第一篇:2015年成人高考专升本高等数学二考试真题及参考答案
2015年成人高考专升本高等数学二考试真题及参考答案1.
A.0 B.1/2C.1
D.2 【答案】A
【应试指导】2.
【 】A.低阶无穷小量 B.等价无穷小量 C.同阶但不等价无穷小量 D.高阶无穷小量 【答案】C
【应试指导】3.
是2x的同阶但不等价无穷小量.
【 】A.有定义且有极限B.有定义但无极限C.无定义但有极限D.无定义且无极限 【答案】B 【应试指导】
4.【 】
【答案】C 【应试指导】
5.4下列区间为函数f(x)=x-4x的单调增区间的是【 】A.(一∞,+∞)B.(一∞,O)C.(一1,1)D.(1,+∞)【答案】D
6.【 】
【答案】B
7.【 】
【答案】D
-x-1-cosx+C(C为任意常数).
8.【 】A.-lB.0C.1 D.2 【答案】C
9.【 】
【答案】A
10.【 】
【答案】D
二、填空题(11~20小题,每小题4分,共40分)11.
_________.【答案】0
【应试指导】当x→0时,x是无穷小量,12.
13.__________.14.
_________.15.
_________.16.
________.17.
_________.18.
________._________.19.
20.________.三、解答题(21~28题,共70分.解答应写出推理、演算步骤)
21.(本题满分8分)
【答案】
22.(本题满分8分)【答案】
23.(本题满分8分)
【答案】
24.(本题满分8分)
【答案】
25.(本题满分8分)
【答案】 等式两边对x求导,得
26.(本题满分l0分)
【答案】
27.(本题满分l0分)
【答案】
28.(本题满分l0分)
从装有2个白球,3个黑球的袋中任取3个球,记取出白球的个数为X.(1)求X的概率分布;(2)求X的数学期望E(X). 【答案】
第二篇:2012年成人高考专升本高等数学二考试真题及参考答案
2012年成人高考专升本高等数学二考试真题及参考答案
一、选择题(1~10小题。每小题4分,共40分.在每小题给出的四个选项中。只有一项是符合题目要求的)1.
【 】
【答案】B
2.【 】
【答案】C
3.【 】
【答案】A
4.【 】
【答案】A
5.【 】
【答案】C
6.【 】
【答案】D
7.【 】
【答案】B
8.【 】
【答案】C 【应试指导】由题意可知,所求面积S的图形为
9.【 】
【答案】D
10.【 】
A.0.44 B.0.5 C.0.1 D.0.06 【答案】B
第Ⅱ卷(非选择题,共ll0分)
二、填空题(11~20小题。每小题4分,共40分)11.
________.【答案】一2
12._______.13.
_________.【答案】1
14._________.【答案】(0,0)
15.__________.16.
_________.【答案】1
(-1,0)处的切线斜率为1.
17.________.18.
_________.19.
________.【答案】l
20.________.三、解答题(21~28题,共70分.解答应写出推理、演算步骤)21.
