初一数学趣味题+24道经典名题(共5篇)

时间:2019-05-14 11:15:31下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初一数学趣味题+24道经典名题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初一数学趣味题+24道经典名题》。

第一篇:初一数学趣味题+24道经典名题

1.有人编写了一个程序,从1开始,交替做乘法或加法,(第一次可以是加法,也可以是乘法),每次加法,将上次运算结果加2或是加3;每次乘法,将上次运算结果乘2或乘3,例如30,可以这样得到: 1 +3 =4*2=8+2=10*3=30,请问怎样可以得到:2的100次+2的97次-2

解答:1+3=4+2=2的3次-2=2的3次+2-2=(2的3次+2-2)*2=……==2的100次+2的97次-2的97次=2的100次+2的97次-2的97次+2=2的100次+2的97次-2的97次+2+2=……=2的100次+2的97次-2

2.下诗出于清朝数学家徐子云的著作,请算出诗中有多少僧人?

巍巍古寺在云中,不知寺内多少僧。

三百六十四只碗,看看用尽不差争。

三人共食一只碗,四人共吃一碗羹。

请问先生明算者,算来寺内几多僧?

解答:三人共食一只碗:则吃饭时一人用三分之一个碗,四人共吃一碗羹:则吃羹时一人用四分之一个碗,两项合计,则每人用1/3+1/4=7/12个碗,设共有和尚X人,依题意得:

7/12X=364

解之得,X=624

3.两个男孩各骑一辆自行车,从相距2O英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?

解答:每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。

4.《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。问雄、兔各几何?

解答:设x为雉数,y为兔数,则有

x+y=b,2x+4y=a 解之得:y=b/2-a,x=a-(b/2-a)

根据这组公式很容易得出原题的答案:兔12只,雉22只。5.我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。

经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。每间住了人的客房每日所需服务、维修等项支出共计40元。

问题:我们该如何定价才能赚最多的钱?

解答:日租金360元。

虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。

6.数学家维纳的年龄:我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,维纳的年龄是多少?

解答:设维纳的年龄是x,首先岁数的立方是四位数,这确定了一个范围。10的立方是1000,20的立方是8000,21的立方是9261,是四位数;22的立方是10648;所以10=

7.把1,2,3,4……1986,1987这1987个自然数均匀排成一个大圆圈,从1开始数:隔过1划2,3;隔过4划掉5,6,这样每隔一个数划掉两个数,转圈划下去,问:最后剩下哪个数。

解答:663

8.在一幅长90厘米,宽40厘米的风景画的四周外围向上一条宽度相同的金色纸边,制成一幅挂图,如果要求风景画的面积是整个挂图面积的百分之72,那么金色纸边的宽应为多少?

解答:根据题意有(90+2X)(40+2X)*72%=90*40(90+2X)(40+2X)=3600/0.72 3600+180X+80X+4X2=5000 4X2+260X-1400=0(4X-20)(X+70)=0 得 4x-20=0 X+70=0 4*x=20 X=5 X=-70 不成立 所以X=5CM

9.用黑白两种颜色的皮块缝制而成的足球,黑色皮块是正五边形,白色皮块是正六边形,若一个球上共有黑白皮块32块,请计算,黑色皮块和白色皮块的块数

解答:等量关系:

白色皮块中与黑色皮块中共用的边数=黑色皮块中与白色皮块共用的边数 设:有白色皮块x 3x=5(32-x)解得

x=20

10.抽屉中有十只相同的黑袜子和十只相同的白袜子,假若你在黑暗中打开抽屉,伸手拿出袜子,请问至少要拿出几只袜子,才能确定拿到了一双? 解答:3

11.小赵,小钱,小孙,小李4人讨论一场足球赛决赛究竟是哪个队夺冠。小赵说:“D对必败,而C队能胜。”小钱说:“A队,C队胜于B队败会同时出现。”小孙说:“A队,B队C队都能胜。”小李说:“A队败,C队,D队胜的局面明显。” 他们的话中已说中了哪个队取胜,请问你猜对究竟哪个队夺冠吗?

解答:小赵,小钱,小孙,小李4人讨论一场足球赛决赛究竟是哪个队夺冠。小赵说:“D对必败,而C队能胜。”小钱说:“A队,C队胜与B队败会同时出现。”小孙说:“A队,B队C队都能胜。”小李说:“A队败,C队,D队胜的局面明显。” 小赵的话说明 D队败 小钱的话说明 B队败 小孙的话说明 D队败 小李的话说明 A队败 所以,C队胜利

12.如果长度为a,b,c的三条线段能够成三角形,那麽线段根号a,根号b,根号c是否能够成三角形?

如果一定能构成或一定不能构成,请证明

如果不一定能够,请举例说明.解答:可以。

不妨假设a最小,c最大,那么abc构成三角形的充要条件就是a+b>c;

这时√a+√b与√c比较,其实就是a+b+2√ab与c比较(两边平方),a+b已经大于c了,那么显然可以构成三角形。

13.有一位农民遇见魔鬼,魔鬼说:“我有一个主意,可以让你发财!只要你从我身后这座桥走过去,你的钱就会增加一倍,走回来又会增加一倍,每过一次桥,你的钱都能增加一倍,不过你必须保证每次在你的钱数加倍后要给我a个钢板,农民大喜,马上过桥,三次过桥后,口袋刚好只有a个钢板,付给魔鬼,分文不剩,请有含a的单项式表示农民最初口袋里的钢板数。

解答:设最初钱数为x 2[2(2x-a)-a]-a=0 解方程得x=7a/8

14.三个同学放学回家,途中见到一辆黄色汽车,等他们再往前走时,听说那辆车撞伤一位老人后竟然逃之夭夭.可是谁也没记下这辆汽车的车牌号.警察询问这三个中学生时,他们都说车牌号是一个四位数.其中一个记得这个号码的前两位相同,另一个记得这个号码的后两位数字相同,第三个记得这个四位数恰好是完全平方数,你能确定这辆肇事汽车的车牌号吗

解答:四位数可以表示成a×1000+a×100+b×10+b =a×1100+b×11 =11×(a×100+b)

因为a×100+b必须被11整除,所以a+b=11,带入上式得

四位数=11×(a×100+(11-a))=11×(a×99+11)=11×11×(9a+1)

只要9a+1是完全平方数就行了。

由a=2、3、4、5、6、7、8、9验证得,9a+1=19、28、27、46、55、64、73。

所以只有a=7一个解;b=4。

因此四位数是7744=11^2×8^2=88×88

15.已知1加3等于4等于2的2次方,1加3加5等于9等于3的2次方,1加3加5加7=16等于4的2次方,1加3加5加7加9等于25等于5的2次方,等......<1>仿照上例,计算1加2加3加5加7加...加99等于?

<2>根据上面规律,请用自然数n(n大于等于1)表示一般规律。

解答:<1>1+3+5+...+99=50的平方

<2>1+3+5+...+n=[(n-1)/2+1]的平方

16.有一次,一只猫抓了20只老鼠,排成一列。猫宣布了它的决定:首先将站在奇数位上的老鼠吃掉,接着将剩下的老师重新按1、2、3、4…编号,再吃掉所有站在奇数位上的老鼠。如此重复,最后剩下的一只老鼠将被放生。一只聪明的老鼠听了,马上选了一个位置,最后剩下的果然是它,猫将它放走了!

你知道这只聪明的小老鼠站的是第几个位置吗? 解答:排在第16个。第1次能被2整除的剩下了,第2次能被4(2的平方)整除的剩下了,第3次能被8(2的3次方)整除的剩下了,第4次能被16(2的4次方)整除的剩下了,所以只有第16个不会被吃掉。

17.1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+…+1/(98*99*100)

解答:1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+…+1/(98*99*100)=(1-1/2-1/3)+(1/2-1/3-1/4)+(1/3-1/4-1/5)+......1/98-1/99-1/100 =1-1/100 =99/100

备注:1/(1*2*3)=1-1/2-1/3

18.小伟和小明交流暑假中的活动情况,小伟说:“我参加了科技夏令营,外出一个星期,这七天的日期数之和是84,你知道我是几号出发的吗?”小明说:“我假期到舅舅家住了七天,日期数的和再加月份数也是84,你能猜出我是几月几号回家的吗?

解答:第一题:设出发那天为X号

X+X+1+X+2+X+3+X+4+X+5+X+6=84 X=9

小伟是9号出发的。

第二题:因为是暑假里的活动,所以只能是7或者8月份

设回来那天为X号

列示为

7+X+X-1+X-2+X-3+X-4+X-5+X-6=84 或者

8+X+X-1+X-2+X-3+X-4+X-5+X-6=84 第一式解出X=14 第二式结果不为整数

所以只能是7月14号到家

19.某校初一有甲、乙、丙三个班,甲班比乙班多4个女生,乙班比丙班多1个女生,如果将甲班的第一组同学调入乙班,同时将乙班的第一组同学调入丙班,同时将丙班的第一组同学调入甲班,则三个班的女生人数恰好相等。已知丙班第一组有2名女生,问甲、乙两班第一组各有多少女生?

