第一篇:我的教学故事之指数函数
我的教学故事之指数函数
指数函数是高中数学非常重要的一个基本初等函数,而对于高一的学生来说比一次函数,二次函数要难理解得多,所以在教学之气那查阅了很多资料找了一些有趣的例子来帮助学生理解!其中有一个学生印象特别深刻!
传说西塔发明了国际象棋而使国王十分高兴,他决定要重赏西塔,西塔说:“我不要你的重赏,陛下,只要你在我的棋盘上赏一些麦子就行了。在棋盘的第1个格子里放1粒,在第2个格子里放2粒,在第3个格子里放4粒,在第4个格子里放8粒,依此类推,以后每一个格子里放的麦粒数都是前一个格子里放的麦粒数的2倍,直到放满第64个格子就行了”。区区小数,几粒麦子,这有何难,“来人”,国王令人如数付给西塔。
计数麦粒的工作开始了,第一格内放1粒,第二格内放2粒第三格内放2’粒,„还没有到第二十格,一袋麦子已经空了。一袋又一袋的麦子被扛到国王面前来。但是,麦粒数一格接一格飞快增长着,国王很快就看出,即便拿出全国的粮食,也兑现不了他对西塔的诺言。
原来,所需麦粒总数为:=***709551615 这些麦子究竟有多少?打个比方,如果造一个仓库来放这些麦子,仓库高4公尺,宽10公尺,那么仓库的长度就等于地球到太阳的距离的两倍。而要生产这么多的麦子,全世界要两千年。尽管国家非常富有,但要这样多的麦子他是怎么也拿不出来的。这么一来,国王就欠了西塔好大一笔债。
通过这样一个故事,可以很生动地使学生认识到指数函数先慢后快的变化趋势,这样得出的结论,不说一辈子忘不掉,至少高中这三年可以牢记。
其实学习数学也可以很愉快!
第二篇:指数函数教学反思
指数函数教学反思一:
1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到授之以渔而非授之以鱼。
2.教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易的化解教学难点、突破教学重点、提高课堂效率,本课使用几何画板可以动态地演示出指数函数的底数的动态过程,让学生直观观察底数对指数函数单调性的影响。
指数函数教学反思二:
指数函数是学生在学习了函数基本概念和性质以后接触到得第一个具体函数,所以在这部分的教学安排上,我更注意学生思维习惯的养成,特作如下思考:
1、设计应从哪些方面,哪些角度去探索一个具体函数,我在这部分设置了三个环节
(1)由具体的折纸的例子引出指数函数
设计意图:贴近学生的生活实际,便于动手操作与观察。
让学生充分感受我们生活中大量存在指数函数模型,从而便于学生接受指数函数的形式,突破符号语言的障碍。
(2)通过研究几个特殊的底数的指数函数得到一般指数函数的规律。
符合学生由特殊到一般的,由具体到抽象的学习认知规律。
(3)通过多媒体手段,用计算机作出底数a变换的图像,让学生更直观、深刻的感受指数函数的图像及性质。
通过引入 定义 剖析 辨析 运用,这个由特殊到一般的过程揭示了概念的内涵和外延;而后在教师的点拨下,学生作图 观察 探究 交流 概括 运用,使学生在动手操作、动眼观察、动脑思考、合作探究中达到对知识的发现和接受,同时渗透了分类讨论、数形结合的思想,提高了学生学习数学概念、性质和方法的能力,养成了良好的学习习惯。
2、课堂练习前后呼应,各有侧重,通过问题呈现,变式教学,不但突出了重点内容,把知识加固、挖深。使教学目标得以实现。而且注重知识的延续性,为以后的学习奠定了基础。
3、教学过程设计为六个环节:
1.情景设置,形成概念 2.发现问题,深化概念 3.深入探究图像,加深理解性质 4.强化训练,落实掌握 5.小结归纳,拓展深化 6.布置作业,延伸课堂。各个环节层层深入,环环相扣,充分体现了在教师的指导下,师生、生生之间的交流互动,使学生亲身经历知识的形成和发展过程。
4、通过学案教学为抓手,让学生先学,老师在课前充分了解了学情,以学定教,进行二次备课,抓住学生的学习困难,站在学生学的角度设计教学。
5、学生真思考,学生的真探究,才是保障教学目标得以实现的前提,在教学中,教师通过教学设计要以给学生充分的思维空间、推理运算空间和交流学习空间,努力创设一个活动化的课堂才可能真正唤起学生的生命主体意识,引领他们走上自主构建知识意义的发展路径。