(本题满分8分)
【答案】
22.(本题满分8分)
【答案】
23.(本题满分8分)
【答案】
24.(本题满分8分)
【答案】
25.(本题满分8分)已知某篮球运动员每次投篮投中的概率是0.9,记x为他两次独立投篮投中的次数.(1)求X的概率分布;
【答案】
26.(本题满分l0分)
【答案】
27.(本题满分l0分)
【答案】
28.(本题满分l0分)
【答案】
第三篇:成人高考高等数学二
成人高考高等数学复习及考试方法
考生要在成人高考中取得好成绩,必须深刻理解《复习考试大纲》所规定的内容及相关的考核要求,在知识内容上要分清主次、突出重点。在考核要求方面,弄清要求的深度和广度。要全面复习、夯实基础,要将相关知识点进行横向和纵向的梳理,建立知识网络,对考试大纲所列知识点,力求做到心中有数、融会贯通。
高数一大纲提示(总分150分、考试时间150分钟、闭卷、笔试):
高数二大纲提示(总分150分、考试时间150分钟、闭卷、笔试):
一元函数、极限连续大概占20多分,这些都是每年必须要考到的。一元微积分、微分学,这个占得挺多的,大概占40—50%。如果要是高数二,知识面考得少一些,集中一些,但是题的分量就重一些,比如说每年有二元的微积分,多元函数的微积分,这里面可能会出现比较难、刁钻一些的题。高数
一、数二,不像高中起点的,可能差异稍稍大一点。考生可以根据不同的专业、考试类别,不管怎么样,前面的一元函数、极限、一元函数的微分、积分是一个基本的东西,也是最拿分的东西,一定要把它们做熟了。比如说求极限的几种方式,求微分的几种方式,以及求倒数,都会面面俱到,学员还是要把握住历年的考题,把握住大纲的要求,把握住考试卷,就应该能把握住会考什么。
1、注意以《大纲》为依据。
弄清《高等数学》
(一)和《高等数学》(二)在知识内容及相关考核要求上的区别。这种区别主要体现在两个方面:其一是在共有知识内容方面,同一章中要求掌握的知识点,或同一知识点要求掌握的程度不尽相同。如在一元函数微分学中,《高等数学》(一)要求掌握求反函数的导数、掌握求由参数方程所确定的函数的求导方法,会求简单函数的n阶导数,理解罗尔定理、拉格朗日中值定理,但上述知识点对《高等数学》(二)并不做要求;又如在一元函数积分学中,《高等数学》(一)要求掌握三角换元求不定积分,其中包括正弦变换、正切变换和正割变换,而《高等数学》(二)对正割变换不做考核要求。
其二是在不同的知识内容方面,《高等数学》
(一)考核内容中有二重积分,而《高等数学》(二)对二重积分并不做考核要求;再有《高等数学》
(一)有无穷级数、常微分方程,高数(二)均不做要求。从试卷中可以看出,高等数学
(一)比《高等数学》(二)多出来的这部分知识点,在考题中大约能占到30%的比例。共计45分左右。所以理科、工科类考生应按照《大纲》的要求全面认真复习。
2、对概念的理解。
考生要加强对高等数学中基本概念、基本方法和基本技能的理解和掌握,要努力提高运用数学知识分析问题和解决问题的能力,特别是综合运用知识解决实际问题的能力。
3、要在学习方法上追求学习效益。
加强练习,注重解题思路和解题技巧的培养和训练,对基本概念、基本理论、基本性质能进行多侧面、多层次、由此及彼、由表及里的思索和辨析,对基本公式、基本方法、基本技能要进行适度、适量的练习,在练习中加强理解和记忆,理解和记忆是相辅相承的,理解中加深记忆,记忆有助于更深入地理解,死记硬背是暂时的,只有理解愈深,才能记忆愈牢。
4、加强练习
熟悉考试中各种题型,要掌握选择题、填空题和解答题等不同题型的解题方法与技巧。练习中要注意分析、总结、归纳、类比,掌握思考问题和处理问题的正确方法,寻求一般性的解题规律,从而提高解题能力。
在专升本考试中,《高等数学》是一门重要的公共基础课程,也是考试成绩上升空间较大的一门课程。学好数学同学好其他学科一样,都要付出辛勤的汗水和艰辛的努力。
5、考前一个月冲刺备考建议 还有1个多月的时间,要是在这段时间里面设计一个自己复习计划,至少在前十天看看题,一步一个脚印踏踏实实的掌握这些概念、公式。考试之前该背的要背,要上口背,这样不容易忘。有的公式是根据特点去背,包括三角函数公式、导数公式、微积分的公式,这些都得背下来。不但背公式,还得掌握方法,方法如果会的话可以复习一下,如果不会的话可以从模仿入手。能够把公式运用起来,多做几道题对公式的运用和内涵就了解了。这个时候可以做一些做过的题,或者是做一些自己能做的题,不要抠难题。难题之所以难有两条,一个是综合性强,一个是技巧性。综合性太强的话,如果知识学的不牢固的话,我们还没有适应综合性的能力,往往会使你丧失信心。如果技巧性太强,技巧也有基本的方法,也有一些特殊的技巧。前两年专升本也好,高中起点也好,都可能从里面出一些小技巧的东西,这也是想把一般考生和好的考生区分开来,增加试卷区分度,如果过分强调技巧,往往会在基本概念里面丢分,这样会得不偿失。所以说基本的东西不能丢。做一做常见的题,做一做做过的题,做一做会做的题,温故而知新,做过的题要做懂了。考生把握住这两条,应该可以在考试中取得好成绩。
6、最后这段时间,单靠记公式行不行?
