第一篇:六年级上(12)列方程解分数应用题
六年级上期数学辅导训练(12)
校区:大邑 老师:卫 „„列方程解分数应用题
专题简析:用算术方法解应用题,虽然有利于提高思维的灵活性,但使用算术方法解应用题时,总是把未知数置于特殊的位置,使解题思路和方法受到很大限制,有时解题很困难。这时,我们可以选择用方程解答应用题,用字母表示未知数,未知数直接参加列式和运算,思维直接,解法灵活。用列方程的解题方法,往往能获得事半功倍的效果,这样取得成功的机会会更多一些。
方法点评:在用方程解答应用题时,我们应注意以下几点:(1)一般设单位“1”的量为X;(2)找准等量关系列方程。
例1:某工厂有职工980人,其中女职工的人数比男职工的少人?
随堂练习一:
师徒两人合作一批零件,完工时,徒弟做的零件个数比师父的个零件,师徒两人个做了多少个零件?
例2:商场运来空调与彩电共152台,卖出彩电的相等。商场运来空调与彩电各多少台?
随堂练习二:
甲乙两桶油共重44千克,甲桶用去它的有油多少千克?
拓展训练
1、两筐橘子,甲筐比乙筐多21千克,若从甲筐取出18千克橘子给乙筐,则甲筐重量是乙筐的
2多28人。这个工厂的男、女职工各多53少10个。已知师傅比徒弟多做了5041和5台空调空调后,剩下的空调与彩电台数正好111,乙桶又倒入10千克后,先在两桶油的重量相等,甲桶原54。71 乙筐原有橘子多少筐?
2、甲乙两人共储蓄1000元,甲取出240元乙又存入80元,这时乙储蓄的钱数正好是甲的乙储蓄了多少元钱?
3、学校田径队中,女队员人数的女队员各有多少人?
4、六(1)班有学生50人,当男生的原有多少个男生?
5、某校上学期男、女生共有500人,本学期有490人。求这学期男、女生的人数。
6、求阴影部分面积。
1。原来311等于男队员人数的。已知男队员比女队员多6人,田径队中男、351和5个女生离开后,剩下的男、女生人数相等,那么这个班311的男生转学,而女生又增加了。这学期共有学生86
第二篇:2017六年级数学列方程解稍复杂的分数应用题
教学目标
1.理解稍复杂的已知一个数的几分之几是多少,求这个数的应用题的数量关系.
2.会列方程解答这类应用题.
3.培养学生分析推理能力.
教学重点
分析应用题的数量关系.
教学难点
找应用题的等量关系.
教学过程
一、复习旧知.
小红买来一袋大米重40千克,吃了,还剩多少千克?
1.画图理解题意
2.指名叙述解答过程.
3.列式解答40-40× 40×(1-)
教师小结:解答分数应用题,关键是找准单位“1”,如果单位“1”是已知的,求它的几分之几是多少,就可以根据一个数乘分数的意义直接用乘法计算.
二、探究新知.
(一)变式引出例6
例6.小红买来一袋大米,吃了,还剩15千克买来大米多少千克?
1.读题
2.画线段图
3.分析数量关系,列方程.
4.教师提问:题中表示等量关系的三个量是什么?可以怎样列方程?
(1)解:设买来大米 千克.
买来大米的重量-吃了的重量=剩下的重量
(2)买来大米的重量×剩下几分之几=剩下的重量
5.学生自己解方程并检验.
答:这袋大米重40千克.
(二)归纳总结.
例6中的单位“1”是未知的,而已知剩下的量和吃了的分率,要求的恰好是单位“1”的重量,所以不能直接用乘法直接乘,可以列方程解答.或是找准和已知量相对应的分率用除法解答.
三、巩固练习
(一)找出下面各题的等量关系和对应关系.
1.某修路除要修一条路,已经修了全长的,还剩240米没修,这条路全长是多少米?
等量关系:
一条路的长度-已经修的米数=没修的米数
一条路的长度×没修的分率=没修的米数
对应关系:
剩的米数÷剩下的分率=全长的米数
2.一根电线杆,埋在地下的部分是全长的,露地面的部分是5米.这根电线杆长多少米?