解答:设甲乙两班第一组的女生分别有m和n个 丙班女生有x个乙班就有x+1个,甲班就有x+5个平均x+2个(利用改变量来计算)丙班:-2+n=(x+2)-x 甲班:+2-m=(x+2)-(x+5)可以得出 m=5 n=4

20.有一水库,在单位时间内有一定量的水流量,同时也向外放水。按现在的放水量,水库中的水可使用40天。因最近库区降雨,使流入水库的水量增加20%,如果放水量也增加10%,那么仍可使用40天。问:如果按原来的放水量放水,可使用多少天?

解答: 设水库总水量为x 一天的进水量和出水量分别为m和n 则有x/(n-m)=40=x/[n(1+10%)-m(1+20%)] 要求x/[n-m(1+20%)] 可以先化简得n=2m x=40m 带入第二个式子即可得到x=50天

21.某宾馆先把甲乙两种空调的温度设订为1度,结果甲种空调比乙种空调每天多节电27度再对乙种空调进行清洗设备,使得乙种空调每天的总节电量是只将温度调高1度后的节电量的1.1倍而甲种空调的节电量不变这样两种空调每天共节电405度求只将温度条调高1度后两种空调每天共节电多少度?

解答:设只将温度调高1度后,甲乙两种空调每天各节电X,Y度

X-Y=27,X+1.1Y=405 X=207 Y=180

甲乙两种空调每天各节电207,180度.22.红棉村有1000公顷荒山,绿化率达80%,300公顷良田不需要绿化,今年X公顷河坡地植树绿化率达20%,这样红棉村所有土地的绿化率就达到60%,河坡地共有多少公顷?

解答:(x*20%+1000*80%)/(1000+300+x)=60%(0.2*x+800)/(1300+x)=0.6 0.2*x+800=780+0.6*x x=50公顷

23.一张纸厚0.06厘米,地球到月球的距离是3.85*10^5千米.小明说,如果将这张纸裁成两等份,把裁成两等份的纸摞起来,再裁两等份,如果重复下去,所有纸的高度大于月球到地球的距离.小刚说,我不信小明的说法.小明的说法是对的吗?为什么?

解答:裁40次就高于3.85*10^5千米

2^40*0.06/100000=6.597*10^5千米

小明的说法是对,只是这张纸一定要够大,要不能裁了几次就裁不了

24.有27颗珍珠,其中一颗是假的,但外观和真的一样,只是比真的珍珠轻一点.问:最少用天平称几次(不用砝码),就一定可以把假的珍珠找出来?

解答:3次

第一次把27颗珍珠分成3等份,取其中2份放天平两端称量,如果天平偏斜,则考虑轻的那9颗珍珠,如果不偏斜,则考虑没有称量的那9颗;同理,将这9颗珍珠再分成3等份,取其中2份放天平两端称量,再次得到3颗”可疑"的珍珠,取出两颗称量,如果天平偏斜,则轻的是次品~否则没称量的是次品

25.埃及同中国一样,也是世界上著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如用1/3+1/15表示2/5,用1/4+1/7+1/28来表示3/7等等,现在用90个埃及分子1/2,1/3,1/4,1/5,......。1/90。1/91,其中是否再10个数,加上正负号后使它们的和为-1,若存在,请写出这10个数,若不存在,请说明理由。

解答:一解:

-1=-1/5-1/6-1/8-1/9-1/10-1/12-1/15-1/18-1/20-1/24 二解:

1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10=1-1/10 所以:

1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90+1/10=1 即:

-1/2-1/6-1/12-1/20-1/30-1/42-1/56-1/72-1/90-1/10=-1

24道经典名题

1.不说话的学术报告1903年10月,在美国纽约的一次数学学术会议上,请科尔教授作学术报告。他走到黑板前,没说话,用粉笔写出2^67-1,这个数是合数而不是质数。接着他又写出两组数字,用竖式连乘,两种计算结果相同。回到座位上,全体会员以暴风雨般的掌声表示祝贺。证明了2自乘67次再减去1,这个数是合数,而不是两百年一直被人怀疑的质数。有人问他论证这个问题,用了多长时间,他说:“三年内的全部星期天”。请你很快回答出他至少用了多少天?

2.国王的重赏传说,印度的舍罕国王打算重赏国际象棋的发明人——大臣西萨•班•达依尔。这位聪明的大臣跪在国王面敢说:“陛下,请你在这张棋盘的第一个小格内,赏给我一粒麦子,在第二个小格内给两粒,在第三个小格内给四粒,照这样下去,每一小格内都比前一小格加一倍。陛下啊,把这样摆满棋盘上所有64格的麦粒,都赏给您的仆人吧?”国王说:“你的要求不高,会如愿以偿的”。说着,他下令把一袋麦子拿到宝座前,计算麦粒的工作开始了。„„还没到第二十小格,袋子已经空了,一袋又一袋的麦子被扛到国王面前来。但是,麦粒数一格接一格地增长得那样迅速,很快看出,即使拿出来全印度的粮食,国王也兑现不了他对象棋发明人许下的语言。算算看,国王应给象棋发明人多少粒麦子?

3.王子的数学题传说从前有一位王子,有一天,他把几位妹妹召集起来,出了一道数学题考她们。题目是:我有金、银两个手饰箱,箱内分别装自若干件手饰,如果把金箱中25%的手饰送给第一个算对这个题目的人,把银箱中20%的手饰送给第二个算对这个题目的人。然后我再从金箱中拿出5件送给第三个算对这个题目的人,再从银箱中拿出4件送给第四个算对这个题目的人,最后我金箱中剩下的比分掉的多10件手饰,银箱中剩下的与分掉的比是2∶1,请问谁能算出我的金箱、银箱中原来各有多少件手饰?

4.公主出题古时候,传说捷克的公主柳布莎出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取其余一半又一个给第二人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”

5.哥德巴赫猜想哥德巴赫是二百多年前德国的数学家。他发现:每一个大于或等于6的偶数,都可以写成两个素数的和(简称“1+1”)。如:10=3+7,16=5+11等等。他检验了很多偶数,都表明这个结论是正确的。但他无法从理论上证明这个结论是对的。1748年他写信给当时很有名望的大数学家欧拉,请他指导,欧拉回信说,他相信这个结论是正确的,但也无法证明。因为没有从理论上得到证明只是一种猜想,所以就把哥德巴赫提出的这个问题称为哥德巴赫猜想。世界上许多数学家为证明这个猜想作了很大努力,他们由“1+4”→“1+3”到1966年我国数学家陈景润证明了“1+2”。也就是任何一个充分大的偶数,都可表示成两个数的和,其中一个是素数,另一个或者是素数,或者是两个素数的积。你能把下面各偶数,写成两个素数的和吗?(1)100=(2)50=(3)20=

6.贝韦克的七个7二十世纪初英国数学家贝韦克友现了一个特殊的除式问题,请你把这个特殊的除式填完整。

7.刁藩都的墓志铭刁藩都是公元后三世纪的数学家,他的墓志铭上写到:“这里埋着刁藩都,墓碑铭告诉你,他的生命的六分之一是幸福的童年,再活了十二分之一度过了愉快的青年时代,他结了婚,可是还不曾有孩子,这样又度过了一生的七分之一;再过五年他得了儿子;不幸儿子只活了父亲寿命的一半,比父亲早死四年,刁藩都到底寿命有多长?

8.遗嘱传说,有一个古罗马人临死时,给怀孕的妻子写了一份遗嘱:生下来的如果是儿子,就把遗产的2/3给儿子,母亲拿1/3;生下来的如果是女儿,就把遗产的1/3给女儿,母亲拿2/3。结果这位妻子生了一男一女,怎样分配,才能接近遗嘱的要求呢?

9.布哈斯卡尔的算术题公园里有甲、乙两种花,有一群蜜蜂飞来,在甲花上落下1/5,在乙花上落下1/3,如果落在两种花上的蜜蜂的差的三倍再落在花上,那么只剩下一只蜜蜂上下飞舞欣赏花香,算算这里聚集了多少蜜蜂?

10.马塔尼茨基的算术题有一个雇主约定每年给工人12元钱和一件短衣,工人做工到7个月想要离去,只给了他5元钱和一件短衣。这件短衣值多少钱?

