初一数学奥数题带答案

时间:2019-05-14 11:08:24下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初一数学奥数题带答案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初一数学奥数题带答案》。

第一篇:初一数学奥数题带答案

一张方桌由一个桌面和四条腿组成,1立方米木料可制作桌面50张或桌腿300条,现在有5立方米木料,问用多少木料制作桌面,多少木料制桌腿,正好配成方桌多少张?

轮船在静水中的速度为1小时24千米,水流速度是2千米一小时,该船在甲乙两地间行驶一个来回就用了6小时,求从甲到乙顺流航行和从乙到甲逆流航行各用了多少时间,甲乙两地距离是多少?

甲仓存煤200吨,乙仓存煤70吨,若甲仓每天运出15吨,乙仓每天运进25吨,几天后乙仓存煤是甲仓的2倍?

甲车间有工人27人,乙车间有工人19人,现在新招20名工人,为使甲车间的人数是乙车间人数的2倍,应把新工人如何分配到两个车间中去?

1,设可以做x张方桌,则 需要做x张桌面,4x条桌腿

x*(1/50)+4x*(1/300)=5 解得 x=150 2,解:设甲乙两地的距离是x千米, 根据题意得: x/(24+2)+x/(24-2)=6 解得 x=71.5 则...........3题

解设x天后已仓的媒是甲仓的2倍 则 2*(200-15x)=70+25x 解得 x=6 4题

解设向甲车间安排x人,则向乙车间安排20-x人 根据题意得 27+x=2*(19+20-x)解得 x=17

第二篇:初一奥数题

初一数学提高题

甲多开支100元,三年后负债600元.求每人每年收入多少?

S的末四位数字的和是多少?

4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.

5.求和:

6.证明:质数p除以30所得的余数一定不是合数.

8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.

9.已知3x2-x=1,求6x3+7x2-5x+2000的值.

10.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?

11.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)

12.解关于x的方程

13.解方程

其中a+b+c≠0.

14.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.

15.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.

16.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.

17.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.

18.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?

19.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且

求证:n是4的倍数.

20.已知a,b,c,d都是正数,并且a+d<a,c+d<b. 求证:ac+bd<ab.

21.已知甲种商品的原价是乙种商品原价的1.5倍.因市场变化,乙种商品提价的百分数是甲种商品降价的百分数的2倍.调价后,甲乙两种商品单价之和比原单价之和提高了2%,求乙种商品提价的百分数.

22.在锐角三角形ABC中,三个内角都是质数.求三角形的三个内角.

23.某工厂三年计划中,每年产量递增相同,若第三年比原计划多生产1000台,那么每年比上一年增长的百分数就相同,而且第三年的产量恰为原计划三年总产量的一半,求原计划每年各生产多少台?

24.已知(x-1)2除多项式x4+ax3-3x2+bx+3所得的余式是x+1,试求a,b的值.

解答:

所以

x=5000(元).

所以S的末四位数字的和为1+9+9+5=24.

3.因为

a-b≥0,即

a≥b.即当b≥a>0或b≤a<0时,等式成立.

4.设上坡路程为x千米,下坡路程为y千米.依题意则

由②有2x+y=20,③

由①有y=12-x.将之代入③得 2x+12-x=20.

所以

x=8(千米),于是y=4(千米).

5.第n项为

所以

6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.

7.设

由①式得(2p-1)(2q-1)=mpq,即

(4-m)pq+1=2(p+q).

可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.

(1)若m=1时,有

解得p=1,q=1,与已知不符,舍去.

(2)若m=2时,有

因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.

(3)若m=3时,有

解之得

p+q=8.

8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy+y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.

9.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.

10.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则

y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)

2+490.

所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.

11.设王平买三年期和五年期国库券分别为x元和y元,则

因为 y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以

0.0497x=994,所以

x=20000(元),y=35000-20000=15000(元).

12.化简得6(a-1)x=3-6b+4ab,当a≠1时,13.将原方程变形为

由此可解得x=a+b+c.

14.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1. 15.依题意得

去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,16.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].

由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.

又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.

