第一篇:初中奥数题试题一 初中奥数题试题一一
初中奥数题试题一 初中奥数题试题一
一、选择题(每题 1 分,共 10 分)
1.如果 a,b 都代表有理数,并且 a+b=0,那么()
A.a,b 都是 0 B.a,b 之一是 0 C.a,b 互为相反数 D.a,b 互为倒数
答案:C
解析:令 a=2,b=-2,满足 2+(-2)=0,由此 a、b 互为相反数。
2.下面的说法中正确的是()
A.单项式与单项式的和是单项式 B.单项式与单项式的和是多项式 C.多项式与多项式的和是多项式 D.整式与整式的和是整式
答案:D 解析:x?,x3 都是单项式.两个单项式 x3,x?之和为 x3+x?是多项式,排除 A。两个单项 2 2 2 式 x?,2x 之和为 3x 是单项式,排除 B。两个多项式 x3+x2 与 x3-x 之和为 2x3 是个单项式,排除 C,因此选 D。
3.下面说法中不正确的是()
A.有最小的自然数 B.没有最小的正有理数 C.没有最大的负整数 D.没有最大的非负数 答案:C
解析:最大的负整数是-1,故 C 错误。
4.如果 a,b 代表有理数,并且 a+b 的值大于 a-b 的值,那么()A.a,b 同号 B.a,b 异号 C.a>0 D.b>0 答案:D 5.大于-π 并且不是自然数的整数有()A.2 个 B.3 个 C.4 个 D.无数个 答案:C
解析:在数轴上容易看出:在-π 右边 0 的左边(包括 0 在内)的整数只有-3,-2,-1,0 共 4 个.选 C。
6.有四种说法: 甲.正数的平方不一定大于它本身; 乙.正数的立方不一定大于它本身; 丙.负数的平方不一定大于它本身; 丁.负数的立方不一定大于它本身。这四种说法中,不正确的说法的个数是()
A.0 个 B.1 个 C.2 个 D.3 个
答案:B
解析:负数的平方是正数,所以一定大于它本身,故 C 错误。
7.a 代表有理数,那么,a 和-a 的大小关系是()
A.a 大于-a B.a 小于-a C.a 大于-a 或 a 小于-a D.a 不一定大于-a 答案:D
解析:令 a=0,马上可以排除 A、B、C,应选 D。
8. 在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边()A.乘以同一个数 B.乘以同一个整式 C.加上同一个代数式 D.都加上 1 答案:D
解析:对方程同解变形,要求方程两边同乘不等于 0 的数,所以排除 A。我们考察方程 x-2=0,易知其根为 x=2.若该方程两边同乘以一个整式 x-1,得(x-1)(x-2)=0,其根为 x=1 及 x=2,不与原方程同解,排除 B。同理应排除 C.事实上方程两边同时加上一 个常数,新方程与原方程同解,对 D,这里所加常数为 1,因此选 D.
9.杯子中有大半杯水,第二天较第一天减少了 10%,第三天又较第二天增加了 10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是()A.一样多 B.多了 C.少了 D.多少都可能
答案:C
解析:设杯中原有水量为 a,依题意可得,第二天杯中水量为 a×(1-10%)=0.9a; 第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a; 第三天杯中水量与第一天杯中水量之比为 0.99∶1,所以第三天杯中水量比第一天杯中水量少了,选 C。
10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那 么,当这条河的水流速度增大时,船往返一次所用的时间将()A.增多 B.减少 C.不变 D.增多、减少都有可能
答案:A
二、填空题(每题 1 分,共 10 分)
1.19891990?-19891989?=______。
答案:1989199022
-19891989
=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979。
解析:利用公式 a-b=(a+b)(a-b)计算。
2.1-2+3-4+5-6+7-8+…+4999-5000=______。
答案:1-2+3-4+5-6+7-8+…+4999-5000 =(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500。
解析:本题运用了运算当中的结合律。
3.当 a=-0.2,b=0.04 时,代数式 a?-b 的值是______。
答案:0
解析:原式==(-0.2)?-0.04=0。把已知条件代入代数式计算即可。
4.含盐 30%的盐水有 60 千克,放在秤上蒸发,当盐水变为含盐 40%时,秤得盐 水的重是______克。
答案:45000(克)
解析:食盐 30%的盐水 60 千克中含盐 60×30%(千克),设蒸发变成含盐为 40%的水重 x 克,即 0.001x 千克,此时,60×30%=(0.001x)×40% 解得:x=45000(克)。遇到这一类问题,我们要找不变量,本题中盐的含量是一个不变量,通过它列出 等式进行计算。
第二篇:初中奥数题
初中奥数题
1.水果超市运来苹果2500千克,比运来的梨的2倍少250千克。这个超市运来梨多少千克?