11.托尔斯泰的算术题俄国伟大的作家托尔斯泰,曾出过这样一个题:一组割草人要把二块草地的草割完。大的一块比小的一块大一倍,上午全部人都在大的一块草地割草。下午一半人仍留在大草地上,到傍晚时把草割完。另一半人去割小草地的草,到傍晚还剩下一块,这一块由一个割草人再用一天时间刚好割完。问这组割草人共有多少人?(每个割草人的割草速度都相同)

12.涡卡诺夫斯基的算术题

(一)一只狗追赶一匹马,狗跳六次的时间,马只能跳5次,狗跳4次的距离和马跳7次的距离相同,马跑了5.5公里以后,狗开始在后面追赶,马跑多长的距离,才被狗追上?

13.涡卡诺夫斯基的算术题

(二)有人问船长,在他领导下的有多少人,他回答说:“2/5去站岗,2/7在工作,1/4在病院,27人在船上。”问在他领导下共有多少人?

14.数学家达兰倍尔错在哪里传说18世纪法国有名的数学家达兰倍尔拿两个五分硬币往下扔,会出现几种情况呢?情况只有三种:可能两个都是正面;可能一个是正面,一个是背面,也可能两个都是背面。因此,两个都出现正面的概率是1∶3。你想想,错在哪里?

15.埃及金字塔世界闻名的金字塔,是古代埃及国王们的坟墓,建筑雄伟高大,形状像个“金”字。它的底面是正方形,塔身的四面是倾斜着的等腰三角形。两千六百多年前,埃及有位国王,请来一位名子叫法列士的学者测量金字塔的高度。法列士选择一个晴朗的天气,组织测量队的人来到金字塔前。太阳光给每一个测量队的人和金字塔都投下了长长的影子。当法列士测出自己的影子等于它自己的身高时,便立即让助手测出金字塔的阴影长度(CB)。他根据塔的底边长度和塔的阴影长度,很快算出金字塔的高度。你会计算吗?

16.一笔画问题在18世纪的哥尼斯堡城里有七座桥。当时有很多人想要一次走遍七座桥,并且每座桥只能经过一次。这就是世界上很有名的哥尼斯堡七桥问题。你能一次走遍这七座桥,而又不重复吗?

17.韩信点兵传说汉朝大将韩信用一种特殊方法清点士兵的人数。他的方法是:让士兵先列成三列纵队(每行三人),再列成五列纵队(每行五人),最后列成七列纵队(每行七人)。他只要知道这队士兵大约的人数,就可以根据这三次列队排在最后一行的士兵是几个人,而推算出这队士兵的准确人数。如果韩信当时看到的三次列队,最后一行的士兵人数分别是2人、2人、4人,并知道这队士兵约在三四百人之间,你能很快推算出这队士兵的人数吗?

18.共有多少个桃子著名美籍物理学家李政道教授来华讲学时,访问了中国科技大学,会见了少年班的部分同学。在会见时,给少年班同学出了一道题:“有五只猴子,分一堆桃子,可是怎么也平分不了。于是大家同意先去睡觉,明天再说。夜里一只猴子偷偷起来,把一个桃子扔到山下后,正好可以分成五份,它就把自己的一份藏起来,又睡觉去了。第二只猴子爬起来也扔了一个桃子,刚好分成五份,也把自己那一份收起来了。第三、第四、第五只猴子都是这样,扔了一个也刚好可以分成五份,也把自己那一份收起来了。问一共有多少个桃子?注:这道题,小朋友们可能算不出来,如果我给增加一个条件,最后剩下1020个桃子,看谁能算出来。

19.《九章算术》里的问题《九章算术》是我国最古老的数学著作之一,全书共分九章,有246个题目。其中一道是这样的:一个人用车装米,从甲地运往乙地,装米的车曰行25千米,不装米的空车曰行35千米,5日往返三次,问二地相距多少千米?

20.《张立建算经》里的问题《张立建算经》是中国古代算书。书中有这样一题:公鸡每只值5元,母鸡每只值3元,小鸡每三只值1元。现在用100元钱买100只鸡。问这100只鸡中,公鸡、母鸡、小鸡各有多少只?

21.《算法统宗》里的问题《算法统宗》是中国古代数学著作之一。书里有这样一题:甲牵一只肥羊走过来问牧羊人:“你赶的这群羊大概有100只吧”,牧羊人答:“如果这群羊加上一倍,再加上原来这群羊的一半,又加上原来这群羊的1/4,连你牵着的这只肥羊也算进去,才刚好凑满一百只。”请您算算这只牧羊人赶的这群羊共有多少只?

22.洗碗(中国古题)有一位妇女在河边洗碗,过路人问她为什么洗这么多碗?她回答说:家中来了很多客人,他们每两人合用一只饭碗,每三人合用一只汤碗,每四人合用一只菜碗,共用了碗65只。你能从她家的用碗情况,算出她家来了多少客人吗?

23.和尚吃馒头(中国古题)大和尚每人吃4个,小和尚4人吃1个。有大小和尚100人,共吃了100个馒头。大、小和尚各几人?各吃多少馒头?

24.百蛋(外国古题)两个农民一共带了100只蛋到市场上去出卖。他们两人所卖得的钱是一样的。第一个人对第二个人说:“假若我有象你这么多的蛋,我可以卖得15个克利采(一种货币名称)”。第二个人说:“假若我有了你这些蛋,我只能卖得6又三分之二个克利采。”问他们俩人各有多少只蛋?

第二篇:23道数学经典名题

23道经典名题

1.不说话的学术报告

1903年10月,在美国纽约的一次数学学术会议上,请科尔教授作学术报告。他走到黑板前,没说话,用粉笔写出2^67-1,这个数是合数而不是质数。接着他又写出两组数字,用竖式连乘,两种计算结果相同。回到座位上,全体会员以暴风雨般的掌声表示祝贺。证明了2自乘67次再减去1,这个数是合数,而不是两百年一直被人怀疑的质数。

有人问他论证这个问题,用了多长时间,他说:“三年内的全部星期天”。请你很快回答出他至少用了多少天?

2.国王的重赏

传说,印度的舍罕国王打算重赏国际象棋的发明人——大臣西萨·班·达依尔。这位聪明的大臣跪在国王面敢说:“陛下,请你在这张棋盘的第一个小格内,赏给我一粒麦子,在第二个小格内给两粒,在第三个小格内给四粒,照这样下去,每一小格内都比前一小格加一倍。陛下啊,把这样摆满棋盘上所有64格的麦粒,都赏给您的仆人吧?”国王说:“你的要求不高,会如愿以偿的”。说着,他下令把一袋麦子拿到宝座前,计算麦粒的工作开始了。„„还没到第二十小格,袋子已经空了,一袋又一袋的麦子被扛到国王面前来。但是,麦粒数一格接一格地增长得那样迅速,很快看出,即使拿出来全印度的粮食,国王也兑现不了他对象棋发明人许下的语言。算算看,国王应给象棋发明人多少粒麦子?

3.王子的数学题

传说从前有一位王子,有一天,他把几位妹妹召集起来,出了一道数学题考她们。题目是:我有金、银两个手饰箱,箱内分别装自若干件手饰,如果把金箱中25%的手饰送给第一个算对这个题目的人,把银箱中20%的手饰送给第二个算对这个题目的人。然后我再从金箱中拿出5件送给第三个算对这个题目的人,再从银箱中拿出4件送给第四个算对这个题目的人,最后我金箱中剩下的比分掉 1 的多10件手饰,银箱中剩下的与分掉的比是2∶1,请问谁能算出我的金箱、银箱中原来各有多少件手饰?

4.公主出题

古时候,传说捷克的公主柳布莎出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取其余一半又一个给第二人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”

5.哥德巴赫猜想

哥德巴赫是二百多年前德国的数学家。他发现:每一个大于或等于6的偶数,都可以写成两个素数的和(简称“1+1”)。如:10=3+7,16=5+11等等。他检验了很多偶数,都表明这个结论是正确的。但他无法从理论上证明这个结论是对的。1748年他写信给当时很有名望的大数学家欧拉,请他指导,欧拉回信说,他相信这个结论是正确的,但也无法证明。因为没有从理论上得到证明只是一种猜想,所以就把哥德巴赫提出的这个问题称为哥德巴赫猜想。

世界上许多数学家为证明这个猜想作了很大努力,他们由“1+4”→“1+3”到1966年我国数学家陈景润证明了“1+2”。也就是任何一个充分大的偶数,都可表示成两个数的和,其中一个是素数,另一个或者是素数,或者是两个素数的积。

你能把下面各偶数,写成两个素数的和吗?(1)100=(2)50=(3)20=

6.贝韦克的七个7 二十世纪初英国数学家贝韦克友现了一个特殊的除式问题,请你把这个特殊的除式填完整。

7.刁藩都的墓志铭 刁藩都是公元后三世纪的数学家,他的墓志铭上写到:“这里埋着刁藩都,墓碑铭告诉你,他的生命的六分之一是幸福的童年,再活了十二分之一度过了愉快的青年时代,他结了婚,可是还不曾有孩子,这样又度过了一生的七分之一;再过五年他得了儿子;不幸儿子只活了父亲寿命的一半,比父亲早死四年,刁藩都到底寿命有多长?