3.选择正确的列式.
一个畜牧场卖出肉牛头数的,还剩300头,这个畜牧场共有肉牛多少头?正确列式是()
解:设共有肉牛 头.
(1)
(2)
(3)
(4)
四、质疑小结
列方程解应用题的关键是什么?怎样准确迅速地找出题中等量关系?
五、板书设计
列方程解分数应用题
例6.小红买来一袋大米,吃了,还剩15千克买来大米多少千克?
解:设一袋大米重 千克.
一袋大米重量-吃去的重量=还剩的重量
答:一袋大米重40千克.
第三篇:六年级分数应用题练习
六年级分数应用题练习小明读一本书,第一天读了50页,第二天读了余下的1/3,这时还有100页未读,这本书共有多少页?甲、乙两库共有粮食280吨,若从甲库运出1/8给乙库,这时两库粮食相等。求甲、乙两库原来各有粮食多少吨?六一班有女生25人,男生相当于女生人数的4/5,六二班人数等于六一班的8/9,两班共有多少人?一袋米重80千克,先倒出1/4后,又倒入余下的1/4,袋内现有米多少千克?一个修路队4天修56千米,平均每天修的占全长的1/15,全长是多少千米?
6某班共有学生45人,调出女生人数的1/6后,这时男、女生人数相等。这班男生有多少人?加工一批零件,第一天加工了80个,第二天加工了余下的的3/5,还剩120个没有加工。求这批零件共有多少个?革制品厂计划本月生产皮鞋2940双,实际上半月完成了计划的4/7,下半月应生产多少双就可超产3/14?
9小明看一本书,第一天看了全书的1/4,第二天比第一天少看了15页,结果还有230页没看。全书共多少页?
10三天运完一堆沙子,第一天运走8.4吨,第二天运走余下的2/7,第三天运的正好是这堆沙子的1/2。求这堆沙子共多少吨?工地有一堆沙子,运走25吨后,又运走余下的1/3,这时剩下的沙子和运走的沙子同样多。原来有沙子多少吨? 12 甲、乙两车从两地同时相对开出,甲车的速度是乙车的4/5,两车在离中点9千米处相遇。求两地之间的距离?
13小明看一本书,第一天读了全书的1/3,第二天比第一天少读60页,这时还有一半没有读。这本书共多少页?
14.某修路队修一条路,第一周修后还剩全长的3/4,第二周修后剩的比全长的3/5少140米。已知第二周修3410米,这条路共多少米?
15服装厂加工服装,第一天加工了38套,第二天加工的比总数的3/8少4套,两天共加工了总数的4/5。求这批服装共多少套?
16一项工程,甲队独做要120天,如果甲队先做10天,接着乙又做5天,就完成了全工程的5/24,乙队单独完成全工程需要多少天?
17油桶和油共重30千克,现倒出其中1/4的油后,该桶还有24千克。求原来油桶和油各有多少千克?
18某修路队修一条路,第一周修后还剩全长的3/4,第二周修后剩的比全长的3/5少140米。已知第二周修全长的1/4,这条路共多少米?
19用一根绳子来量一口井的深度,绳子有1/3露出井外,若把绳子三折后再量,则绳子离井口还有1.2米,求这口井的深度是多少米?
20小明读一本书,第一天读了1/4,第二天读了余下的1/4,这时未读的页数正好比这本书的1/4还多50页,求这本书共有多少页?
第四篇:六年级小学列方程解应用题
列方程解应用题 列方程解应用题的意义
★ 用方程式去解答应用题求得应用题的未知量的方法。2 列方程解答应用题的步骤
★ 弄清题意,确定未知数并用x表示; ★ 找出题中的数量之间的相等关系; ★ 列方程,解方程;
★ 检查或验算,写出答案。3列方程解应用题的方法
★ 综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种 思维过程,其思考方向是从已知到未知。
★ 分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。4列方程解应用题的范围
a一般应用题;
b和倍、差倍问题;
c几何形体的周长、面积、体积计算; d 分数、百分数应用题; e 比和比例应用题。
5.常见的一般应用题
一、以总量为等量关系建立方程 练一练
① 降落伞以每秒10米的速度从18000米高空下落,与此同时有一热汽球从地面升起,20分钟后伞球在空中相遇,热汽球每秒上升多少米?