指数函数教学反思三: 《指数函数》是人教b版高中数学必修1第三章第二节第1课时,是继第二章函数的概念、函数的性质、一次函数、二次函数之后,学生要认识的一个新的函数。下面是我对本节课的教学反思:
(一)对课前准备的反思
上课前认真备课,多次请教了指导教师孙久志老师的意见与建议,在他的指导下,我对新课标和新教材有了较为整体的把握和认识,将知识系统化,注意知识前后的联系,形成了知识框架,了解了学生的现状和认知结构,做到了因材施教。
(一)对情境创设的反思
这是本节课的一个成功之处,整堂课的问题情景创设很恰当,几乎所有的结论都是在教师的引导下,学生自己总结出来的。
本节课是以问题的形式引入,采用两个实际问题,既激发了学生学习的积极性,又让他们体会到数学是来自于生活,也是服务于生活的。引出函数的一般式 12y=ax type=#_x0000_t75> 以后,我又让学生自己举几个例子,他们举的例子中有a=1,a=0,a<0的情况,我又是以提问的形式让学生自己分析相应的函数定义域与函数值,结果学生自己意识到这些情况不必研究或者不容易研究,自然的得到了参数a>0且a 12鈮? type=#_x0000_t75> 的范围,进而让学生自己求出此时函数的定义域,此时指数函数的定义已经呼之欲出,不言自明了,甚至学生自己已经可以给指数函数下定义了。
对于指数函数的图像与性质,我仍然是创设问题情景,步步深入,层层逼近,先让学生回忆我们研究一次函数和二次函数的思路,自然会联想到用这个思路来研究指数函数;再回忆画函数图象的方法,自己动手画出函数 12y=2x鐨?/m:t>:sectpr wsp:rsidr=00000000> type=#_x0000_t75> 图象,并提问:猜想函数 12y=(12)x type=#_x0000_t75> , 12 y=3x type=#_x0000_t75> , 12 y=(13)x type=#_x0000_t75> 的图象,学生在猜想的过程中就会意识到指数函数的图象形状会因底数a的不同而不同:一方面,a>1与0 (二)对教学模式的反思 本节课的另一个成功之处就是采用引导启发探讨式教学,在授课的过程中,我一直在和学生进行探讨,让学生自己举例子,自己画图象,自己归纳概括。刚上课的时候,有位同学就对我们举的例子提出了问题,我耐心地进行了解答,正好他的问题也为下一步的讨论提供了思路,我就顺势进行了。其实在平时的课堂中,我就比较注意和学生的交流,尽量地让学生把问题暴漏出来,因为这样的问题一般就是大家共同的问题。在和学生探讨指数函数的特性时,他们观察得非常细致,几乎把图象上能反映出来的函数性质都说出来了,每位发言的同学我都给予了肯定,大家很积极,有位同学还说出了函数增长速度的问题,我就顺势讲了一个与此有关的故事,大家听得津津有味。 (三)对现代化多媒体应用的反思 本节课的第三个成功之处是:教学课件用得恰到好处,我采用的是几何画板数学软件,非常形象直观地展示了描点法作图的全过程,因为这个过程是我们归纳图像与性质的一个准备工作,应该向学生展示,但是如果在黑板上演示,既要花费大量的时间,对于较精确的计算也无法进行。几何画板正好解决了这个问题,通过演示,让学生了解到数学需要严谨科学的计算,而且数学其实也是一种很美的科学。但是数学这门学科又要求老师要正确规范地板书,除了练习、例题的题目和作图的过程,其他重要内容我都进行了规范的板书,让学生的思维始终跟着我。在课堂中,我还用投影仪展示了个别学生的作业,进行了点评,让学生发现自己学习中的优点和缺点。 (四)对于赞赏评价的反思 对于学生创造性的回答我给予了鼓励与肯定,而对于学生不足甚至错误的回答,指出了不足,但没有损伤其自尊心和自信心。在新课标下,我们的学生应该是自由的、真实的、快乐的、幸福的。我们的数学课堂教学,应该从数学的实际出发给学生自由、真实、快乐、幸福。 (五)对不足之处的反思 在让学生归纳指数函数的图象时,学生总结了a>1与01的代表就是我们画出的 12y=2x涓?