人教版八年级数学下册《勾股定理逆定理》教学反思

时间:2019-05-14 14:18:54下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《人教版八年级数学下册《勾股定理逆定理》教学反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《人教版八年级数学下册《勾股定理逆定理》教学反思》。

第一篇:人教版八年级数学下册《勾股定理逆定理》教学反思

人教版八年级数学下册《勾股定理逆定理》教学反思

我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾(短直角边)等于三,股(长直角边)等于四,那么弦等于五。即“勾

三、股

四、弦五”。它被记载于我国古代著名的数学著作《周髀算经》中,在这本书的另一处,还记载了勾股定理的一般形式。中国古代的几何学家研究几何是为了实用,是唯用是尚的。在讲完《勾股定理逆定理》这节课后,我的反思如下:

本节课的教学目标是:在掌握了勾股定理的基础上,让学生如何从三边的关系来判定一个三角形是否为直角三角形.即:勾股定理的逆定理。

勾股定理的逆定理的教学设计说明:本教教学设计是围绕勾股定理的逆定理的证明与应用来展开,结合新课标的要求,根据我班学生的认知结构与教材地位为了达到本节课的教学目标,我做了以下设计(也是成功之处):

一、创设情境,提出猜想 达到直观性的教学要求。让几个学生要全班同学前面做一个“数学实验”,三条分别为:3,4,5的三角形是一个直角三角形。第二步骤是让学生画已知三边的一定长度的三角形,判断是不是直角三角形,并分析三边满足什么关系条件,同时,引导学生从特殊到一般提出猜想。

二、将教学内容精简化.考虑到我所教班级的学生认识水平,做了如下教学设计:⑴ 将教学目标定为让学生掌握勾股定理的逆定理.以及逆定理的应用,而对于本课中逆定理的证明.以及其探究都放在一下节课再进行讲解.⑵对于本课中所出现了的逆定理的定义,及其真假性的判断也简单化.本节课也不详细讲.本节课的的重点放在掌握勾股定理的逆定理,及其应用.从课堂效果来看,这样的教学设计是合理的,学生较好的掌握了勾股定理的逆定理,所以取得了良好的课堂效果。

三、应用训练,巩固新知 为了巩固新知,灵活运用所学知识解决相应问题,提高学生的分析解题能力,基于对我班的学情分析,为了让学生都能动起手做,学案的设计上做了很多脚手架,目的就是让学生能够按照脚手架的步骤一步步完成,最终也形成了解题的“操作性”。此外,脚手架的设置对我们的中下水平的学生是很多帮助的.从课堂上看,他们也能在脚手架的帮助下,完成一定的题目中,而如果没有的话,这部分学生对一些基本的题都会束手无策.四、实行分层教学,让不同水平的学生在同一课堂都能学好,为此,我设计了三个层次的问题,以达到分层教学目标:第一层次是让学生直接运用定理判断三角形是否是直角三角形,掌握定理基本运用;第二层次是强调已知三角形三边长或三边关系,就有意识的判断三角形是否是直角三角形,这样既巩固了勾股定理的逆定理的应用,又为下一个层次做好了铺垫;第三层次是灵活运用勾股定理与逆定理解决图形面积的计算问题.根据学生原有的认知结构,让学生更好地体会分割的思想.设计的题型前后呼应,使知识有序推进,有助于学生的理解和掌握;让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,感受探索、合作的乐趣,并从中获得成功的体验.真正体现学生是学习的主人.。将目标分层后,我设计的学案里的题目也是相应的进行了分层设计,满足不同层次的学生的做题要求,达到巩固课堂知识的目的。最后,布置作业,也是分层布置的,分为三层,对应不同的学生,让他们的作业都在他们的能力范围。

诚然,这节课也存在许多不足 第一、新课导入部分:存在如下值得改进的地方:①复习旧知部分,复习勾股定理的内容应用了填空的形式,这个形式不是最佳的.因为学生书写勾股定理耗时,既使书写出来,复习效果也不太好。最佳的应该是以简单的题目形式来复习勾股定理.这样快而有效;②如何从复习勾股定理中巧妙的切入本课的主题,过渡语的设置,应该将过渡语言简单明了,可设计成:怎么从边的关系来判断一个三角形是直角三角形呢?这就是本节课要学习的内容.③导入部分的课时分配估计不足,显得冗长,也一定程度上造成后面的教学时间紧张。应该对导入部分的时效再进行分析简化。

第二存在的问题是:(1)脚手架设计的太多,本节课有一定的脚手架是合适的,太多了,反而不利于学生自己的书写规范性,过程的掌握等,(2)练习题题量过大,本节课的练习题大部分都是重复一些基本的操作,没有必要太多简单的题目,可以适当去掉.对于数字的设计可以更加科学化一点,应该让学生方便运算和节省时间.此外,对于层次较要的同学来说,应该设计更多一点综合性的题目。适当的增加一些提高题,以满足这一层次的学生的学习练习要求.在备每一节课中,对于课堂的每一个细节,第一刻钟,第一个教学设计的思考都无不直接影响着你的这一节课,影响着你的课堂效果。静心思考,反思整个过程是一种全新的收获,也是全新的开始,让自己能够重新起步,向前。