公式必须得会,历年考得就那么几道类型题,都弄会了也不是很难。建议考生循序渐进,一步一步的走,如果跳跃式学习,会觉得力不从心。所以一步一步的走,走到那儿是哪儿,这没关系,如果非得满分的话,也不现实,把自己会做的分都做出来。
7、考试过程中需要注意哪些地方
因为很多学员的高数学学习起来比较仓促,没有像高中或者初中的数学学习那么扎实,没做那么多作业,运算错误率特别高。有些比较相近的公式也容易记错了,这就会造成不应该丢的分丢了,会做的题目,知道怎么做,就要仔细。平时可能一分丢了,还看不出来不觉得,但考试的时候不是这样,这是要丢分的。还是要尽量少有失误,争取每做一道题,对一道题,不求做的多,只求做的准确。
8、基本公式
一、基本初等函数
1.常数函数: y=c,(c为常数)2.幂函数: y=xn ,(n为实数)3.指数函数: y=ax ,(a>0、a≠1)4.对数函数: y=loga x ,(a>0、a≠1)5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x 二、三角函数公式 1 两角和公式 1 2
倍角公式 半角公式
4、和差化积
三、两个重要极限
四、导数与微分 1 求导与微分法则1、2、3、(u +v)’=u’+ v’ 导数及微分公式
五、不定积分表(基本积分)
1、
第四篇:2014年成人高考专升本高等数学一考试真题及详解
2014年成人高考专升本高等数学一考试大纲
本大纲适用于工学、理学(生物科学类、地理科学类、环境科学类心理学类等四个级学科除外)专业的考生.总要求
考生应按本大纲的要求,了解或理解“高等数学”中极限和连续、一元函数微分学、一元函数积分学、空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论,学会、掌握或熟练掌握上述各部分的基本方法应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力,能运用基本概念、基本理论和基奉方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。
本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次.复习考试内容
一、极限
1.知识范围
(1)数列极限的概念与性质
数列极限的定义
唯一性,有界性,四则运算法则,夹逼定理,单调有界数列,极限存在定理
(2)函数极限的概念与性质
函数在一点处极限的定义左、右极限及其与极限的关系x趋于无穷(x一∞,x→+∞,x→—∞)时函数的极限,唯一性,法则,夹逼定理
(3)无穷小量与无穷大量
无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量的性质,无穷小量的比较
(4)两个重要极限
2.要求
(1)理解极限的概念(对极限定义中等形式的描述不作要求)会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件
(2)了解极限的有关性质,掌握极限的四则运算法则
(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系会进行无穷小量的比较(高阶、低阶、同阶和等价)会运用等价无穷小量代换求极限
(4)熟练掌握用两个重要极限求极限的方法
二、连续
1知识范围
(1)函数连续的概念
函数在一点处连续的定义,左连续与右连续,函数在一点处连续的充分必要条件,函数的间断点
(2)函敖在一点处连续的性质
连续函数的四则运算,复台函数的连续性,反函数的连续性
(3)闭区间上连续函数的性质
有界性定理,最大值与最小值定理,介值定理(包括零点定理)
(4)初等函数的连续性
2.要求
(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握函数(含分段函数)在一点处的连续性的判断方法
(2)会求函数的间断点
(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题
(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限,一元函数微分学
三、导数与微分
1知识范围
(1)导数概念