/m:t>m:rpr>y=3x type=#_x0000_t75> 的图像,而0y=(13)x type=#_x0000_t75> 的图像,这样就更形象直观一些;由于上课的教室听不见铃声,时间控制得不是很准确,提前了一分钟下课,如果能利用这一分钟再稍深入地探讨一下例2中利用找中间量的方法比较两个幂的大小,这堂课就更加完满,虽然是一个很小的问题,不影响整堂课的效果,但是却提醒我自己在平时的上课中就得注意小的细节问题;板书方面,行与行的疏密控制得不够准确,导致最后一行的空间有点小了。 指数函数的图象及其性质 一、教学内容分析 本节课是 《普通高中课程标准实验教科书·数学(1)》(人教A版)第二章第一节第二课(2.1.2)《指数函数及其性质》。根据我所任教的学生的实际情况,我将《指数函数及其性质》划分为两节课(探究图象及其性质,指数函数及其性质的应用),这是第一节课“探究图象及其性质”。指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。 二、学生学习况情分析 指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,是学生对函数概念及性质的第一次应用。教材在之前的学习中给出了两个实际例子(GDP的增长问题和炭14的衰减问题),已经让学生感受到指数函数的实际背景,但这两个例子背景对于学生来说有些陌生。本节课先设计一个看似简单的问题,通过超出想象的结果来激发学生学习新知的兴趣和欲望。 三、设计思想 1.函数及其图象在高中数学中占有很重要的位置。如何突破这个即重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。本节课,力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种的研究方法,以便能将其迁移到其他函数的研究中去。 2.结合参加我校组织的两个课题《对话——反思——选择》和《新课程实施中同伴合作和师生互动研究》的研究,在本课的教学中我努力实践以下两点: ⑴.在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式。 ⑵.在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。 通过课堂教学活动向学生渗透数学思想方法。 四、教学目标 根据任教班级学生的实际情况,本节课我确定的教学目标是:理解指数函数的概念,能画出具体指数函数的图象;在理解指数函数概念、性质的基础上,能应用所学知识解决简单的数学问题;在教学过程中通过类比,回顾归纳从图象和解析式这两种不同角度研究函数性质的数学方法,加深对指数函数的认识,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识。 五、教学重点与难点 教学重点:指数函数的概念、图象和性质。 教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。 六、教学过程: (一)创设情景、提出问题(约3分钟)师:如果让1号同学准备2粒米,2号同学准备4粒米,3号同学准备6粒米,4号同学准备8粒米,5号同学准备10粒米,„„按这样的规律,51号同学该准备多少米? 学生回答后教师公布事先估算的数据:51号同学该准备102粒米,大约5克重。师:如果改成让1号同学准备2粒米,2号同学准备4粒米,3号同学准备8粒米,4号同学准备16粒米,5号同学准备32粒米,„„按这样的规律,51号同学该准备多少米? 【学情预设】学生可能说很多或能算出具体数目 师:大家能否估计一下,51号同学该准备的米有多重? 教师公布事先估算的数据:51号同学所需准备的大米约重1.2亿吨。 师:1.2亿吨是一个什么概念?根据2007年9月13日美国农业部发布的最新数据显示,2007~2008我国大米产量预计为1.27亿吨。这就是说51号同学所需准备的大米相当于2007~2008我国全年的大米产量!【设计意图】用一个看似简单的实例,为引出指数函数的概念做准备;同时通过与一次函数的对比让学生感受指数函数的爆炸增长,激发学生学习新知的兴趣和欲望。 在以上两个问题中,每位同学所需准备的米粒数用y表示,每位同学的座号数用 x表示,y与x之间的关系分别是什么? 