打字员共用40天才恰好完成打字工作。试问公司聘任了多少名打字员?

下载初中数学竞赛辅导资料 动态几何的定值五篇范文word格式文档
下载初中数学竞赛辅导资料 动态几何的定值五篇范文.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初中数学几何证明题

    初中数学几何证明题分析已知、求证与图形,探索证明的思路。对于证明题,有三种思考方式:正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。......

    初中数学几何模型

    初中数学几何模型大全+经典题型(含答案)全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进......

    初中数学几何怎么样学

    初中数学几何怎么样学? 怎样学好初中数学 怎样学好数学,是刚步入初中的同学面临的共同问题。大家在小学学习数学时,往往偏重于模仿,依赖性较强,独立思考和自学的能力不够,很少去探......

    初中数学知识点归纳:几何

    学冠教育-初中数学知识点归纳:几何初中数学几何公式大全——初中几何公式包括:线、角、圆、正方形、矩形等数学学几何的公式,以供同学们学习和理解!初中几何公式:线1同角或等角......

    初中数学几何定理集锦

    初中数学几何定理集锦 1。同角(或等角)的余角相等。 3。对顶角相等。 5。三角形的一个外角等于和它不相邻的两个内角之和。 6。在同一平面内垂直于同一条直线的两条直线是平行......

    初中数学几何证明题

    平面几何大题 几何是丰富的变换 多边形平面几何有两种基本入手方式:从边入手、从角入手 注意哪些角相等哪些边相等,用标记。进而看出哪些三角形全等。平行四边形所有的判断方......

    初中数学总复习提纲几何

    第一章 线段、直线和相交线、平行线1.1线段、直线和角 知识要点线段的中点:将一条线段分成两条相等的线段的点。 二、角①定义:有公共端点的两条射线组成的图形叫做角,这个公共......

    几何证明方法(初中数学)

    初中数学几何证明题技巧,归类 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。(三线合一) 4.平......