8.遗嘱

传说,有一个古罗马人临死时,给怀孕的妻子写了一份遗嘱:生下来的如果是儿子,就把遗产的2/3给儿子,母亲拿1/3;生下来的如果是女儿,就把遗产的1/3给女儿,母亲拿2/3。结果这位妻子生了一男一女,怎样分配,才能接近遗嘱的要求呢?

9.布哈斯卡尔的算术题

公园里有甲、乙两种花,有一群蜜蜂飞来,在甲花上落下1/5,在乙花上落下1/3,如果落在两种花上的蜜蜂的差的三倍再落在花上,那么只剩下一只蜜蜂上下飞舞欣赏花香,算算这里聚集了多少蜜蜂?

10.马塔尼茨基的算术题

有一个雇主约定每年给工人12元钱和一件短衣,工人做工到7个月想要离去,只给了他5元钱和一件短衣。这件短衣值多少钱?

11.托尔斯泰的算术题

俄国伟大的作家托尔斯泰,曾出过这样一个题:一组割草人要把二块草地的草割完。大的一块比小的一块大一倍,上午全部人都在大的一块草地割草。下午一半人仍留在大草地上,到傍晚时把草割完。另一半人去割小草地的草,到傍晚还剩下一块,这一块由一个割草人再用一天时间刚好割完。问这组割草人共有多少人?

(每个割草人的割草速度都相同)

12.涡卡诺夫斯基的算术题

(一)一只狗追赶一匹马,狗跳六次的时间,马只能跳5次,狗跳4次的距离和马跳7次的距离相同,马跑了5.5公里以后,狗开始在后面追赶,马跑多长的距离,才被狗追上?

13.涡卡诺夫斯基的算术题

(二)有人问船长,在他领导下的有多少人,他回答说:“2/5去站岗,2/7在工作,1/4在病院,27人在船上。”问在他领导下共有多少人?

14.埃及金字塔

世界闻名的金字塔,是古代埃及国王们的坟墓,建筑雄伟高大,形状像个“金”字。它的底面是正方形,塔身的四面是倾斜着的等腰三角形。两千六百多年前,埃及有位国王,请来一位名子叫法列士的学者测量金字塔的高度。法列士选择一个晴朗的天气,组织测量队的人来到金字塔前。太阳光给每一个测量队的人和金字塔都投下了长长的影子。当法列士测出自己的影子等于它自己的身高时,便立即让助手测出金字塔的阴影长度(CB)。他根据塔的底边长度和塔的阴影长度,很快算出金字塔的高度。

你会计算吗?

15.一笔画问题

在18世纪的哥尼斯堡城里有七座桥(如右图)。当时有很多人想要一次走遍七座桥,并且每座桥只能经过一次。这就是世界上很有名的哥尼斯堡七桥问题。你能一次走遍这七座桥,而又不重复吗?

16.韩信点兵

传说汉朝大将韩信用一种特殊方法清点士兵的人数。他的方法是:让士兵先列成三列纵队(每行三人),再列成五列纵队(每行五人),最后列成七列纵队(每行七人)。他只要知道这队士兵大约的人数,就可以根据这三次列队排在最后一行的士兵是几个人,而推算出这队士兵的准确人数。如果韩信当时看到的三次列队,最后一行的士兵人数分别是2人、2人、4人,并知道这队士兵约在三四百人之间,你能很快推算出这队士兵的人数吗?

17.共有多少个桃子

著名美籍物理学家李政道教授来华讲学时,访问了中国科技大学,会见了少年班的部分同学。在会见时,给少年班同学出了一道题:“有五只猴子,分一堆桃子,可是怎么也平分不了。于是大家同意先去睡觉,明天再说。夜里一只猴子偷偷起来,把一个桃子扔到山下后,正好可以分成五份,它就把自己的一份藏起来,又睡觉去了。第二只猴子爬起来也扔了一个桃子,刚好分成五份,也把自己那一份收起来了。第三、第四、第五只猴子都是这样,扔了一个也刚好可以分成五份,也把自己那一份收起来了。问一共有多少个桃子?注:这道题,小朋友们可能算不出来,如果我给增加一个条件,最后剩下1020个桃子,看谁能算出来。

18.《九章算术》里的问题

《九章算术》是我国最古老的数学著作之一,全书共分九章,有246个题目。其中一道是这样的:一个人用车装米,从甲地运往乙地,装米的车曰行25千米,不装米的空车曰行35千米,5日往返三次,问二地相距多少千米?

19.《张立建算经》里的问题

《张立建算经》是中国古代算书。书中有这样一题:公鸡每只值5元,母鸡每只值3元,小鸡每三只值1元。现在用100元钱买100只鸡。问这100只鸡中,公鸡、母鸡、小鸡各有多少只?

20.《算法统宗》里的问题

《算法统宗》是中国古代数学著作之一。书里有这样一题:甲牵一只肥羊走过来问牧羊人:“你赶的这群羊大概有100只吧”,牧羊人答:“如果这群羊加上一倍,再加上原来这群羊的一半,又加上原来这群羊的1/4,连你牵着的这只肥羊也算进去,才刚好凑满一百只。”请您算算这只牧羊人赶的这群羊共有多少只?

21.洗碗(中国古题)

有一位妇女在河边洗碗,过路人问她为什么洗这么多碗?她回答说:家中来了很多客人,他们每两人合用一只饭碗,每三人合用一只汤碗,每四人合用一只菜碗,共用了碗65只。

你能从她家的用碗情况,算出她家来了多少客人吗?

22.和尚吃馒头(中国古题)

大和尚每人吃4个,小和尚4人吃1个。有大小和尚100人,共吃了100个馒头。大、小和尚各几人?各吃多少馒头?

23.百蛋(外国古题)

两个农民一共带了100只蛋到市场上去出卖。他们两人所卖得的钱是一样的。第一个人对第二个人说:“假若我有象你这么多的蛋,我可以卖得15个克利采(一种货币名称)”。第二个人说:“假若我有了你这些蛋,我只能卖得6又三分之二个克利采。”问他们俩人各有多少只蛋?

23道古今名题,经典程度无法比拟,只要你鼓起勇气和兴趣来尝试着作出这些题的答案,你的聪明程度可以和数学家比拼了!

第三篇:24道经典名题

24道经典名题

12.涡卡诺夫斯基的算术题

(一)一只狗追赶一匹马,狗跳六次的时间,马只能跳5次,狗跳4次的距离和马跳7次的距离相同,马跑了5.5公里以后,狗开始在后面追赶,马跑多长的距离,才被狗追上?

13.涡卡诺夫斯基的算术题

(二)有人问船长,在他领导下的有多少人,他回答说:“2/5去站岗,2/7在工作,1/4在病院,27人在船上。”问在他领导下共有多少人?

14.数学家达兰倍尔错在哪里

传说18世纪法国有名的数学家达兰倍尔拿两个五分硬币往下扔,会出现几种情况呢?

情况只有三种:

可能两个都是正面;可能一个是正面,一个是背面,也可能两个都是背面。因此,两个都出现正面的概率是1∶3。你想想,错在哪里?

15.埃及金字塔

世界闻名的金字塔,是古代埃及国王们的坟墓,建筑雄伟高大,形状像个“金”字。它的底面是正方形,塔身的四面是倾斜着的等腰三角形。

两千六百多年前,埃及有位国王,请来一位名子叫法列士的学者测量金字塔的高度。

法列士选择一个晴朗的天气,组织测量队的人来到金字塔前。太阳光给每一个测量队的人和金字塔都投下了长长的影子。当法列士测出自己的影子等于它自己的身高时,便立即让助手测出金字塔的阴影长度(CB)。他根据塔的底边长度和塔的阴影长度,很快算出金字塔的高度。

你会计算吗? 16.一笔画问题

在18世纪的哥尼斯堡城里有七座桥(如右图)。当时有很多人想要一次走遍七座桥,并且每座桥只能经过一次。这就是世界上很有名的哥尼斯堡七桥问题。你能一次走遍这七座桥,而又不重复吗?