② 甲、乙两个进水管往一个可装8吨水的池里注水,甲管每分钟注水400千克,要想在8分钟注满水池,乙管每分钟注水多少千克?
③ 两城相距600千米,客货两车同时从两地相向而行,客车每小时行70千米,货车每小时行80千米,几小时两车相遇?
④ 两地相距249千米,一列火车从甲地开往乙地,每小时行55。5千米,行了多少小时还离乙地有27千米?
⑤ 买5个本子和3支铅笔一共用去10.4元,已知铅笔每支0.9元,每本子多少元?
⑥ 服装厂要做984套衣服,已经做了120套,剩下的要在12天内完成平均每天做多少套?
⑦ 某生产小组9个工人要生产1926个零件,每人每小时可生产20个,工作5.5小时后,要求剩下的任务必须在4小时内完成,每人每小时必须生产多少?
⑧ 电机厂计划生产1980台电动机,已经生产了4天,每天生产45台,由于改进了技术,以后每天比原来增产15台,实际完成任务需几天?
二、以总量为等量关系建立方程 练一练
① 学校买来乒乓球和蓝球一共135个,买来的乒乓球是蓝球的8倍,两种球各多少个?
② 有一个上下两层的书架一共放了240书,上层放的书是下层的2倍,两层书架各放书多少本?
③ 图书馆买来文艺科技书共235本,文艺书的本数比科技书的2倍多25本,两种书各买了多少本?
④ 甲、乙、丙三人为灾区捐款共270元,甲捐的是乙捐的3倍,乙是丙的两倍,三人各捐多少元?
⑤A、B两个码头相距379.4千米,甲船比乙船每小时快3.6千米,两船同时在这两个码头相向而行,出发后经过三小时两船 还相距48.2千米,求两船的速度各是多少?
三、以相差数为等量关系建立方程 练一练:
① 新华书店发售甲种书90包,乙种书68包,甲种书比乙种书多1100本,每包有多少本?
② 一篮苹果比一篮梨子重30千克,苹果的千克数是梨子的2.5倍,求苹果和梨子各多少千克?
③ 两块正方形的地,第一块地的边长比第二块地的边长的2倍多2米,而它们的周长相差56厘米,两块地边长是多少?
④ 小亮购买每支0.5元和每支1.2元的笔共20支,付20元找回404元,两种笔各买了多少支?
⑤ 甲、乙两数之差为100,甲数比乙数的3倍还多4,求甲、乙两数?
⑥ 两个水池共贮水60吨,甲池用去6吨,乙池又注入8吨水后,乙池的水比甲池的水少4吨,原来两池各贮水多少吨?
⑦ 师徒两人共同加工一批零件,徒弟每天做30个,师傅因有事只做了6天,比徒弟少做了3天还比徒弟多做12个零件,师傅每天做几个?
8食堂买的白菜比萝卜的3倍少20千克,萝卜比白菜少70千克,白菜、萝卜食堂各买了多少千克?
四、以题中的等量为等量关系建立方程 练一练:
① 甲厂有钢材148吨,乙厂有112吨,如果甲厂每天用18吨,乙厂每天用12吨,多少天后两厂剩下的钢材相等?
② 一个两层的书架,上层放的书是下层的3倍,如果把上层的书放90本到下层,则两层的书相等,原来上下层各有书多少本?
③ 甲车间有54人,乙车间有48人,在式作时,为了使两车间人数相等,甲车间应调多少人去乙车间?
④ 超市存有大米的袋数是面粉的3倍,大米买掉180袋,面粉买掉50袋后,大米、面粉剩下的袋数相等,大米、面粉原各多少袋?