17.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千

米.依题意得

由①得16y2=9x2,③

由②得16y=24+9x,将之代入③得

即(24+9x)2=(12x)2.解之得

于是

所以两站距离为9×8+16×6=168(千米).

18.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.

19.。

又因为

所以,k是偶数,从而n是4的倍数.

20.由对称性,不妨设b≤a,则ac+bd≤ac+ad=a(c+d)<ab.

21.设乙种商品原单价为x元,则甲种商品的原单价为1.5x元.设甲商品降价y%,则乙商品提价2y%.依题意有1.5x(1-y%)+x(1+2y%)=(1.5x+x)(1+2%),化简得1.5-1.5y+1+2y=2.5×1.02.

所以y=0.1=10%,所以甲种商品降价10%,乙种商品提价20%.

22.因为∠A+∠B+∠C=180°,所以∠A,∠B,∠C中必有偶数.唯一的偶质数为2,所以∠C=2°.所以∠A+∠B=178°.由于需∠A,∠B为奇质数,这样的解不唯一,如

23.设每年增产d千台,则这三年的每一年计划的千台数分别为a-d,a,a+d依题意有

解之得

所以三年产量分别是4千台、6千台、8千台.

24.不妨设商式为x2+α·x+β.由已知有

x4+ax3-3x2+bx+3

=(x-1)2(x2+α·x+β)+(x+1)

=(x2-2x+1)(x2+α· x+β)+x+1

=x4+(α-2)x3+(1-2α+β)x2+(1+α-2β)x+β+1.

比较等号两端同次项的系数,应该有

只须解出

所以a=1,b=0即为所求.

第三篇:初一奥数题(附答案)44SJHISJSTI

已知-+8与4的和是单项式,求的值.已知+xy=12,xy+=15 求

-(x+y)(x-y)的值? 初一奥数题

2.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.

3.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x的取值范围. 4.设(3x-1)7=a7x7+a6x6+„+a1x+a0,试求a0+a2+a4+a6的值.

6.解方程2|x+1|+|x-3|=6. 8.解不等式||x+3|-|x-1||>2.

10.x,y,z均是非负实数,且满足: x+3y+2z=3,3x+3y+z=4,求u=3x-2y+4z的最大值与最小值.

11.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.

12.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短? 13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DOB的平分线,∠COD=55°.求∠DOE的补角.

14.如图1-90所示.BE平分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE. 15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB. 16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求

17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比.

18.如图1-94所示.四边形ABCD两组对边延长相交于K及L,对角线AC‖KL,BD延长线交KL于F.求证:KF=FL.

19.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.

20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸? 21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).

22.设n是满足下列条件的最小正整数,它们是75的倍数,且恰有

23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?

24.求不定方程49x-56y+14z=35的整数解.

25.男、女各8人跳集体舞.(1)如果男女分站两列;(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴. 问各有多少种不同情况?26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152? 27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.

28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?

29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度. 30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?

31.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少? 32.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?

33.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益? 34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6千米/分钟的速度追甲,试问多少分钟后追上甲? 35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1千克.

(1)试用新合金中第一种合金的重量表示第二种合金的重量;(2)求新合金中含第二种合金的重量范围;(3)求新合金中含锰的重量范围.

参考答案

2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以 原式=-b+(a+b)-(c-b)-(a-c)=b.

3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,|x+m|+|x-n|=x+m-x+n=m+n.

4.分别令x=1,x=-1,代入已知等式中,得 a0+a2+a4+a6=-8128.

10.由已知可解出y和z 因为y,z为非负实数,所以有 u=3x-2y+4z

11.所以商式为x2-3x+3,余式为2x-4 12.小柱的路线是由三条线段组成的折线(如图1-97所示).

我们用“对称”的办法将小柱的这条折线的路线转化成两点之间的一段“连线”(它是线段).设甲村关于北山坡(将山坡看成一条直线)的对称点是甲′;乙村关于南山坡的对称点是乙′,连接甲′乙′,设甲′乙′所连得的线段分别与北山坡和南山坡的交点是A,B,则从甲→A→B→乙的路线的选择是最好的选择(即路线最短)

显然,路线甲→A→B→乙的长度恰好等于线段甲′乙′的长度.而从甲村到乙村的其他任何路线,利用上面的对称方法,都可以化成一条连接甲′与乙′之间的折线.它们的长度都大于线段甲′乙′.所以,从甲→A→B→乙的路程最短.