17.韩信点兵

传说汉朝大将韩信用一种特殊方法清点士兵的人数。他的方法是:让士兵先列成三列纵队(每行三人),再列成五列纵队(每行五人),最后列成七列纵队(每行七人)。他只要知道这队士兵大约的人数,就可以根据这三次列队排在最后一行的士兵是几个人,而推算出这队士兵的准确人数。

如果韩信当时看到的三次列队,最后一行的士兵人数分别是2人、2人、4人,并知道这队士兵约在三四百人之间,你能很快推算出这队士兵的人数吗?

18.共有多少个桃子

著名美籍物理学家李政道教授来华讲学时,访问了中国科技大学,会见了少年班的部分同学。在会见时,给少年班同学出了一道题:“有五只猴子,分一堆桃子,可是怎么也平分不了。于是大家同意先去睡觉,明天再说。夜里一只猴子偷偷起来,把一个桃子扔到山下后,正好可以分成五份,它就把自己的一份藏起来,又睡觉去了。第二只猴子爬起来也扔了一个桃子,刚好分成五份,也把自己那一份收起来了。第三、第四、第五只猴子都是这样,扔了一个也刚好可以分成五份,也把自己那一份收起来了。问一共有多少个桃子?

注:这道题,小朋友们可能算不出来,如果我给增加一个条件,最后剩下1020个桃子,看谁能算出来。

19.《九章算术》里的问题

《九章算术》是我国最古老的数学著作之一,全书共分九章,有246个题目。其中一道是这样的:

一个人用车装米,从甲地运往乙地,装米的车曰行25千米,不装米的空车曰行35千米,5日往返三次,问二地相距多少千米?

20.《张立建算经》里的问题

《张立建算经》是中国古代算书。书中有这样一题:公鸡每只值5元,母鸡每只值3元,小鸡每三只值1元。现在用100元钱买100只鸡。问这100只鸡中,公鸡、母鸡、小鸡各有多少只?

21.《算法统宗》里的问题

《算法统宗》是中国古代数学著作之一。书里有这样一题:

甲牵一只肥羊走过来问牧羊人:“你赶的这群羊大概有100只吧”,牧羊人答:“如果这群羊加上一倍,再加上原来这群羊的一半,又加上原来这群羊的1/4,连你牵着的这只肥羊也算进去,才刚好凑满一百只。”请您算算这只牧羊人赶的这群羊共有多少只?

22.洗碗(中国古题)

有一位妇女在河边洗碗,过路人问她为什么洗这么多碗?她回答说:家中来了很多客人,他们每两人合用一只饭碗,每三人合用一只汤碗,每四人合用一只菜碗,共用了碗65只。

你能从她家的用碗情况,算出她家来了多少客人吗?

23.和尚吃馒头(中国古题)

大和尚每人吃4个,小和尚4人吃1个。有大小和尚100人,共吃了100个馒头。大、小和尚各几人?各吃多少馒头?

24.百蛋(外国古题)

两个农民一共带了100只蛋到市场上去出卖。他们两人所卖得的钱是一样的。第一个人对第二个人说:“假若我有象你这么多的蛋,我可以卖得15个克利采(一种货币名称)”。第二个人说:“假若我有了你这些蛋,我只能卖得6又三分之二个克利采。”问他们俩人各有多少只蛋?

第四篇:初一奥数题100道

a,b,c,d,e五个数,和为8,平方和为16,求e的最值。

甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?

有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?

3.某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?

4.一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.5.甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?

6.有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?

7.小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?

8.甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.9.甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?

10.今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?

小学数学应用题综合训练(02)11.师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?

12.一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.13.一部书稿,甲单独打字要14小时完成,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?

14.黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?

15.一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?

16.甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?

17.甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?

18.一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?

19.某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?

20.甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?

小学数学应用题综合训练(03)

21.圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?

22.某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?

23.从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米? 24.师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?

25.六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?

26.甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?

27.有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?

28.有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.29.师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?

30.奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?

小学数学应用题综合训练(04)

31.某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?

32.王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?

33.妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?

34.一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?

35.小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?

36.有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?

37.爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁? 38.B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?

39.甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?

40.甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?

小学数学应用题综合训练(05)

41.某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?

42.甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?

43.大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只?

44.某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?

45.已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?

46.加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?

47.甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距离终点多少米?

48.小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之?

49.甲、乙、丙、丁现在的年龄和是64岁.甲21岁时,乙17岁;甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是几岁? 50.加工一批零件,原计划每天加工30个.当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务.问这批零件共有几个?

小学数学应用题综合训练(06)

51.自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部.问扶梯露在外面的部分有多少级?

52.两堆苹果一样重,第一堆卖出2/3,第二堆卖出50千克,如果第一堆剩下的苹果比第二堆剩下的苹果少,那么两堆剩下的苹果至少有多少千克?

53.甲、乙两车同时从A地出发,不停的往返行驶于A、B两地之间.已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都杂途中C地,甲车的速度是乙车的几倍?

54.一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行8千米,因此第二小时比第一小时多行6千米.求甲、乙两地的距离.55.甲、乙两车分别从A、B两地出发,并在A,B两地间不断往返行驶.已知甲车的速度是15千米/小时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米.求A、B两地的距离.56.某人沿着向上移动的自动扶梯从顶部朝底下用了7分30秒,而他沿着自动扶梯从底朝上走到顶部只用了1分30秒.如果此人不走,那么乘着扶梯从底到顶要多少时间?如果停电,那么此人沿扶梯从底走到顶要多少时间?

57.甲、乙两个圆柱体容器,底面积比为5:3,甲容器水深20厘米,乙容器水深10厘米.再往两个容器中注入同样多的水,使得两个容器中的水深相等.这时水深多少厘米?

58.A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时.丙车与甲、乙两车距离相等时是几点几分?

59.一个长方形的周长是130厘米,如果它的宽增加1/5,长减少1/8,就得到一个相同周长的新长方形.求原长方形的面积.60.有一长方形,它的长与宽的比是5:2,对角线长29厘米,求这个长方形的面积.小学数学应用题综合训练(07)

61.有一个果园,去年结果的果树比不结果的果树的2倍还多60棵,今年又有160棵果树结了果,这时结果的果树正好是不结果的果树的5倍.果园里共有多少棵果树?

62.小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地.48分钟后两人相遇,李刚到达甲地后马上返回乙地,在第一次相遇后16分钟追上小明.如果李刚不停地往返于甲、乙两地,那么当小明到达乙地时,李刚共追上小明几次?

63.同样走100米,小明要走180步,父亲要走120步.父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明?

64.一艘轮船在两个港口间航行,水速为6千米/小时,顺水航行需要4小时,逆水航行需要7小时,求两个港口之间的距离.65.有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发10分钟,出发后60分钟追上丙,问甲出发后几分钟追上乙?

66.甲、乙合作完成一项工作,由于配合的好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独做需要11小时,那么乙单独做需要几小时?

67.A、B、C、D、E五名学生站成一横排,他们的手中共拿着20面小旗.现知道,站在C右边的学生共拿着11面小旗,站在B左边的学生共拿着10面小旗,站在D左边的学生共拿着8面小旗,站在E左边的学生共拿着16面小旗.五名学生从左至右依次是谁?各拿几面小旗?

68.小明在360米长的环行的跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,问他后一半路程用了多少时间?

69.小英和小明为了测量飞驶而过的火车的长度和速度,他们拿了两块秒表,小英用一块表记下火车从他面前通过所花的时间是15秒,小明用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是18秒,已知两根电线杆之间的距离是60米,求火车的全长和速度.70.小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行.结果去学校的时间比回家的时间多20分钟,已知小明从家到学校的路程是多少千米?

小学数学应用题综合训练(08)

71.数学练习共举行了20次,共出试题374道,每次出的题数是16,21,24问出16,21,24题的分别有多少次?

72.一个整数除以2余1,用所得的商除以5余4,再用所得的商除以6余1.用这个整数除以60,余数是多少?

73.少先队员在校园里栽的苹果树苗是梨树苗的2倍.如果每人栽3棵梨树苗,则余2棵;如果每人栽7棵苹果树苗,则少6棵.问共有多少名少先队员?苹果和梨树苗共有多少棵?

74.某人开汽车从A城到B城要行200千米,开始时他以56千米/小时的速度行驶,但途中因汽车故障停车修理用去半小时,为了按时到达,他必须把速度增加14千米/小时,跑完以后的路程,他修车的地方距离A 城多少千米?

75.甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离.76.一条船往返于甲、乙两港之间,已知船在静水中的速度为9千米/小时,平时逆行与顺行所用时间的比为2:1.一天因下雨,水流速度为原来的2倍,这条船往返共用10小时,问甲、乙两港相距多少千米?

77.某学校入学考试,确定了录取分数线,报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的同学其平均分比录取分数线低15分,所有考生的平均分是80分,问录取分数线是多少分?