导数的定义,左导数与右导数,函数在一点处可导的充分必要条件,导数的几何意义与物理意义,可导与连续的关系
(2)求导法则与导数的基本公式
导数的四则运算反函数的导数导数的基本公式
(3)求导方法
复合函数的求导法,隐函数的求导法,对数求导法,由参数方程确定的函数的求导法,求分段函数的导数
(4)高阶导数
高阶导数的定义高阶导数的计算
(5)微分
微分的定义,微分与导数的关系,微分法则,一阶微分形式不变性
2.要求
(l)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导散的方法
(2)会求曲线上一点址的切线方程与法线方程
(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数
(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数
(5)理解高阶导数的概念,会求简单函数的n阶导数
(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分
(二)微分中值定理及导致的应用
1.知识范围
(l)微分中值定理
罗尔(Rolle)定理拉格朗日(Lagrange)中值定理
(2)洛必迭(I,’Hospital)法则
(3)函数单调性的判定法
(4)函数的极值与极值点、最大值与最小值
(5)曲线的凹凸性、拐点
(6)曲线的水平渐近线与铅直渐近线
2.要求
(l)理解罗尔定理、拉格朗日中值定理及它们的几何意义会用拉格朗日中值定理证明简单的不等式
(2)熟练掌握用洛必达法则求 型未定式的极限的方法
(3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的单调性证明简单的不等式
(4)理解函数扳值的概念掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用问题
(5)会判断曲线的凹凸性,会求曲线的拐点
(6)会求曲线的水平渐近线与铅直渐近线
2、一元函数积分学
(一)不定积分
1.知识范围
(1)不定积分
原函数与不定积分的定义原函数存在定理不定积分的性质
(2)基本积分公式
(3)换元积分法
第一第换元法(凑微分法)第二换元法
(4)分部积分法
(5)-些简单有理函数的积分
2.要求
(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理
(2)熟练掌握不定积分的基本公式
(3)熟练掌握不定积分第-换元法,掌握第二换元法(限于三角代换与简单的根式代换)
(4)熟练掌握不定积分的分部积分法
(5)会求简单有理函数的不定积分
(二)定积分
1.知识范围
(1)定积分的概念
定积分的定义及其几何意义可积条件
(2)定积分的性质
(3)定积分的计算
变上限积分牛顿莱布尼茨(Newton-Leibniz)公式换元积分法分部积分法
(4)无穷区间的反常积分
(5)定积分的应用
平面图形的面积旋转体的体积
2.要求
(1)理解定积分的概念及其几何意义,了解函数可积的条件
(2)掌握定积分的基本性质.(3)理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法
(4)熟练掌握牛顿一莱布尼茨公式
(5)掌握定积分的换元积分法与分部积分法
(6)理解无穷区间的反常积分的概念,掌握其计算方法
(7)掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积
第五篇:2013年成人高考专升本高等数学一考试真题及参考答案
2013年成人高考专升本高等数学一考试真题及参考答案
一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
参考答案:C
参考答案:A
参考答案:B
参考答案:D
参考答案:B
参考答案:A
参考答案:D
参考答案:B
参考答案:C
参考答案:A
二、填空题:本大题共10小题。每小题4分,共40分,将答案填在题中横线上。
参考答案:2e
参考答案:2(x+3)
参考答案:2ex-1
参考答案:
参考答案:sin(x+2)+C
参考答案:2(e-1)
参考答案:2x-y+x=0
参考答案:ydx+xdy
参考答案:1
参考答案:π
三、解答题:本大翘共8个小题,共70分。解答应写出推理,演算步骤。