2.A、B两地相距300千米,甲车从A地出发24千米后,乙车才从B地相向而行。已知甲车每小时行40千米,乙车每小时行52千米,若甲车是上午8时出发,两车相遇 时是几时几分?
3.家店商场运来一批洗衣机和彩电,彩电的台数是洗衣机的3倍,现在每天平均售出10台洗衣机和15台彩电,洗衣机售完后,彩电还剩下120台没有售出,运来洗
衣机、彩电各多少台?
4.小民以每小时20千米的速度行使一。段路程后,立即沿原路以每小时30千的速度返回原出发地,这样往返一次的平均速度是多少?
5.粮店运来大米,面粉共3700千克,已知运来的面粉比大米的2倍多100千克,运来大米、面粉各多少千克?
6.一队少先队员乘船过河,如果每船坐15人,还剩9人,如果每船坐18人,则剩余1只船,求有多少只船?
7.学校举办的美术展览中,有50幅水彩画、80画幅蜡笔画。蜡笔画比水彩画多几分之几?水彩画比蜡笔画少几分之几?
8.某校航空模型小组在飞机模型比赛中,第一架模型飞机比第二架模型飞机少飞行480米.已知第一架模型飞机的速度比第二架模型飞机的速度快1米/秒,两架模型
飞机在空中飞行的时间分别为12分和16分,这两架模型飞机各飞行了多少距离?
9.一条环形跑道长400米,甲每分钟行80米,乙每分钟行120米.甲乙两人同时同地通向出发,多少分钟后他们第一次相遇?若反向出发,多少时间后相遇?
10.甲乙两人同时从A,B两地出发,相向而行,3小时后两人在途中相遇已知A,B两地相距24千米,甲乙两人的行进速度之比是2:3.问甲乙两人每小时各行多少千米.11.已知甲,乙两地相距290千米,现有一汽车以每小时40千米的速度从甲地开往乙地,出发30分钟后,另有一辆摩托车以每小时50千米的速度从乙地开往甲地.问摩托
车出发后几小时与汽车相遇?
12.小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?
13.甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。甲几小时到达中点?
14.甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。已知甲速度是15千米/时,求乙的速度。
15.一个三角形的底边长4.3厘米,面积是17.2厘米。它的高是多少厘米?
16.去年小明比他爸爸小28岁,今年爸爸的年龄是小明的8倍。小明今年多少岁?
17.果园里梨树和桃树共有365棵,桃树的棵树比梨树的2倍多5棵。果园里梨树和桃树各有多少棵?
18.一辆汽车第一天行了3小时,第二天行了5小时,第一天比第二天少行90千米。平均每小时行多少千米?
19.甲、乙两地相距1000米,小华从甲地、小明从乙地同时相向而行,小华每分钟走80米,小明每分钟走45米。两人几分相遇?
20.两地间的路程是210千米,甲、乙两辆汽车同时从两地相向开出,3.5小时相遇,甲车每小时行28千米。乙车每小时行多少千米?
21.甲、乙两地相距189千米,一列快车从甲地开往乙地每小时行72千米,一列慢车从乙地去甲地每小时行54千米。若两车同时发车,几小时后两车相距31.5千米?
22.一个筑路队要筑1680米长的路。已经筑了15天,平均每天筑60米。其余的12天筑完,平均每天筑多少米?
23.学校买来6张桌子和12把椅子,共付215.40元,每把椅子7.5元。每张桌子多少元?
24.菜场运来萝卜25筐,黄瓜32筐,共重1870千克。已知每筐萝卜重30千克,黄瓜每筐重多少千克?
25.用两段布做相同的套装,第一段布长75米,第二段长100米,第一段布比第二段布少做10套。每套服装用布多少米?
26.红光农具厂五月份生产农具600件,比四月份多生产25%,四月份生产农具多少件?
27.红星纺织厂有女职工174人,比男职工人数的3倍少6人,全厂共有职工多少人?