13.如图1-98所示.因为OC,OE分别是∠AOD,∠DOB的角平分线,又 ∠AOD+∠DOB=∠AOB=180°,所以 ∠COE=90°.

因为 ∠COD=55°,所以∠DOE=90°-55°=35°. 因此,∠DOE的补角为 180°-35°=145°.

14.如图1-99所示.因为BE平分∠ABC,所以 ∠CBF=∠ABF,又因为 ∠CBF=∠CFB,所以 ∠ABF=∠CFB. 从而 AB‖CD(内错角相等,两直线平行).

由∠CBF=55°及BE平分∠ABC,所以 ∠ABC=2×55°=110°. ① 由上证知AB‖CD,所以 ∠EDF=∠A=70°,②

由①,②知 BC‖AE(同侧内角互补,两直线平行).

15.如图1-100所示.EF⊥AB,CD⊥AB,所以 ∠EFB=∠CDB=90°,所以EF‖CD(同位角相等,两直线平行).所以 ∠BEF=∠BCD(两直线平行,同位角相等). ①又由已知 ∠CDG=∠BEF. ② 由①,② ∠BCD=∠CDG. 所以 BC‖DG(内错角相等,两直线平行).

所以 ∠AGD=∠ACB(两直线平行,同位角相等).

16.在△BCD中,∠DBC+∠C=90°(因为∠BDC=90°),① 又在△ABC中,∠B=∠C,所以 ∠A+∠B+∠C=∠A+2∠C=180°,所以 由①,②

17.如图1-101,设DC的中点为G,连接GE.在△ADC中,G,E分别是CD,CA的中点.所以,GE‖AD,即在△BEG中,DF‖GE.从而F是BE中点.连结FG.所以 又 S△EFD=S△BFG-SEFDG=4S△BFD-SEFDG,所以 S△EFGD=3S△BFD.

设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以 S△CEG=S△BCEE,从而 所以 SEFDC=3x+2x=5x,所以 S△BFD∶SEFDC=1∶5.

18.如图1-102所示.

由已知AC‖KL,所以S△ACK=S△ACL,所以

即 KF=FL. +b1=9,a+a1=9,于是a+b+c+a1+b1+c1=9+9+9,即2(a十b+c)=27,矛盾!20.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.

21.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以,p=6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).

22.由题设条件知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有(α+1)(β+1)(γ+1)=75. 于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时(α+1)(β+1)=25. 所以 故(α,β)=(0,24),或(α,β)=(4,4),即n=20•324•52 23.设凳子有x只,椅子有y只,由题意得 3x+4y+2(x+y)=43,即 5x+6y=43.

所以x=5,y=3是唯一的非负整数解.从而房间里有8个人.

24.原方程可化为 7x-8y+2z=5.

令7x-8y=t,t+2z=5.易见x=7t,y=6t是7x-8y=t的一组整数解.所以它的全部整数解是 而t=1,z=2是t+2z=5的一组整数解.它的全部整数解是

把t的表达式代到x,y的表达式中,得到原方程的全部整数解是

25.(1)第一个位置有8种选择方法,第二个位置只有7种选择方法,„,由乘法原理,男、女各有 8×7×6×5×4×3×2×1=40320 种不同排列.又两列间有一相对位置关系,所以共有2×403202种不同情况.

(2)逐个考虑结对问题.

与男甲结对有8种可能情况,与男乙结对有7种不同情况,„,且两列可对换,所以共有 2×8×7×6×5×4×3×2×1=80640 种不同情况.

26.万位是5的有4×3×2×1=24(个). 万位是4的有 4×3×2×1=24(个).

万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个: 34215,34251,34512,34521. 所以,总共有 24+24+6+4=58 个数大于34152.

27.两车错过所走过的距离为两车长之总和,即 92+84=176(米).

设甲火车速度为x米/秒,乙火车速度为y米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有 解之得

解之得x=9(天),x+3=12(天). 解之得x=16(海里/小时).