学生很容易得出y2x(xN*)和y2x(xN*) 【学情预设】学生可能会漏掉x的取值范围,教师要引导学生思考具体问题中x的范围。 (二)师生互动、探究新知 1.指数函数的定义 老师:其实,在本章开头的问题2中,也有一个与y2类似的关系x*y1.073(xN,x20)式 x⑴让学生思考讨论以下问题(问题逐个给出):(约3分钟) x*x*y2(xN)y1.073(xN,x20)这两个解析式有什么共同特征? ①和②它们能否构成函数? ③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字? 【设计意图】 引导学生从具体问题、实际问题中抽象出数学模型。学生对比已经学过一次函数、反比例函数、二次函数,发现xy2,xy073.1是一个新的函数模型,再让学生给这个新的函数命名,由此激发学生的学习兴趣。 引导学生观察,两个函数中,底数是常数,指数是自变量。 老师:如果可以用字母a代替其中的底数,那么上述两式就可以表示成xay的形式。自变量在指数位置,所以我们把它称作指数函数。 ⑵让学生讨论并给出指数函数的定义。(约6分钟) 对于底数的分类,可将问题分解为: a2,x2则在实数范围内相应的函数值不存 ①若a0会有什么问题?(如 1在) ②若a0 会有什么问题?(对于x0,a都无意义) ③若a1又会怎么样?(1无论x取何值,它总是1,对它没有研究的必要.) 老师:为了避免上述各种情况的发生,所以规定a0且a1。在这里要注意生生之间、师生之间的对话。 xx【学情预设】 ①若学生从教科书中已经看到指数函数的定义,教师可以问,为什么要求a0且a1。a1为什么不行? xya②若学生只给出,教师可以引导学生通过类比一次函数ykxb(k0)、反比例函数 yk(k0)2yaxbxc(a0)中x,二次函数的限制条件,思 考指数函数中底数的限制条件。【设计意图 】 ①对指数函数中底数限制条件的讨论可以引导学生研究一个函数应注意它的实际意义和研究价值; ②讨论出10aa,且,也为下面研究性质时对底数的分类做准备。 接下来教师可以问学生是否明确了指数函数的定义,能否写出一两个指数函数?教师也在黑板上写出一些解析式让学生判断,如y23x,y32x,y2x。 【学情预设】学生可能只是关注指数是否是变量,而不考虑其它的。【设计意图 】加深学生对指数函数定义和呈现形式的理解。 2.指数函数性质 ⑴提出两个问题(约3分钟) ①目前研究函数一般可以包括哪些方面; 【设计意图】让学生在研究指数函数时有明确的目标:函数三个要素(对应法则、定义域、值域、)和函数的基本性质(单调性、奇偶性)。 ②研究函数(比如今天的指数函数)可以怎么研究?用什么方法、从什么角度研究? 可以从图象和解析式这两个不同的角度进行研究;可以从具体的函数入手(即底数取一些数值);当然也可以用列表法研究函数,只是今天我们所学的函数用列表法不易得出此函数的性质,可见具体问题要选择适当的方法来研究才能事半功倍!还可以借助一些数学思想方法来思考。 【设计意图】 ①让学生知道图象法不是研究函数的唯一方法,由此引导学生可以从图象和解析式(包括列表)不同的角度对函数进行研究; ②对学生进行数学思想方法(从一般到特殊再到一般、数形结合、分类讨论)的有机渗透。 ⑵分组活动,合作学习(约8分钟) 老师:好,下面我们就从图象和解析式这两个不同的角度对指数函数进行研究。 ①让学生分为两大组,一组从解析式的角度入手(不画图)研究指数函数,一组借助电脑通过几何画板的操作从图象的角度入手研究指数函数; ②每一大组再分为若干合作小组(建议4人一小组); ③每组都将研究所得到的结论或成果写出来以便交流。 【学情预设】考虑到各组的水平可能有所不同,教师应巡视,对个别组可做适当的指导。 【设计意图】通过自主探索、合作学习不仅让学生充当学习的主人更可加深对所得到结论的理解。 ⑶交流、总结(约10~12分钟)师:下面我们开一个成果展示会! 教师在巡视过程中应关注各组的研究情况,此时可选一些有代表性的小组上台展示研究成果,并对比从两个角度入手研究的结果。 教师可根据上课的实际情况对学生发现、得出的结论进行适当的点评或要求学生分析。这里除了研究定义域、值域、单调性、奇偶性外,再引导学生注意是否还有其它性质? 