28.蓓蕾小学三年级有学生86人,比二年级学生人数的2倍少4人,二年级有学生多少人?
29.某校有男生630人,男、女生人数的比是7∶8,这个学校女生有多少人?
30.张华看一本故事书,第一天看了全书的15%少4页,这时已看的页数与剩下页数的比是1∶7。这本故事书共有多少页?
31.一个书架有两层,上层放书的本数是下层的3倍;如果把上层的书取30本放到下层,那么两层书的本数正好相等。原来两层书架上各有书多少本?
32.第一层书架放有89本书,比第二层少放了16本,第三层书架上放有的书是一、二两层和的1.5倍,第三层放有多少本书?
艺书的本数与其他两种书的本数的比是1∶5,工具书和文艺书共有180本。图书箱里共有图书多少本?
33.有甲、乙两个同学,甲同学积蓄了27元钱,两人各为灾区人民捐款15元后,甲、乙两个同学剩下的钱的数量比是3∶4,乙同学原来有积蓄多少元?
34.小红和小芳都积攒了一些零用钱。她们所攒钱的比是5∶3,在“支援灾区”捐款活动中小红捐26元,小芳捐10元,这时她们剩下的钱数相等。小红原来有多少
钱? 35.学校买回315棵树苗,计划按3∶4分给中、高年级种植,高年级比中年级多植树多少棵?
36.三、四、五年级共植树180棵,三、四、五年级植树的棵树比是3∶5∶7。那么三个年级各植树多少棵?
37.学校计划把植树任务按5∶3分给六年级和其它年级。结果六年级植树的棵数占全校的75%,比计划多栽了20棵。学校原计划栽树多少棵?
38.一杯80克的盐水中,有盐4克,现在要使这杯盐水中盐与水的比变为1∶9,需加多少克盐或蒸发多少克水?
39.水果店运来苹果和梨共540千克,苹果和梨重量的比是12∶15。运来梨多少千克?
40.水果店运来橘子300千克,运来的葡萄比橘子多50千克,运来苹果的重量是葡萄的2倍,苹果比橘子多运来多少千克?
41.把960千克的饲料按7∶5分给甲、乙两个养鸡专业户。甲专业户比乙专业户多分得饲料多少千克?
42.甲、乙两个仓库原存放的稻谷相等。现在甲仓运出稻谷14吨,乙仓运出稻谷26吨,这时甲仓剩下的稻谷比乙仓剩下的稻谷多40%。甲、乙两个仓库原来各存放
稻谷多少吨?
43.学校操场是一个长方形,周长是280米,长、宽的比是4∶3,这个操场的长、宽各是多少米?
44.碧波幼儿园内有一块巧而美的长方形花坛,周长是64米,长与宽的比是5∶3,这块花坛占地多少平方米?
45.在一幅比例尺是 的地图上,量得甲、乙两地的距离是5厘米,甲、乙两地的实际距离是多少千米?
46.某玩具厂生产一批儿童玩具,原计划每天生产120件,75天完成。为了迎接“六一”儿童节,实际只用60天就完成了任务。实际每天生产玩具多少件?
47.甲、乙两个家具厂生产同一规格的单人课桌、椅,甲可以生产1800张桌子,乙可以生产1500个椅子一共可生产1500套课桌椅。现在两厂联合生产,经过合理安 排,尽量发挥各自特长。现在两厂每月比过去可多生产课桌椅多少套?
48.建筑工地要运122吨水泥,用一辆载重4吨的汽车运了18次后,余下的用一辆载重2.5吨的汽车运,还要运多少次?
49.空调机厂四月份生产空调机1800台,五月份比四月份增产10%。
四、五月份共生产空调机多少台?
50.师徒两人合作生产一批零件,师傅每小时生产40个,徒弟每小时生产30个,如完成任务时徒弟正好生产了450个,这批零件共几个?
51.甲每小时加工48个零件,乙每小时加工 36个零件,两人共同工作 8小时后,检验出64个废品。两人平均每小时共加工多少个合格的零件?
弟生产了540个,这批零件有多少个?
52.某化肥厂第一季度平均每月生产化肥2.4万吨,前两个月生产化肥的总量比三月份多0.8万吨,三月份生产化肥多少万吨?
这批水泥共有多少吨?
53.红星乡今年收玉米3600吨,比去年增产二成,去年收玉米多少吨?