⑤ 某校有苦于人住校。若每一间宿舍住6人,则多出34人;若每一间宿舍住7人,则多出4间宿舍。问有多少人住校?有几间宿舍?
⑥ 甲仓所存的面粉是乙仓的3倍,如果从甲仓运走900千克,从乙仓运出80千克,则两仓所存的面粉相等,两仓原有面粉各多少千克?
⑦ 有 箱桔子,甲箱的重量是乙箱的1.8倍,如果从甲箱中取出1.2千克放篱乙箱,那么两箱的重量相等了,原来甲乙两箱各多少千克?
⑧ 一个通讯员骑自行车要在规定的时间内把信件送到某地,他每小时15千米查以早到24分钟,每小时骑12千米要迟到15分钟,规定时间是多少?他去某地的路程有多远?
⑨ 一列火车从甲地开往乙地每小时 50千米,一小时后另一列火车也从甲地开往乙 地每小时行60千米,结果两列火车同时到达乙3地,甲、乙两地相距多少千米?
⑩甲级糖每千克16.60元,乙级糖每千克8.80元。商店用80千克甲级糖和若干乙级糖混合后平均每千克售价14.00元,乙级糖要多少千克?
五、以较大的量或几倍数为等量关系建立方程 练一练:
① 修一条水渠计划需70人挖土,50人运土,而实际上挖土人数是运土人数的3倍,问从运土的人中调多少人去挖土?
② 电力公司现有职工1240人,比五年前的6倍不多40人,五年前电力公司有多少人?
③ 有两堆煤,甲堆有32吨,乙堆有57吨,以后甲堆每天增加4吨,乙堆每天增加9吨,几天后乙堆的煤是甲堆的2倍?
④ 甲乙两厂用同样的原料生产同样的产品,甲厂有720吨,乙厂有540吨,两厂同时生产并每天都用去20吨,多少天后甲厂所剩的原料是乙厂所剩原料的2倍?
⑤ 甲乙两个工程队,甲队原有240人,乙队原有168人,因工作需要将甲队的人数调整到乙队的2倍,应由乙队抽调多少人到甲队?
⑥ 兄妹两人各有钱若干,如果兄给妹20元两人钱数就相等,如果妹给兄25元,则兄的钱是妹的2倍,问兄妹两人各有多少钱?
⑦ 兄妹有相等的存款,如果兄给妹160 元,那么妹的存款是兄的3倍,求兄妹两人存款之和?
⑧ 弟弟今年5岁,哥哥今年18岁,几年后哥哥的年龄是弟弟的2倍?
⑨ 父亲今年45岁,儿子今年15岁,几年前父亲的年龄是儿子的11倍?
⑩甲原有的钱是乙的4倍,若甲给乙40元则甲的钱是乙的3倍,甲、乙现有钱各多少?
六、根据题目中条件选择解题方法 练一练:
① 地球绕太阳一周要用365天,比水星绕太阳一周要用的时间的4倍多13天,水星绕太阳一周要用多少天? ②
③ 某厂计划今年生产机器480台,比去年的2倍少30台,去年生产机器多少台?
④ 世界上最小的鸟是蜂鸟,一只蜂鸟重2.1克,一只麻雀的体重比蜂鸟的50倍多1克,一只麻雀衙多少克?
⑤ 我国发射的第一颗人造地球卫星重173千克,比美国发射的第一颗人造地球卫星的2倍还重0.38千克。美国发射的第一颗人造地球卫星重多少千克?
⑥ 某厂今年烧煤50吨,去年烧的煤比今年的2倍少10吨,去年烧煤多少吨?
1.甲乙两堆煤共100吨,如果从甲堆运出10吨给乙堆,这时甲重量是乙的1.5倍,甲乙两堆原来各有多少吨煤?
2.第一个正方形的边长比第二个的2倍多1厘米,它们的周长相差24厘米。求这两个正方形的面积各多少。
3.一块长方形菜地,长是宽的5倍,如果宽增加8米,长减少2米,求原来长方形菜地的面积。
第五篇:小学六年级数学教案列方程解应用题
教学重点
通过复习,使学生能够准确的找出题目中的等量关系.教学难点
通过复习,使学生能够准确的找出题目中的等量关系.