78.一群学生搬砖,如果有12人每人各搬7块,其余的每人搬5块,那么最后余下148块;如果有30人每人各搬8块,其余的每人搬7块,那么最后余下20块.问学生共有多少人?砖有多少块? 79.甲、乙两车分别从A、B两地同时相向而行,已知甲车速度与乙车速度之比为4:3,C地在A、B之间,甲、乙两车到达C地的时间分别是上午8点和下午3点,问甲、乙两车相遇是什么时间?

80.一次棋赛,记分方法是,胜者得2分,负者得0分,和棋两人各得1分,每位选手都与其他选手各对局一次,现知道选手中男生是女生的10倍,但其总得分只为女生得分的4.5倍,问共有几名女生参赛?女生共得几分?

小学数学应用题综合训练(09)

81.有若干个自然数,它们的算术平均数是10,如果从这些数中去掉最大的一个,则余下的算术平均数为9;如果去掉最小的一个,则余下的算术平均数为11,这些数最多有多少个?这些数中最大的数最大值是几?

82.某班有少先队员35人,这个班有男生23人,这个班女生少先队员比男生非少先队员多几人?

83.小东计划到周口店参观猿人遗址.如果他坐汽车以40千米/小时的速度行驶,那么比骑车去早到3小时,如果他以8千米/小时的速度步行去,那么比骑车晚到5小时,小东的出发点到周口店有多少千米?

84.甲、乙两船在相距90千米的河上航行,如果相向而行,3小时相遇,如果同向而行则15小时甲船追上乙船.求在静水中甲、乙两船的速度.85.二年级两个班共有学生90人,其中少先队员有71人,一班少先队员占本班人数的75%,二班少先队员占本班人数的5/6.一班少先队员人数比二班少先队员人数多几人?

86.一个容器中已注满水,有大、中、小三个球.第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,现知道每次从容器中溢出水量的情况是:第一次是第二次的1/2,第三次是第二次的1.5倍.求三个球的体积之比.87.某人翻越一座山用了2小时,返回用了2.5小时,他上山的速度是3000米/小时,下山的速度是4500米/小时.问翻越这座山要走多少米?

88.钢筋原材料每根长7.3米,每套钢筋架子用长2.4米、2.1米和1.5米的钢筋各一段.现需要绑好钢筋架子100套,至少要用去原材料多少根?

89.有一块铜锌合金,其中铜和锌的比2:3.现知道再加入6克锌,熔化后共得新合金36克,新合金中铜和锌的比是多少?

90.小明通常总是步行上学,有一天他想锻炼身体,前1/3路程快跑,速度是步行速度的4倍,后一段的路程慢跑,速度是步行速度的2倍.这样小明比平时早35分到校,小明步行上学需要多少分钟?

小学数学应用题综合训练(10)

91.甲、乙、丙三人,甲的年龄比乙的年龄的2倍还大3岁,乙的年龄比丙的年龄的2倍小2岁,三个人的年龄之和是109岁,分别求出甲、乙、丙的年龄.92.快车以60千米/小时的速度从甲站向乙站开出,1.5小时后,慢车以40千米/小时的速度从乙站行甲站开出,.两车相遇时,相遇点离两站的中点70千米.甲、乙两站相距多少千米?

93.甲、乙两车先后离开学校以相同的速度开往博物馆,已知8:32分甲车与学校的距离是乙车与学校距离的3倍,8:39分甲车与学校的距离是乙车与学校距离的2倍,求甲车离开学校的时间.94.有一个工作小组,当每个工人在各自的工作岗位上工作时,7小时可生产一批零件,如果交换工人甲、乙的岗位,其他人不变,那么可提前1小时,完成这批零件,如果交换工人丙、丁的岗位,其他人不变,也可提前1小时,问如果同时交换甲与乙、丙与丁的岗位,其他人不变,那么完成这批零件需多长的时间.95.用10块长7厘米、宽5厘米、高3厘米的长方体积木,拼成一个长方体,这个长方体的表面积最小是多少?

96.公圆只售两种门票:个人票每张5元,10人一张的团体票每张30元,购买10张以上的团体票的可优惠10%.(1)甲单位45人逛公园,按以上规定买票,最少应付多少钱?(2)乙单位208人逛公园,按以上的规定买票,最少应付多少钱?

97.甲、乙、丙三人,参加一次考试,共得260分,已知甲得分的1/3,乙得分的1/4与丙得分的一半减去22分都相等,那么丙得分多少?

98.一项工程,甲、、乙两人合作4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的1/30.甲、乙单独做这项工程各需要几天?

99.有长短两支蜡烛,(相同时间中燃烧长度相同),它们的长度之和为56厘米,将它们同时点燃一段时间后,长蜡烛同短蜡烛点燃前一样长,这时短蜡烛的长度又恰好是长蜡烛的2/3.点燃前长蜡烛有多长?

100.一批苹果平均分装在20个筐中,如果每筐多装1/9,可省下几只筐?

第五篇:三四年级数学趣味题

趣味数学题库

姐俩看电影

小芳、小花姐妹二人从家里出发到电影院看电影,小芳每小时走5公里,小花每小时走3公里,她们同时出发1小时后,姐姐又回家拿东西再去追妹妹,妹妹仍以原速前进,最后二人同时到达电影院。求从家里到电影院之间的距离?

小马虎数鸡

春节里,养鸡专业户小马虎站在院子里,数了一遍鸡的总数,决定留下1/2外,把1/4慰问解放军,1/3送给养老院。他把鸡送走后,听到房内有鸡叫,才知道少数了10只鸡。于是把房内房外的鸡重数一遍,没有错,不多不少,正是留下1/2的数。小马虎奇怪了。问题出在哪里呢?你知道小马虎在院里数的鸡是多少只吗?

来了多少客人

一天,小林正在家里洗碗,小强看见了问道:“怎么洗那么多的碗?”“家里来了客人了。”“来了多少人?”小林说:“我没有数,只知道他们每人用一个饭碗,二人合用一个汤碗,三人合用一个菜碗,四人合用一个大酒碗,一共用了15个碗。”你知道来了多少客人吗?

称珠子

有243颗外形一模一样的珠子,其中有一颗稍重一点。用一架没有砝码的天平,至少称几次才能找出这颗珠子来?

分梨

箱子里放着一箱梨,第一个人拿了梨总数的一半又多半只,第二个人拿了剩下梨的一半又多半只,第三个人拿了第二次剩下的一半又多半只,第四个人3拿了第三次剩下的一半又多半只,第五个人拿了第四次剩下的一半又多半只。这时箱子里的梨正好拿完,而且每人手里的梨都没有半只的,请问箱子里原来有多少只梨?

如何分组

暑假里,班里要作社会调查,要分成15个小组,班里有赵、钱、孙、李、周各6位同学,要使每个小组的姓都不同,该如何分呢?

巧算星期

今年的十月一日是星期一,明年的十月一日是星期几?请写出简便算法来?

谁跑得快 小伟与小林百米赛跑,结果当小伟跑到终点时,小林只跑了95米。小林要求再跑一次,这次小伟的起跑线比小林退后5米,如果他们都用原来的速度跑,那么同时到达终点吗?

火车过桥

南京长江大桥的铁路桥共长6772米,一列货车长428米,每秒行驶20米,请问全车通过大桥要多少时间?

开锁问题

用外观一模一样的钥匙试开10把锁,最多试多少次,就可以分辨出哪把钥匙配哪把锁的?

这个三位数是几

有一个三位数,在四百到五百之间,个位数比百位数大3,十位数比个位数小5,请问这个三位数是多少?

算年龄

小明的爸爸今年50岁,小明今年22岁,请问再过多少年以后小明爸爸的年龄是小明年龄的2倍?

大楼有几层

王老师最近搬进了教师宿舍大楼。一天,王老师站在阳台上,往下看,下面有3个阳台,住上看,上面有5个阳台。你说王老师住在几楼?教师宿舍大楼共有几层呢?

有几个运动员

“砰”的一声枪响,参加1500米决赛的运动员一齐冲出起跑线,沿着环形跑道奔跑。林林也参加了这次决赛。林林前面有5个运动员在跑着,在林林的后面也有5个运动员跑着,问共有几个运动员参加1500米决赛。

谁钓到的鱼

小明、小芳、小立一起去钓鱼。回家时,他们的车上一共有15条鱼。每人钓的鱼的条数的斤数一样多。这堆鱼有1条5斤的大鱼,5条4斤的鱼,4条3斤的鱼,3条2斤的鱼,2条1斤的鱼。一共是45斤。谁也记不清那条大鱼是谁钓到的了。小芳只记得他有一网钓到2条1斤的重的鱼。那条5斤重的大鱼是谁钓到的呢?