师:各组在研究过程中除了定义域、值域、单调性、奇偶性外是否还得到一些有价值 1yax与y()xa的图象关于y轴对称)的副产品呢?(如过定点(0,1),【学情预设】 ①首先选一从解析式的角度研究的小组上台汇报; ②对于从图象的角度研究的,可先选没对底数进行分类的小组上台汇报; ③问其它小组有没不同的看法,上台补充,让学生对底数进行分类,引导学生思考哪个量决定着指数函数的单调性,以什么为分界,教师可以马上通过电脑操作看函数图象的变化。 【设计意图】 ①函数的表示法有三种:列表法、图象法、解析法,通过这个活动,让学生知道研究一个具体的函数可以也应该从多个角度入手,从图象角度研究只是能直观的看出函数的一些性质,而具体的性质还是要通过对解析式的论证;特别是定义域、值域更是可以直接从解析式中得到的。 ②让学生上台汇报研究成果,让学生有种成就感,同时还可训练其对数学问题的分析和表达能力,培养其数学素养; ③对指数函数的底数进行分类是本课的一个难点,让学生在讨论中自己解决分类问题使该难点的突破显得自然。 师:从图象入手我们很容易看出函数的单调性、奇偶性、以及过定点(0,1),但定义域、值域却不可确定;从解析式(结合列表)可以很容易得出函数的定义域、值域,但对底数的分类却很难想到。 xya教师通过几何画板中改变参数a的值,追踪的图象,在变化过程中,让全体学生进一步观察指数函数的变化规律。 师生共同总结指数函数的图象和性质,教师可以边总结边板书。 (三)巩固训练、提升总结(约8分钟) 1.例:已知指数函数的值。 解:因为f(x)的图象经过点(3,)所以f(3) 3a,解得a3 即f(x)ax(a0且a1)的图象经过点(3,),求f(0),f(1),f(3)于是 f(x)x3 13 所以f(0)1,f(1),f(3)1.【设计意图】通过本题加深学生对指数函数的理解。 师:根据本题,你能说出确定一个指数函数需要什么条件吗? 师:从方程思想来看,求指数函数就是确定底数,因此只要一个条件,即布列一个方程就可以了。 【设计意图】让学生明确底数是确定指数函数的要素,同时向学生渗透方程的思想。 1y3和y3 的大致图2.练习:⑴在同一平面直角坐标系中画出 xx象,并说出这两个函数的性质; ⑵求下列函数的定义域: y2x21y2 1x 3.老师:通过本节课的学习,你对指数函数有什么认识?你有什么收获? 【学情预设】学生可能只是把指数函数的性质总结一下,教师要引导学生谈谈对函数研究的学习,即怎么研究一个函数。【设计意图】 ①让学生再一次复习对函数的研究方法(可以从也应该从多个角度进行),让学生体会本课的研究方法,以便能将其迁移到其他函数的研究中去。 ②总结本节课中所用到的数学思想方法。 ③强调各种研究数学的方法之间有区别又有联系,相互作用,才能融会贯通。 4.作业:课本59页习题2.1A组第5题。 七、教学反思 1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”。 2.教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易的化解教学难点、突破教学重点、提高课堂效率,本课使用几何画板可以动态地演示出指数函数的底数的动态过程,让学生直观观察底数对指数函数单调性的影响。 3.在教学过程中不断向学生渗透数学思想方法,让学生在活动中感受数学思想方法之美、体会数学思想方法之重要,部分学生还能自觉得运用这些数学思想方法去分析、思考问题。 指数函数教学反思 1.指数函数与对数函数这部分知识是高中所学的两个最基本的初等函数,相对于学生前面所学的一次函数,二次函数来说难度较大,不仅要求对函数的解析式要进行讨论,函数的解析式中对底数有限制,对函数的定义域也要进行讨论,这部分知识还和二次函数的知识容易出题,比如讨论函数的单调性。学生要参加高考,除了最基本的基础之时的考查之外,对数学思想和思维方法的还要考查并且是重点。