教学过程
一、复习准备.
1.求未知数.
×=-=÷=
1-=÷=1-=
解方程求方程的解的格式是什么?
2.找出下列应用题的等量关系.
①男生人数是女生人数的2倍.
②梨树比苹果树的3倍少15棵.
③做8件大人衣服和10件儿童衣服共用布31.2米.
④把两根同样的铁丝分别围成长方形和正方形.
我们今天就复习运用题目中的等量关系解题.(板书:列方程解应用题)
二、复习探讨.
(一)教学例3.
一列火车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千米?
1.读题,学生试做.
2.学生汇报(可能情况)
(1)(90+75)×
4提问:90+75求得是什么问题?再乘4求的是什么?
(2)90×4+75×4
提问:90×4与75×4分别求的是什么问题?
(3)÷4=90+7
5提问:等号左边表示什么?等号右边表示什么?对不对?为什么?
(4)÷4-75=90
提问:等号左边表示什么?等号右边表示什么?对不对?为什么?
(5)÷4-90=75
提问:等号左边表示什么?等号右边表示什么?对不对?为什么?
3.讨论思考.
(1)用方程解这道应用题,为什么你们认为这三种方法都正确?
(等号的左右表示含义相同)
(2)列方程解应用题的特点是什么?
两点:
变未知条件为已知条件,同时参加运算;
列出的式子为含有未知数的等式,并且左右表示的数量关系一致
(3)怎样判定用方程解一道应用题是否正确?(方程的左右是否为等量关系)
4.小结.
(1)小组讨论:用方程解应用题和用算术方法解应用题,有什么不同点?
(2)小组汇报:
①算术方法解应用题时,未知数为特殊地位,不参加运算;用方程解应用题时,未知数与已知数处于平等地位,可以参加列式.
②算术方法解应用题时,需要根据题意分析数量关系,列出用已知条件表示求未知数的量;用方程解应用题时,根据题目中的数量关系,列出的是含有未知数的等式.
(二)变式反馈:根据题意把方程补充完整.
1.甲乙两站之间的铁路长660千米.一列客车以每小时90千米的速度从甲站开往乙站,同时有一辆货车以每小时75千米的速度从乙站开往甲站.经过多少小时两车相遇?
2.甲乙两站之间的铁路长660千米.一列客车从甲站开往乙站,同时有一辆货车从乙站开往甲站.经过4小时两车相遇,客车每小时行90千米,货车每小时行多少千米?
教师提问:这两道题有什么联系?有什么区别?
三、巩固反馈.
1.根据题意把方程补充完整.
(1)张华借来一本116页的科幻小说,他每天看页,看了7天后,还剩53页没有看.
_____________=
53_____________=116
(2)妈妈买来3米花布,每米9.6元,又买来元毛线,每千克73.80元.一共用去139.5元.
_____________=139.5
_____________=9.6×3
(3)电工班架设一条全长米长的输电线路,上午3小时架设了全长的21,下午用同样的工效工作1小时,架设了280米.
_____________=280×3
2.解应用题.
东乡农业机械厂有39吨煤,已经烧了16天,平均每天烧煤1.2吨.剩下的煤如果每天烧1.1吨,还可以烧多少天?
小结:根据同学们的不同方法,我们需要具体问题具体分析,用哪种方法简便就用哪种方法.
3.思考题.
甲乙两个港相距480千米,上午10时一艘货船从甲港开往乙港,下午2时一艘客船从乙港开往甲港.客船开出12小时后与货船相遇.如果货船每小时行15千米.客船每小时行多少千米?
四、课堂总结.
通过今天的复习,你有什么收获?
五、课后作业.
1.师傅加工零件80个,比徒弟加工零件个数的2倍少10个.徒弟加工零件多少个?
2.徒弟加工零件45,比师傅加工零件个数的多5个.师傅加工零