经检验,x=16海里/小时为所求之原速.

30.设甲乙两车间去年计划完成税利分别为x万元和y万元.依题意得 解之得

故甲车间超额完成税利 乙车间超额完成税利

所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).

31.设甲乙两种商品的原单价分别为x元和y元,依题意可得 由②有

0.9x+1.2y=148.5,③ 由①得x=150-y,代入③有 0.9(150-y)+1.2y=148.5,解之得y=45(元),因而,x=105(元).

32.设去年每把牙刷x元,依题意得

2×1.68+2(x+1)(1+30%)=[2x+3(x+1)]-0.4,即 2×1.68+2×1.3+2×1.3x=5x+2.6,即 2.4x=2×1.68,所以 x=1.4(元).

若y为去年每支牙膏价格,则y=1.4+1=2.4(元).

33.原来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,其中0<x<4.由于减价后,每天可卖出(400+200x)件,若设每天获利y元,则 y=(4-x)(400+200x)=200(4-x)(2+x)=200(8+2x-x2)

=-200(x2-2x+1)+200+1600 =-200(x-1)2+1800.

所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比原来多卖出200件,因此多获利200元.

34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的路程分别是0.4(25+x)千米和0.6x千米.因为两人走的路程相等,所以 0.4(25+x)=0.6x,解之得x=50分钟.于是

左边=0.4(25+50)=30(千米),右边= 0.6×50=30(千米),即乙用50分钟走了30千米才能追上甲.但A,B两镇之间只有28千米.因此,到B镇为止,乙追不上甲.

35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有(2)当x=0时,大500克.(3)新合金中,含锰重量为:

x•40%+y•10%+z•50%=400-0.3x,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的范围是:最小250克,最

而0≤x≤500,所以新合金中锰的重量范围是:最小250克,最大400克.

第四篇:初一数学上册奥数题

初一数学上册奥数题

姓名座号

一、选择题(每小题3分,共15分)

1、汽车的雨刷把玻璃上的雨水刷干净,是属于()的实际应用

A.面动成体B.线动成面C.点动成线D.以上答案都不对

2、b为有理数,则下列结论正确的是()

A、|b|=bB、|b|是非负数 C、|b|是正数D、-b为负有理数

3、当a=2时,代数式2a-3的值为()

A.3B.1C.-1D.54、化简-2a+(2a-1)的结果是()

A.-4a-1 B.4a-1C.1D.-1

5、与m2t是同类项的是()

A.tmB.m2stC.-3m2tD.(mt)2 2

二、填空题(每小题3分,共30分)

6、平面内两直线相交有______个交点,两平面相交形成______条直线

7、-5的绝对值是______,相反数是______,倒数是______

8、|ab|=1,x与y互为相反数,则(x+y)+2ab=______

9、错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。若|m+3|+(n-2)2=0,则m+n=________.2πab210、代数式-3的系数是________.1a+2332b-111、如果y与-5xy是同类项,则a-b=_____________________ 512、2周角=____度=____平角=____直角13、0.5的相反数的倒数的绝对值是_______

14、定义a☆b=a-b,则(-3)☆5☆(-1)=______

15、绝对值大于或等于1,而小于4的所有负整数的和是____

三、解答题(本大题共55分)22116、每小题5分

(1)(531251322--+)×72(2)-2-(-6)×(-÷(-)2484312

2(3)2a+(4a-5b)-3(a-2b)

17、先化简,再求值:(5分)9x+6x2-3(x-2x2),其中x=-

218、根据俯视图,画出这个几何体的主视图和左视图。(8分)

19、已知a、b互为相反数,c、d互为倒数,x的绝对值等于2,求x2-(a+b)+cd|x|+(a+b)2011+(-cd)2012的值。(10分)

20、如果2x+y=5,求代数式-3(2x+y)(2x+y-4)+4x+2y的值。(5分)

21、初一级学生在4名数学老师的带领下去剑英纪念园游玩,公园的门票为每人20元,现有两种优惠方案,甲方案:师生都按7.5折收费。乙方案:带队老师免费,学生按8折收费。(12分)

(3)如有a名学生,用代数式表示两种优惠方案各需多少元?