找规律

请仔细观察下面每一行数都有什么规律,然后在括号里填入一个数,使它符合这个规律。(1)1,5,9,13,(),21,25

(2)1,3,9,27,()243,729

(3)1,8,27,64,()216,343

(4)1,2,4,7,()16,22

(5)1,2,6,24,()720,5040

(6)1,3,7,15,()63,127

(7)1,2,5,10,()26,37

(8)1,4,9,16,()36,49

(9)1,1,2,3,5,8,()21,34

(10)2,3,5,7,()13,17

(11)312,423,534,645,()

(12)1221,2332,3443,4554,()

(13)12321,23432,34543,45654,()

大学里的数学题

现在向同学们介绍一道大学里的数学题,同学们不要一听是大学的题就害怕,其实只要动动脑筋,从另外的思路想一想,是完全可以解出来的。这道题是这样的。

有一个22位数,它的个位数是7。当你用7去乘这个22位数,它的积仍然是个22位数,只是个位数的7移到了第一位,其余21个数字的排列顺序还是原来的样子。请问这个22位数是多少?

提示:这道题如果用字母来代表数字,列成算式是:ABCDEFGHIJKLMNOPQRSTU7×7=7ABCDEFGHIJKLMNOPQRSTU

高僧下棋

在古代印度,一位高僧十分精通棋术,国王正好也喜欢下棋。有一天,国王把这位高僧召到宫里,要与他对奕。国王对他说:“听说你棋术十分高超,所以把你请来与我下棋。你不要因为我是国王就不敢赢我,你要拿出真本事来。如果你赢了我,我可以答应你提出的任何条件。”高僧说:“既然陛下恩准,我就斗胆与陛下下上几盘。不过如果我赢了你,我只有一个小小的要求。”国王说:“刚才我说了,你可以提任何条件,我将满足你的要求。”高僧说:“我的要求很简单,这棋盘上不是有64个格吗?我赢你一盘,你在第一个格给我一粒米,赢两盘,第二个格里给我两粒米,赢三盘,给我四粒米,四盘给我八粒米,„„每一盘都比前一盘多一倍,直到这第六十四格。”国王一听哈哈大笑,说:“这还不容易,我国库里有的是米,这点米连九牛一毛也没有。”高崐僧说:“陛下可不要反悔。”国王说:“一言为定。”于是两人就下起棋来,结果高僧赢了30盘,你猜国王应该给高僧多少米?”

韩信点兵

韩信是我国汉代著名的大将,曾经统率过千军万马,他对手下士兵的数目了如指掌。他统计士兵数目有个独特的方法,后人称为“韩信点兵”。他的方法是这样的,部队集合齐后,他让士兵1、2、3--1、2、3、4、5--1、2、3、4、5、6、7地报三次数,然后把每次的余数再报告给他,他便知道部队的实际人数和缺席人数。他的这种计算方法历史上还称为“鬼谷算”,“隔墙算”,“剪管术”,外国人则叫“中国剩余定理”。有人用一首诗概括了这个问题的解法:三人同行七十稀,五树梅花廿一枝,七子团圆月正半,除百零五便得知。这意思就是,第一次余数乘以70,第二次余数乘以21,第三次余数乘以15,把这三次运算的结果加起来,再除以105,所得的除不尽的余数便是所求之数(即总数)。例如,如果3个3个地报数余1,5个5个地报数余2,7个7个地报数余3,则总数为52。算式如下:

1×70+2×21+3×15=157

157÷105=1„„52

下边给同学们出一道题,请用“韩信点兵法”算一算。

小红暑假期间帮着张二婶放鸭子,她总也数不清一共有多少只鸭子。她先是3只3只地数,结果剩3只;她又5只5只地数,结果剩4只;她又7个7个地数了一遍,结果剩6只。她算来算去还是算不清一共有多少只鸭子。小朋友,请你帮着小红算一下,张二婶一共喂着多少只鸭子?

奇怪的数字

数学老师问它的学生们:“会不会有这样一个六位数,用它分别去乘1、2、3、4、5、6,得出来的六位数积还是那个六位数,只是排列次序稍有不同?”

会有这样奇怪的数字吗?学生们都感到难以相信。

“有的。有这样的六位数。现在我把它写下来。你们自己用1--6分别乘它,看看这六个有趣的乘积。这是一件非常有趣的事情。”数学老师说完,在黑板上写下了那个六位数。

小朋友,你一定想知道那个六位数吧?

有趣的自然数

五个连续自然数的和是350。求出这五个自然数各是多少?

买菜

小黑去菜市场回来,告诉爸爸他一共买了4样菜:4根黄瓜、3个西红柿、6个土豆、5个辣椒。“黄瓜每根6分钱,辣椒每个9分钱,”小黑对爸爸说,“一共花了1元7角钱。”

“这笔帐不对,”爸爸笑着说,一定是算错了。”

“您还不知道土豆每个多少钱、西红柿每个多少钱,怎么就知道错了呢?”

“你再算一遍吧,肯定是错了帐。”爸爸肯定地说。

小黑仔细在算了一遍,真的是算错了。怪了,爸爸是怎么知道的呢?

井底小虫

一只小虫不小心掉进了井里。它每天不停地往上爬。不幸的是,它每天白天能往上爬3米,可是一到夜里就要滑下2米。但是小虫还是坚持往上爬。这口井从井底到井口是20米。小虫从清晨开始从井底往上爬。它需要几天以后才能爬出井口呢?

几个9

明明和沉沉都十分喜欢数学。一天明明问沉沉:“你最喜欢几?”

“我最喜欢9。”

“那你说说从1数到100,要说几次‘9’?”

“啊!„„这”沉沉被难住了,“这要数一数才能知道”

“一分钟时间”明明说。

小朋友,请你在一分钟内说出从1到100有多少个9。

郑板桥喝酒

清朝书画家郑板桥在山东潍县当县官时,有一年春天,他提着一壶酒在街上边走边饮,又是吟诗,又是画画,正好遇上老朋友计山,计山说:“光你一崐个人喝酒,也不说请我喝呀?”郑板桥说:“请倒是想请,只是你来晚了,我的酒已经喝完了。”计山问道:“你一个人喝了多少酒呀?”郑板桥“哈哈”一笑,吟出一首诗来:“我有一壶酒,提着街上走,吟诗添一倍,画画喝一斗。三作诗和画,喝光壶中酒。你说我壶中,原有多少酒?”计山眨着眼想了半天,说:“我算出来了,你的壶中原来一共有7/8斗酒。”郑板桥说:“对,你很聪明。”小朋友,你知道计山是怎样算出来的吗?

爱因斯坦的数学游戏

大科学家爱因斯坦小时候就特别聪明,有一次同学们在一起玩,他说:“我们做一个数学游戏怎么样?”同学们说:“怎么做法呢?爱因斯坦说:“你们随便想一个数,然后做一些运算,我就能知道你们一开始想的那个数是多少?”汤姆说:“我不信,但是我可以试一试。”爱因斯坦说:“那么好吧,现在开始。你心里随便想一个数吧。”“我想好了。”汤姆说。“在这个数上加上18。”

“再加上136。”

“减去27。”

“减去你所想的数。”

汤姆按照爱因斯坦的要求做了运算。他还没有说出答案,爱因斯坦就说:“最后得数是254。”

汤姆惊呆了,爱因斯坦说的一点也不错,可是他是怎么算出来的呢?

挂钟上的数学

星期天下午,小林在家里开始做作业。当他开始做第一道题的时候,墙上的挂钟正好敲响4点钟。当他把语文、数学作业做完的时候,小林又看了看挂钟,这时钟止的长针和短针正好重叠在一起,走成了一条直线。你能算出小林做作业一共用了多少时间吗?

小林做完作业后,就到街上玩去了。玩了一会儿,他忽然想起还有篇作文没写,便赶紧回到家里去写作文。开始写作文的时候,小林看了看表,正好是五点钟,等写完第一段,他看了看表,这时长针和短针走成了直角。他又接着写,等写完了的时候,钟睛的时针和分针又正好走成了直角。请问小林写第一段用了多少时间?写完一共用了多少时间?

分酒

三、李四两人一人拿了一个酒瓶,里面都放着酒,两人想把酒分匀,李四先把自己酒瓶中的酒往张三瓶中倒,使张三瓶里的酒成了原来的2倍,又把张三的酒往李四瓶中倒,使李四瓶中的酒增加到3倍。这样倒了两次,还是没崐分匀,张三瓶中有酒160克,李四瓶中有酒120克。请问张

三、李四瓶中原来各有多少酒?