当时这节复习课的处理主要是让学生自己总结这部分的知识结构,让学生自己动手去总结的过程中自己发现问题,自己解决问题,老师只是作一指导,根据学生的实际情况在具体的授课这一环境中我采取了学生自学老师给出学案,学生按老师的学案自己总结这样可以节省时间,在学生总结完知识点以后再给出相应的练习题和例题,上课的例题的难度梯度较明显,主要是让大部分学生多有所收获,但最后的几个例题也照顾到了学习比较优秀的学生,从上课的过程来看最后也达到了预期的效果,从上课的结构来说由于是该青年教师准备的示范课,2.我的教学过程是这样的,学生5分钟的预习看书,之后我讲的时间约有25分钟,比我预期的时间要多,按理来说教师因该给学生有充足的时间,在这一点上今后还要注意,之后学生的练习时间有15分钟,3.总的来说这节课的练习的量大了,内容有点多,但对基础好的学生来说量又不大,我的也就是说在今后的教学中我们的重点还是对基础知识和基本技能的训练,将基础夯扎实了将高考中的基础分都拿到手,减少不必要的失误和丢分。 4,如果让我重新上这节课,我会留给学生大部分的时间,使他们进行探索研究,学生解决不了的问题我在集中讲解,然后进行大量训练。 5.我的改变之处就是让学生成为课堂的主体,让他们学会研究探讨,使他们学知识成为他们的动力。 指数函数教学反思 指数函数教学反思1 “指数函数及性质”的教学共分两个课时完成,这是第一课时。本节课主要学习了指数函数的定义,研究了指数函数的图像及相关的性质。回顾这节课,心中有很多感想,也有下面一些思考: 一. 反思教学中的设计 1.这节课是在学生系统的学习了指数概念、函数概念,基本掌握了函数性质的基础上进行学习的,具有初步的函数知识,但是对于研究具体的初等函数的性质的基本方法和步骤还比较陌生,对于指数函数要怎么样进行较为系统的研究对学生来说是有困难的,因此这节课的每一个环节以我引导,以学生的自主探究为主来完成是符合学情的'。 2.设计“指数函数的图象及性质”,“y=ax的图象和y=(1/a)x的图象间的关系”. “a的大小对函数图象的影响”三个问题,让学生通过几何画板软件动手画图操作、自主探究、主动思考来达到对知识的发现和接受,改变过去机械接受和死记结论的状况,符合新课改的理念,同时也完成了这节课的主要教学任务。 3.在对底数a的范围的思考及三个探究性问题后都设置了练习,能及时反馈学生对所探求到的知识的掌握程度,便于及时调整课堂教学行为。从课后看学生对这些知识的掌握应该是比较好的。 4.这节课的学习及对函数研究方法和步骤的总结对后续学习新的函数起到了重要的示范作用。 二.反思教学过程 在整个的教学过程中,始终体现以学生为本的教育理念。在学生已有的认知基础上进行设问和引导,关注学生的认知过程,强调学生的品德、思维和心理等方面的发展。重视讨论、交流和合作,重视探究问题的习惯的培养和养成。同时,考虑不同学生的个性差异和发展层次,使不同的学生都有发展,体现因材施教的原则。 在教学的过程中,考虑到学生的实际,有意地设计了一些铺垫和引导,既巩固旧有知识,又为新知识提供了附着点,充分体现学生的主体地位。 三.存在的问题 1.没有充分调动学生的积极性,课堂气氛显得沉闷。 2.尽量放手让学生自己去解决问题,教师自己讲得偏多,学生的主体作用体现得不够。 3.指数函数概念部分的教学时间稍多,后面教学过程稍显仓促,学生自主探究的时间不够,因此违背了教学设计的初衷。 当然我会通过对学生作业的批改获得更全面的对学生知识掌握的评价和课堂效果的反思,并在后续的时间里修订课堂设计方案,达到预期的教学效果,实现学生的目标掌握和能力发展。 指数函数教学反思2 指数函数是学生在学习了函数基本概念和性质以后接触到得第一个具体函数,所以在这部分的教学安排上,我更注意学生思维习惯的养成,特作如下思考: 1、设计应从哪些方面,哪些角度去探索一个具体函数,我在这部分设置了三个环节。 (1)由具体的折纸的例子引出指数函数 设计意图:贴近学生的生活实际,便于动手操作与观察。让学生充分感受我们生活中大量存在指数函数模型,从而便于学生接受指数函数的形式,突破符号语言的障碍。 (2)通过研究几个特殊的底数的指数函数得到一般指数函数的规律。符合学生由特殊到一般的,由具体到抽象的`学习认知规律。 (3)通过多媒体手段,用计算机作出底数a变换的图像,让学生更直观、深刻的感受指数函数的图像及性质。 