(4)当a=80时,采用哪种方案优惠。

(5)当a=120时,采用哪种方案优惠。

第五篇:初一奥数题及其分析

初一奥数练习

1.如图所示每个小方格的面积均为一个面积单位,则阴影部分面积是________个面积单位.

2.如图所示的长方形长12cm,宽8cm,B、C分别是两边的中点,则△ABC的面积为________.

分析与解答 1.3 2.36cm 1.如图所示阴影部分的面积为________.(单位:cm)

2.如图所示,D、E、F分别是△ABC三边的三等分点,则△DEF与△ABC的面积之比为________.

分析与解答

1.16.82cm 2.1︰3

3.44 1.如图所示,以长方形ABCD的各边作正方形,四个正方形的周长之和为64,四个正方形的面积之和为68,求ABCD的面积.

2.如图所示,大圆的半径为2r,四个小圆的半径都是r,求阴影部分的面积.

分析与解答

1.15.(提示:用割补法)

2.用x,y,z表示相应部分的面积.

4x4y4zπ(2r)2,xyzπr2.

又∵

x2yπr2,两式相减得y-z=0,即y=z.

对于虚线连成的正方形,可知4yr2(2π4),又有y=z,故4y4z8y2r2(2π4). 1.如图所示AB、CD、EF、MN互相平行,则如图所示梯形的个数与三角形的个数差为________.

2.下面有________个图形可以一笔画出.

分析与解答 1.20 2.3 1.如图所示,把一个各边,各角分别相等的六边形(叫做正六边形)剪成一个正六角星,剪掉的部分面积为S,则六角星的面积为________.

2.如图所示,等边三角形ABO、AOD、DOC围成的等腰梯形,它的面积等于1,又知M是AB的中点,那么三角形COM的面积等于________.

3.如图所示每个小长方形的面积都等于1,那么,如图所示阴影部分的面积等于________.

分析与解答

1.25

2.1

3.6.5 61.如图所示,阴影部分总面积为18,中间正方形面积为4,求正方形的总面积.

2.如图所示,已知六边形地板砖的面积为6,求△ABC的面积.

分析与解答

1.50.(提示:用割补法)2.13.(提示:用拼凑法)

下载初一数学奥数题带答案word格式文档
下载初一数学奥数题带答案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初一奥数题(推荐阅读)

    初一奥数题(关于质数与合数的) 1.在1到20之间求8个质数(不一定不同),使它们的平方和比他们的乘积的4倍小36294. 2.已知质数p,q,使得表达式(2p+1)/q和(2q-3)/p都是正整数,试确......

    初一奥数题100道

    a,b,c,d,e五个数,和为8,平方和为16,求e的最值。甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先......

    1年级奥数带答案

    一年级奥数题--思维训练题01 班级 姓名 1、晾晒1块手帕,要用2只夹子;2块手帕,要用3只夹子;11块手帕,要用( 12 )只夹子。 2、老师带了一些小朋友去看电影,一共买了11张票。问和老......

    五年级数学奥数应用题题及答案

    1.某果园向市场运一批水果,原计划每车装1.6吨,实际每车装2吨,结果少了4吨,一共有多少辆车? 列式:_______________________(答案) 答:一共有(答案)辆车。 2.五年级一班有42个同学参加植......

    经典小升初奥数题及答案

    都江堰戴氏精品堂数学教师辅导讲义 学生姓名:_______ 任课教师:何老师(Tel:***) 1、某次数学测验共20题,作对1题得5分,做错1题扣1分,不做得0分,小华得了76分,他对了多少题?2......

    小学奥数题及答案

    小学奥数题及答案工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注......

    四年级奥数题及答案

    四年级奥数题及答案:人数问题 1、 乒乓球练习馆里,有20名乒乓球运动员在练球,第一个女运动员和七个男运动员练过球;第二个女运动员和八个男运动员练过球;第三个女运动员和九个男......

    初一数学一元一次方程教案(奥数)

    初中数学辅导网 http://www.xiexiebang.com/ 初中数学辅导网 http://www.xiexiebang.com/ 初中数学辅导网 http://www.xiexiebang.com/ 初中数学辅导网 http://www.xiexieba......