54.买6个排球和8个篮球共用去249.6元。已知排球的单价是15.6元。篮球的单价是多少元?的和没修的就同样多。这段公路长多少米?
55.筑路队第一天筑路55米,第二天筑的路是第一天的3倍,第三天筑的比前两天的总数少30米,第三天筑路多少米?
4700米没有铺。这条公路全长多少米?
56.工程队铺运动场,4天铺了200平方米。照这样的进度,32天铺好了运动场,求这运动场的面积。
57.时新手表厂原计划每天生产75块手表,12天完成任务。实际比计划每天多生产15块,实际多少天完成任务?
第三篇:奥数题
1、一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人?
2、仓库有一批货物,运走的货物与剩下的货物的质量比为2:7.如果又运走64吨,那么剩下的货物只有仓库原有货物的五分之三。仓库原有货物多少吨?
3、育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?
4、建筑工地有两堆沙子,一堆比2堆多85吨,两堆沙子各用去30吨后,一堆剩的是2堆的2倍,两堆沙子原来各有多少吨?
5、甲乙两地相距420千米,其中一段路面铺了柏油,另一段是泥土路.一辆汽车从甲地驶到乙地用了8小时,已知在柏油路上行驶的速度是每小时60千米,而在泥土路上的行驶速度是每小时40千米.泥土路长多少千米?
6、在浓度为40%的盐水中加入千克水,浓度变为30%,再加入多千克盐,浓度变为50%?
7、甲说:“我乙丙共有100元。”乙说:“如果甲的钱是现有的6倍,我的钱是现有的1/3,丙的钱不变,我们仍有钱100元。”丙说:“我的钱都没有30元。”三人原来各有多少钱?
8.某书店对顾客有一项优惠,凡购买同一种书100本以上,就按书价的90%收款。某学校到书店购买甲、乙两种书,其中乙种书的册数是甲种书册数的3/5只有甲种书得到了90%的优惠。其中买甲种书所付的钱数是买乙种书所付钱数的2倍。已知乙种书每本1.5元,那么甲种书每本定价多少元?
第四篇:奥数题
1,57辆军车通过一座桥,前后两车间保持2米距离。桥长1403米,每辆车长5米,车队每分钟前进45米。从第一辆车车头上桥到最后一辆车的车尾离开桥共需多少分钟?
2明明和丽丽同时从学校出发步行去动物园,明明每分钟走60米,丽丽每分钟走45米。结果明明先到,并在动物园门口等了10分钟丽丽才到,学校到动物园的距离是多少米?
3物业公司要给296户业主买296本挂历。挂历每本15元,现在正在促销优惠,每买7本送1本。算算物业公司买挂历需多少元?
4妈妈在超市买了4支小梦龙和3支可爱多冰激凌,共用去24元。妈妈对小丽说:“上星期我买了3支小梦龙和5支可爱多冰激凌共用去29元。;请你算算,小梦龙和可爱多每支各多少钱?
第五篇:初中一年级奥数题
有理数奥数题
一、选择题
1.下列说法正确的个数是
()①一个有理数不是整数就是分数;②一个有理数不是正数就是负数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的 A.1
B.2
C.3
D.4
2.a,b是有理数,它们在数轴上的对应点的位置如下图所示:
a
0
b 把a,-a,b,-b按照从小到大的顺序排列
()A.-b<-a<a<b
B.-a<-b<a<b
C.-b<a<-a<b
D.-b<b<-a<a 3.下列说法正确的是
()①0是绝对值最小的有理数;②相反数大于本身的数是负数;③数轴上原点两侧的数互为相反数;④两个数比较,绝对值大的反而小 A.①②
B.①③
C.①②③
D.①②③④
4.若a+b<0,ab<0,则
()A.a>0,b>0;
B.a<0,b<0;C.a,b两数一正一负,且正数的绝对值大于负数的绝对值;D.a,b两数一正一负,且负数的绝对值大于正数的绝对值
5.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差
()A.0.8kg
B.0.6kg
C.0.5kg
D.0.4kg
6.若ab≠0,则 的取值不可能是
()A.0
B.1
C.2
D.-2
二、填空题: 1.已知 ︱a︱=3,︱b ︱=2,且ab<0,则a-b=
。2.已知a=25,b=-3,则a99+b100的末位数字是。
答案:
一、选择题:1-6:BCADBB
二、填空题:1.5或-5;2.6