通过引入定义剖析辨析运用,这个由特殊到一般的过程揭示了概念的内涵和外延;而后在教师的点拨下,学生作图观察探究交流概括运用,使学生在动手操作、动眼观察、动脑思考、合作探究中达到对知识的发现和接受,同时渗透了分类讨论、数形结合的思想,提高了学生学习数学概念、性质和方法的能力,养成了良好的学习习惯。 2、课堂练习前后呼应,各有侧重。 通过问题呈现,变式教学,不但突出了重点内容,把知识加固、挖深。使教学目标得以实现。而且注重知识的延续性,为以后的学习奠定了基础。 3、教学过程设计为六个环节: 1、情景设置,形成概念 2、发现问题,深化概念。 3、深入探究图像,加深理解性质。 4、强化训练,落实掌握 5、小结归纳,拓展深化。 6、布置作业,延伸课堂。各个环节层层深入,环环相扣,充分体现了在教师的指导下,师生、生生之间的交流互动,使学生亲身经历知识的形成和发展过程。 4、通过学案教学为抓手,让学生先学。老师在课前充分了解了学情,以学定教,进行二次备课,抓住学生的学习困难,站在学生学的角度设计教学。 5、学生真思考,学生的真探究,才是保障教学目标得以实现的前提。 在教学中,教师通过教学设计要以给学生充分的思维空间、推理运算空间和交流学习空间,努力创设一个“活动化的课堂”才可能真正唤起学生的生命主体意识,引领他们走上自主构建知识意义的发展路径。 指数函数教学反思3 “指数函数”的教学共分两个课时完成。第一课时为指数函数的定义,图像及性质;第二课时为指数函数的应用。“指数函数”第一课时是在学习指数概念的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。 在讲解指数函数的定义前,复习有关指数知识及简单运算,然后由实例引入指数函数的.概念,因为手工绘图复杂且不够精确,并且是本节课的教学关键,教学中,我借助电脑手段,通过描点作图,观察图像,引导学生说出图像特征及变化规律,并从而得出指数函数的性质,提高学生的形数结合的能力。 大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。 为了调动学生学习的积极性,使学生变被动学习为主动愉快的学习。教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在指数函数图像的画法上,我借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。总之,本堂课充分体现了“教师为主导,学生为主体”的教学原则。 指数函数教学反思4 在整个的教学过程中,始终体现以学生为本的教育理念。在学生已有的认知基础上进行设问和引导,关注学生的认知过程,强调学生的品德、思维和心理等方面的`发展。重视讨论、交流和合作,重视探究问题的习惯的培养和养成。同时,考虑不同学生的个性差异和发展层次,使不同的学生都有发展,体现因材施教的原则。 虽然在课前通过各种渠道和途径努力了解学生情况和学习情况,但是由于各种原因也发现了一些问题。 1、由于是刚接的班级,虽然对学生情况有所了解,但还是估计不足。在例题的讲解过程中发现学生对指数函数仍然很陌生,这一部分我的引导启发应再充分些。 2、课堂驾驭能力有待提高,教学节奏过于紧凑应该多考虑大部分学生的学习能力。有些例题的处理没能达到预期的效果是遗憾。 3、通过性质探究环节让我进一步认识到,不应因为文科班学生基础较差,就忽视他们的自主探究,合作交流的能力的培养,重视基础不等于简单机械重复,应为学生打牢基础。 4、教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易的化解教学难点、突破教学重点、提高课堂效率,本课使用几何画板可以动态地演示出指数函数的底数的动态过程,让学生直观观察底数对指数函数单调性的影响。 指数函数教学反思5 《指数函数》是人教b版高中数学必修1第三章第二节第1课时,是继第二章函数的概念、函数的性质、一次函数、二次函数之后,学生要认识的一个新的函数。下面是我对本节课的教学反思: (一)对课前准备的反思 上课前认真备课,多次请教了指导教师孙久志老师的意见与建议,在他的指导下,我对新课标和新教材有了较为整体的把握和认识,将知识系统化,注意知识前后的联系,形成了知识框架,了解了学生的现状和认知结构,做到了因材施教。 (一)对情境创设的反思 这是本节课的一个成功之处,整堂课的问题情景创设很恰当,几乎所有的结论都是在教师的引导下,学生自己总结出来的。 本节课是以问题的形式引入,采用两个实际问题,既激发了学生学习的积极性,又让他们体会到数学是来自于生活,也是服务于生活的。引出函数的一般式 12y=ax ' type=“#_x0000_t75”>以后,我又让学生自己举几个例子,他们举的例子中有a=1,a=0,a<0的情况,我又是以提问的形式让学生自己分析相应的函数定义域与函数值,结果学生自己意识到这些情况不必研究或者不容易研究,自然的得到了参数a>0且a 12鈮? ' type=“#_x0000_t75”>的范围,进而让学生自己求出此时函数的定义域,此时指数函数的定义已经呼之欲出,不言自明了,甚至学生自己已经可以给指数函数下定义了。 对于指数函数的图像与性质,我仍然是创设问题情景,步步深入,层层逼近,先让学生回忆我们研究一次函数和二次函数的思路,自然会联想到用这个思路来研究指数函数;再回忆画函数图象的方法,自己动手画出函数 12y=2x鐨?/m:t>:sectpr wsp:rsidr=“00000000”>' type=“#_x0000_t75”>图象,并提问:猜想函数 12y=(12)x' type=“#_x0000_t75”>, 12 y=3x' type=“#_x0000_t75”>, 12 y=(13)x' type=“#_x0000_t75”>的图象,学生在猜想的过程中就会意识到指数函数的图象形状会因底数a的不同而不同:一方面,a>1与0 (二)对教学模式的反思 本节课的另一个成功之处就是采用“引导启发探讨”式教学,在授课的过程中,我一直在和学生进行探讨,让学生自己举例子,自己画图象,自己归纳概括。刚上课的时候,有位同学就对我们举的例子提出了问题,我耐心地进行了解答,正好他的问题也为下一步的讨论提供了思路,我就顺势进行了。其实在平时的课堂中,我就比较注意和学生的交流,尽量地让学生把问题暴漏出来,因为这样的问题一般就是大家共同的问题。在和学生探讨指数函数的'特性时,他们观察得非常细致,几乎把图象上能反映出来的函数性质都说出来了,每位发言的同学我都给予了肯定,大家很积极,有位同学还说出了函数增长速度的问题,我就顺势讲了一个与此有关的故事,大家听得津津有味。 (三)对现代化多媒体应用的反思 本节课的第三个成功之处是:教学课件用得恰到好处,我采用的是几何画板数学软件,非常形象直观地展示了描点法作图的全过程,因为这个过程是我们归纳图像与性质的一个准备工作,应该向学生展示,但是如果在黑板上演示,既要花费大量的时间,对于较精确的计算也无法进行。几何画板正好解决了这个问题,通过演示,让学生了解到数学需要严谨科学的计算,而且数学其实也是一种很美的科学。但是数学这门学科又要求老师要正确规范地板书,除了练习、例题的题目和作图的过程,其他重要内容我都进行了规范的板书,让学生的思维始终跟着我。在课堂中,我还用投影仪展示了个别学生的作业,进行了点评,让学生发现自己学习中的优点和缺点。 (四)对于赞赏评价的反思 对于学生创造性的回答我给予了鼓励与肯定,而对于学生不足甚至错误的回答,指出了不足,但没有损伤其自尊心和自信心。在新课标下,我们的学生应该是自由的、真实的、快乐的、幸福的。我们的数学课堂教学,应该从数学的实际出发给学生自由、真实、快乐、幸福。 (五)对不足之处的反思 在让学生归纳指数函数的图象时,学生总结了a>1与01的代表就是我们画出的 12y=2x涓?/m:t>m:rpr>y=3x' type=“#_x0000_t75”>的图像,而0y=(13)x' type=“#_x0000_t75”>的图像,这样就更形象直观一些;由于上课的教室听不见铃声,时间控制得不是很准确,提前了一分钟下课,如果能利用这一分钟再稍深入地探讨一下例2中利用找中间量的方法比较两个幂的大小,这堂课就更加完满,虽然是一个很小的问题,不影响整堂课的效果,但是却提醒我自己在平时的上课中就得注意小的细节问题;板书方面,行与行的疏密控制得不够准确,导致最后一行的空间有点小了。第三篇:指数函数教学设计范文
第四篇:指数函数教学反思
第五篇:指数函数教学反思