几何证明方法(初中数学)

时间:2019-05-15 07:59:57下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《几何证明方法(初中数学)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《几何证明方法(初中数学)》。

第一篇:几何证明方法(初中数学)

初中数学几何证明题技巧,归类

一、证明两线段相等

1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。(三线合一)

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

*8.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

*10.垂径定理

二、证明两个角相等

1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

6.相似三角形的对应角相等。

7.圆的内接四边形的外角等于内对角。

三、证明两条直线互相垂直

1.等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角(直角三角形

3.在一个三角形中,若有两个角互余,则第三个角是直角。

4.邻补角的平分线互相垂直。

5.一条直线垂直于平行线中的一条,则必垂直于另一条。

7.利用到一线段两端的距离相等的点在线段的垂直平分线上。

8.利用勾股定理的逆定理。

9.利用菱形的对角线互相垂直。

*10.在圆中平分弦(或弧)的直径垂直于弦。垂径定理

*11.利用半圆上的圆周角是直角。

四、证明两直线平行

1.垂直于同一直线的各直线平行。

2.同位角相等,内错角相等或同旁内角互补的两直线平行。

3.平行四边形的对边平行。

4.三角形 梯形的中位线平行于第三边,底边。

6.平行于同一直线的两直线平行。

五、证明线段的和差倍分

1.作两条线段的和,证明与第三条线段相等。

2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。

3.延长短线段为其二倍,再证明它与较长的线段相等。

4.取长线段的中点,再证其一半等于短线段。

5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。

六、证明比例式或等积式

1.利用相似三角形对应线段成比例。

2.利用内外角平分线定理。

3.平行线截线段成比例。

4.直角三角形中的比例中项定理即射影定理。

一个图,你看着哪好像差根线,你就用铅笔描一下,分析一下有了这根线哪线角相等,哪相角互补之类的.不可以只盯着原图看.另外,看已知条件里,把它们标注在图里,看人家给这个条件,你可以知道什么,这个条件有什么用,可以由此推出什么.从求证出发你就要想,这道题要求证这个,就要有.....这些条件,再看已知,有了这些条件了,噢,还差这个条件。然后就找条件来证明这个还差的条件,然后全部都搭配齐全了,就证出了题目了记住,做题要倒推走把已知的条件从笔在图上表示出来,方便分析而且你要牢牢记住一些定理,还有一些特殊角,特殊形状等等他们的关系当一些题实在证不出来时,你要注意了,可能要添辅助线,比如刚才我说的还差什么条件,你就可以画一个线段,平行线什么的来补充条件,你下子你就一目了然了,不过有些很难的看出的辅助线就要靠你的做题的作战经验了,你还要认真做题。把这些牢牢记住,在记住老师教你们的公里定理些,你就已经成功大半了。

有心学习就不怕没希望提高!课上要稍微做些笔记,特别是自己有疑问的地方,课后的练习不一定非得全部做完,浪费宝贵的时间资源,但一定要及时。对于自己比较容易犯错的地方或记忆不牢的建议用小小的随身便携纸记录下来,想看的时候随时都可以看。对于比较典型的而自己又没掌握的题型则把它抄录在专用本子上,详细的写出解题步骤,还可以从中挖掘出许多的知识点,然后再找些近似题目自己独自解答,看看差距在哪里,并想办法解决。久而久之当本子厚了以后复习,也就基本可以不用看书仅仅看本子就行了,达到事半功倍的效果,希望你早日获得快乐学习方法!

第二篇:初中数学:几何推理证明详解

初中数学:几何推理证明详解

几何推理的依据是定义、公理、定理,做这类题,首先就是要掌握基本公式的知识点,今天瑞德特刘老师就几何题的解题步骤进行详解。一、三个关键词:“条件”,“推出”,“结论”。

简单地讲,几何推理就是由条件推出结论,这与命题的结构(任何一个命题都由条件和结论两部分组成)是相一致的。推理的依据是命题,而命题就是在讲述什么条件可以推出什么结论。上个世纪的初中以及现在的高中推理不仅可以使用“∵”、“∴”,还可以使用推出符号“?”。了解推出符号“?”,可以更好地理解什么是几何推理。

二、学习几何推理,就从一步推理开始。

推理的依据是定义、公理、定理。那么每学一个定义、公理、定理,都要熟练掌握它的推理形式。

第三篇:几何证明方法总结

方法总结

1、首先找出两个平面的交线,然后证明这几点都是这两个平面的公共点,〖1〗 证点共线:由公理2可知,这些点都在交线上 

2、首先选择其中两点确定一条直线,然后证明另一点在此直线上

1、先确定一个平面,再证明有关点、线在此平面内

〖2〗 证点线共面:

2、过有关的点、线分别作多个平面,再证明这些平面重合 

3、反证法

〖3〗 证线线平行:常用公理

4、线面平行的性质、面面平行的性质、两直线与同

一平面垂直

〖4〗 证线面平行:



平面相交的交线经过直线作或找平面与在平面内作或找一

1、根据面面平行的定义:两个平面没有公共点

2、面面平行的判定定理:

〖5〗 证面面平行: 

3、垂直于同一条直线的两个平面平行

4、两个平面同时平行于第三个平面

5、一个平面的两条相交直线分别平行于另一个平面的两条相交直线

理

1、用三垂线定理或逆定

2、求两直线所成的角为直角〖6〗 证线线垂直:

3、线面垂直的性质

4、面面垂直的性质

1、利用线面垂直的定义

2、用线面垂直的判定定理〖7〗 证线面垂直:

3、两平行线之一垂直平面,则另一条也垂直于这个平面

〖8〗 证面面垂直:面的平面角是直角

1、定义法:证明两个平

平面经过另一个平面的垂线

2、判定定理:证明一个

〖9〗 求斜线和平面所成的角、二面角、直线和直线所成的角:常先作出要求的角,然后组成三角形,通过解三角形求角(一作、二证、三计算)

1、找斜线和平面所成的角,关键是找斜线在平面内的射影,而找射影关键是找垂足和斜足

1、用定义法

2、找二面角的平面角

2、利用垂面法要注意以上各种角的范围 



3、利用三垂线定理





3、无棱二面角可考虑用射影面积法





4、直线和直线所成的角用公理4找出所要求的角

〖10〗求点到平面的距离、求点到直线的距离、平行平面之间的距离、直线和平

面平行时直线到平面的距离,异面直线的距离常先作出垂线段,然后解由垂线段组成的三角形,或利用体积相等的方法求垂线段的长 〖11〗利用向量判断线线、线面、面面的位置关系,利用向量求角、距离、证明

平行垂直等问题:先选定一组基底,其它向量都用这组基底表示,再利用向量的法则进行计算

〖12〗在空间直角坐标系中判断线线、线面、面面的位置关系,求角、距离:先

把点、线段、向量坐标化,然后用向量的坐标进行计算

1、如图,在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AA1=4,点D是AB的中点,【1】 求证:AC⊥BC

1A1

【2】 求证:AC1∥平面CDB1

【3】 求异面直线AC1与B1C所成角的余弦值

2、如图,在直三棱柱ABC—A1B1C1中,AB=BC,D、E分别为BB1、AC1的中点。

【1】 ED为异面直线BB1与AC1的公垂线 D 【2】 设AA1=AC=2AB,求二面角A1—AD—C1 的大小.

3、如图,在直三棱柱ABC---A1B1C1中,AA1=4, AB=5,BC=3,AC=4,D,E分别CC1、AB上的中点,【1】 求证:平面B1C1E⊥平面ACC1A1 【2】 求二面角D—AB—C的大小 【3】 求点D到平面B1C1E的大小

4、如图,直三棱柱AB1C1---ABC中,BC=CC1=CA= =2,AC⊥BC,D、E分别为棱C1C、AC的中点,【1】 求二面角B—A1D—A的大小

【2】 若F为线段B1C1上的任意一点,试确定F的位置,使EF⊥平面A1BD

B1

D B

E 1

B1

B

A1

C1 D

C

A

B1

B

第四篇:初中几何证明练习题

初中几何证明练习题

1.如图,在△ABC中,BF⊥AC,CG⊥AD,F、G是垂足,D、E分别是BC、FG的中点,求证:DE⊥FG

2.如图,AE∥BC,D是BC的中点,ED交AC于Q,ED的延长线交AB的延长线于P,求证:PD·QE=PE·QD

求证:PAC~PDB

3.如图,已知点P是圆O的直径AB上任一点,APCBPD,其中C,D为圆上的点,O B

P

4.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG 求证:S△ABCS△AEG

5.已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.

求证:∠DEN=∠F.

6.设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q. 求证:AP=AQ.

7、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:

设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q.

求证:AP=AQ.

8.设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD

9.如图,⊙O中弦AC,BD交于F,过F点作EF∥AB,交DC延 切线EG,G为切点,求证:EF=EG

10.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接BE,CG 求证:

(1)BE=CG(2)BE⊥CG

11.如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.

求证:四边形A2B2C2D2是正方形.

A

2CB2

A

1DD

C

12.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接CE,BG、GE

M、N、P、Q分别是EG、GB、BC、CE的中点 求证:四边形MNPQ是正方形

第五篇:初中几何证明口诀

初中几何证明口诀

三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。斜边上面作高线,比例中项一大片。半径与弦长计算,弦心距来中间站。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。图中有角平分线,可向两边作垂线。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦

下载几何证明方法(初中数学)word格式文档
下载几何证明方法(初中数学).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初中几何证明技巧

    初中几何证明技巧(分类) 证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对......

    初中几何证明线段和角相等的方法

    初中几何证明线段和角相等的方法大全一、证明两线段相等1.两全等三角形中对应边相等。2.同一三角形中等角对等边。3.等腰三角形顶角的平分线或底边的高平分底边。4.平行四边......

    初二数学几何证明

    1.已知△ABC是等边三角形,D是BC边延长线上一点,以AD为边作等边三角形ADE。连接CE.求证:CE平分∠ACDEABCD2.已知:如图,AD是△ABC的角平分线,E是AB边上的一点,AE=AC,EF∥BC交AC于点F.......

    几何证明思路与方法

    对于初中数学的教学而言,不存在太多的难点,按照南京中考数学试卷的难易比例7:2:1来看,90%都属于基本知识点的考察和运用,剩余的10%则是分配在平面几何的证明和一元二次函数的动......

    初中数学几何证明题

    平面几何大题 几何是丰富的变换 多边形平面几何有两种基本入手方式:从边入手、从角入手 注意哪些角相等哪些边相等,用标记。进而看出哪些三角形全等。平行四边形所有的判断方......

    初中数学几何证明题

    初中数学几何证明题分析已知、求证与图形,探索证明的思路。对于证明题,有三种思考方式:正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。......

    初中数学几何证明中考知识点真题

    10.(3分)(2015•攀枝花)如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,∴S四边形BCDG=S四边形CMGN, S四边形CMGN=2S△CMG, ∵∠CGM=60......

    初中数学几何证明题画辅助线的技巧

    初中数学几何证明题画辅助线的技巧在初中数学几何学习中,如何添加辅助线是许多同学感到头疼的问题,许多同学常因辅助线的添加方法不当,造成解题困难。以下是常见的辅助线作法编......