有这样的分数吗

上数学课时,老师对同学们说:“你们能找出5个小于1/3而大于1/4的分数来吗?”张山同学想了半天,说:“这样的数我一个也找不到。”这时刘小娟同学举手说:“我找到了。”老师说:“刘小娟同学很聪明。”同学们,你们知道刘小娟找到的是哪些数吗?

和尚数念珠

小明和小光去寺庙游玩,看见和尚静坐打禅的时候,手里总是拿着念珠一个一个地数。小明说:“一分钟能数多少数呢?”小光看了会儿,说:“我看最多能数200。”小明又说:“要是数到1兆,我看用是了几天,最多用上八天八夜。”小光说:“1兆是1万个亿吧?”小明说:“对。”小光说:“要是那样的话,我看一辈子也数不到1兆。”小明说:“不可能,你说的也太长了。”小朋友,你们认为数到一兆需要多少时间呢?

牛吃草

这个问题是大科学家牛顿提出来的,这是一个看着简单而实际上要动动脑筋才能解决的问题。这道题是这样的:有一片牧场,养着27头牛,6天把草吃完;养牛23头,则9天把草吃完;如果养牛21头,那么几天能把徼场上的草吃完呢?请注意,牧场上的草是在不断生长的,而不是固定不变的。

史前期的算题

考古学家在西班牙发现了一处史前期壁画,上面除绘着一些人形和野兽的图形外,还绘着一些莫明其妙的算题,这些算题也是阿拉伯数字,但考古学家们看了半天,怎么也弄不明白这些算题。后来他们恍然大悟,原来这些算题中的数字与我们现在的数字并不是一回事,但是绝对符合四则运算的法则。小朋友,请你们仔细看看这些算式,想一想算式中的数字各等于现在的什么数字,然后把它翻译出来。

5+6+7=5×6×7

5+5=6

6÷5=6

7×5=7

硬币问题

有一天,方方、明明、力力在一起玩,玩了一会儿就出了满头大汗,方方说:“我们去买冰糕吃吧。”说着从兜里掏出一把硬币来,一看全是5分的。崐明明也从兜里掏出一把硬币来,全是2分的,力力也拿出一把来,全是1分的。三人把钱凑在一起,数了数,一共是1元整。

“我们每个人各带了多少钱呢?”力力问。

“我也记不清了。”方方说,“我只记得我的硬币数比明明的多一倍。”

“我的硬币数正好比力力的也多一倍。”明明说。

“我们一块花吧。”方方说着抓起硬币去买冰糕去了。

力力却在想着,我们每个人倒底各带了多少钱呢?

卡片问题

星期天,林林到森森家串门玩,见森森正在桌上摆弄5张卡片,这5张卡片上分别写着4、5、6、+、=。

林林问:“你在摆什么呢?”

森森说:“我想把这5张卡片摆成一个等式。”

林林说:“这还不容易吗?”

他说着就摆了起来,可是摆了半天怎么也摆不成,4+5,4+6,5+6都超过了最大的数6,而6-5,6-4,又都不够最小的数4。

“这不可能,这个等式永远也摆不成。”林林说。

“能摆成。”森森说着在桌子上摆了一个算式,果然是个等式。

小朋友,你知道森森是怎样摆的吗?

何时相遇

小华和萌萌为一点小事吵了一架,谁也不搭理谁了。班长小红想把他们两崐个叫到一起谈谈心,可是谁也不去。这可急坏了小红,得想个什么办法让他们凑到一起呢?她忽然想起小华和萌萌都有早晨跑步的习惯,而且都在校园旁的那条小路上,都是早晨6点钟,只是小华隔三天去一次,而萌萌隔五天去一次。今天是10月3日,今天早晨小华和萌萌都去了,小红知道萌萌明天去,那么他们下一次几号能相遇呢?小红算了算他们相遇的时间,到那一天的早晨也去了,果然同时遇到了他们两人。她把他们叫到一起,给他们讲了要团结的道理,他们也都认识到自己的做法有些不妥,都做了自我批评,从此他们反而成了好朋友。小朋友,你能算出小华和萌萌几号在小道上相遇了吗?

伽里略的数学题

伽里略是意大利著名的科学家,有一次他到赛马场看赛马,相出了一道数学题。这道题是这样的。赛马场有一条跑马道,长600米。现在有A、B、C三匹马,A一分钟能跑2圈,B一分钟能跑3圈,C一分钟能跑4圈。如果这直匹马并排在同一个起跑线上,向着同一个方向跑,那么经过几分钟,这三匹马才能重新排在起跑线上?

巧称体重

赵先生、钱先生、孙先生三人的体重大约都在60公斤左右,但都不知道具体数,现在只有一个100公斤的秤砣和地磅,那么有没有办法称出他们各自的体重呢?

巧测金字塔高度

金字塔是埃及的著名建筑,尤其胡夫金字塔最为著名,整个金字塔共用了230万块石头,10万奴隶花了30年的时间才建成这个建筑。金字塔建成后,国王又提出一个问题,金字塔倒底有多高,对这个问题谁也回答不上来。国王大怒,把回答不上来的学者们都扔进了尼罗河。当国王又要杀害一个学者崐的时候,著名学者塔利斯出现了,他喝令刽子手们住手。国王说:“难道你能知道金字塔的高度吗?”塔利斯说:“是的,陛下。”国王说:“那么它高多少?”塔利斯沉着地回答说:“147米。”国王问:“你不要信口胡说,你是怎么测出来的?”塔利斯说:“我可以明天表演给你看。”

第二天,天气晴朗,塔利斯只带了一根棍子来到金字塔下,国王冷笑着说:“你就想用这根破棍子骗我吗?你今天要是测不出来,那么你也将要被扔进尼罗河!”塔利斯不慌不忙地回答:“如果我测不出来,陛下再把我扔进尼罗河也为时不晚。”

接着,塔利斯便开始测量起来,最后,国王也不得不服他的测量是有道理的。

小朋友,你知道塔利斯是如何进行测量的吗?

鸡狗各多少

小鸡、小狗七十九,二百只脚在地上走,想一想,算一算,多少只鸡?多少只狗?

大、小和尚各有几

这是一道古算题:百个和尚百个粑,大和尚每人粑四个,小和尚四人一个粑,大、小和尚各有几?

下载初一数学趣味题+24道经典名题(共5篇)word格式文档
下载初一数学趣味题+24道经典名题(共5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初一数学探究题

    用[ x ]表示不超过x的整数中最大的整数,如[1.97]=1,[-1.67]=-2请计算: 1.[2.8]+[-4] 2.[ -6.4]-[ 3/2]+[-2.03]1.黑板上写有1,2,3,……,1997,1998这1998个数,对它们进行如下操作:擦去......

    初一数学检测题

    初一数学检测题 一、境空题(每空5分,共15分) 1、比–3小9的数是____;最小的正整数是____. 2、计算:(1)100(1)101______. 3、若a、b互为相反数,c、d互为倒数,则3 (a + b) 3cd =_____......

    世界数学经典名题(合集五篇)

    世界数学经典名题有哪些? 1.不说话的学术报告1903年10月,在美国纽约的一次数学学术会议上,请科尔教授作学术报告。他走到黑板前,没说话,用粉笔写出2^67-1,这个数是合数而不是质数......

    趣味题

    1、 不许往墙上扔,不许往地上扔,也不许在球上捆绳子,怎样让球扔出去也自动回来?2、 3、4、 5、6、 7、 一个三位数,这个三位数的三个数字之和为12,百位数字加上5得7,个位数字加上2......

    趣味题(范文)

    趣味历史题 收集整理:江苏省常州市 溧阳市戴埠高级中学 万海泉 戴国斌 葛云青 1.历史谜语 (1)说尽心中无限事(打一近代皇帝)道光 (2)夕照街(打一近代皇帝)道光 (3)普遍富起来(打一近代皇......

    45道几何题(初一)及答案

    1. 以下列各组数为三角形的三条边,其中能构成直角三角形的是( ) (A)17,15,8 (B)1/3,1/4,1/5 (C) 4,5,6 (D) 3,7,11 2. 如果三角形的一个角的度数等于另两个角的度数之和,那么这个三角形一定是......

    一年级数学聪明题100道

    一年级数学聪明题100道 班级: 姓名: 1.哥哥有4个苹果,姐姐有3个苹果,弟弟有8个苹果,哥哥给弟弟1个后,弟弟吃了3个,这时谁的苹果多?2.小明今年6岁,小强今年4岁,2年后,小明比小强大几岁?3.同......

    趣味题(共五则)

    味语文题2009年12月09日 星期三 17:25 一、 成语对对子:(注意对仗要工整,意思要相对) 粗茶淡饭( ) 流芳百世( )井然有序( ) 指鹿为马( )固若金汤( ) 精雕细刻( )雪中送炭( ) 伶牙利齿( )二、 成......