第二篇:八年级数学下册《勾股定理逆定理》教学反思

我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾(短直角边)等于三,股(长直角边)等于四,那么弦等于五。即“勾

三、股

四、弦五”。它被记载于我国古代著名的数学著作《周髀算经》中,在这本书的另一处,还记载了勾股定理的一般形式。中国古代的几何学家研究几何是为了实用,是唯用是尚的。在讲完《勾股定理逆定理》这节课后,我的反思如下:

本节课的教学目标是:在掌握了勾股定理的基础上,让学生如何从三边的关系来判定一个三角形是否为直角三角形.即:勾股定理的逆定理。

勾股定理的逆定理的教学设计说明:本教案的教学设计是围绕勾股定理的逆定理的证明与应用来展开,结合新课标的要求,根据我班学生的认知结构与教材地位为了达到本节课的教学目标,我做了以下设计(也是成功之处):

一、创设情境,提出猜想达到直观性的教学要求。让几个学生要全班同学前面做一个“数学实验”,三条分别为:3,4,5的三角形是一个直角三角形。第二步骤是让学生画已知三边的一定长度的三角形,判断是不是直角三角形,并分析三边满足什么关系条件,同时,引导学生从特殊到一般提出猜想。

二、将教学内容精简化.考虑到我所教班级的学生认识水平,做了如下教学设计:⑴将教学目标定为让学生掌握勾股定理的逆定理.以及逆定理的应用,而对于本课中逆定理的证明.以及其探究都放在一下节课再进行讲解.⑵对于本课中所出现了的逆定理的定义,及其真假性的判断也简单化.本节课也不详细讲.本节课的的重点放在掌握勾股定理的逆定理,及其应用.从课堂效果来看,这样的教学设计是合理的,学生较好的掌握了勾股定理的逆定理,所以取得了良好的课堂效果。

三、应用训练,巩固新知为了巩固新知,灵活运用所学知识解决相应问题,提高学生的分析解题能力,基于对我班的学情分析,为了让学生都能动起手做,学案的设计上做了很多脚手架,目的就是让学生能够按照脚手架的步骤一步步完成,最终也形成了解题的“操作性”。此外,脚手架的设置对我们的中下水平的学生是很多帮助的.从课堂上看,他们也能在脚手架的帮助下,完成一定的题目中,而如果没有的话,这部分学生对一些基本的题都会束手无策.四、实行分层教学,让不同水平的学生在同一课堂都能学好,为此,我设计了三个层次的问题,以达到分层教学目标:第一层次是让学生直接运用定理判断三角形是否是直角三角形,掌握定理基本运用;第二层次是强调已知三角形三边长或三边关系,就有意识的判断三角形是否是直角三角形,这样既巩固了勾股定理的逆定理的应用,又为下一个层次做好了铺垫;第三层次是灵活运用勾股定理与逆定理解决图形面积的计算问题.根据学生原有的认知结构,让学生更好地体会分割的思想.设计的题型前后呼应,使知识有序推进,有助于学生的理解和掌握;让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,感受探索、合作的乐趣,并从中获得成功的体验.真正体现学生是学习的主人.。将目标分层后,我设计的学案里的题目也是相应的进行了分层设计,满足不同层次的学生的做题要求,达到巩固课堂知识的目的。最后,布置作业,也是分层布置的,分为三层,对应不同的学生,让他们的作业都在他们的能力范围。

诚然,这节课也存在许多不足。只有分析好不足是教学课后的重要环节,只有分析明白了自己的不足才能在今后的课堂里避免犯同样的错误,让课堂更加的完美起来。是我们新老师快速成长的途径,第一、新课导入部分:存在如下值得改进的地方:①复习旧知部分,复习勾股定理的内容应用了填空的形式,这个形式不是最佳的.因为学生书写勾股定理耗时,既使书写出来,复习效果也不太好。最佳的应该是以简单的题目形式来复习勾股定理.这样快而有效;②如何从复习勾股定理中巧妙的切入本课的主题,过渡语的设置,应该将过渡语言简单明了,可设计成:怎么从边的关系来叛断一个三角形是直角三角形呢?这就是本节课要学习的内容.③导入部分的课时分配估计不足,显得冗长,也一定程度上造成后面的教学时间紧张。应该对导入部分的时效再进行分析简化。第三、多媒体辅助教学方面存在不足。本节课我没有利用多媒体辅助教学,如学习目标的发展、习题训练内容的展示、学生活动的要求、作业布置等,这些内容都是为教学服务的。如果用多媒体课件的展示,可以增大了教学密度,使学生的双基训练得到了加强,使传统的课堂走向了开放,使学生真正感受到学习方式在发生变化。也在一定程度上让课堂更生动,更具有直观性,更加吸引学生的注意力,提高课堂效果。在以后的教学中我应加强。

第四,教师专业素养方面的不足。⒈对本节课的教学内容把握上有所欠缺,没有充分参考<<广州市义务教育阶段学科学业质量评价标准&&里的教学要点,考点,让自己的授课以它为准.让课堂符合它的要求.⒉讲课的语速过快,应该减速,因为个人的原因习惯的原因,语速可能存在过快,让学生很难跟的上来,从而影响学生的学习兴趣和学习效果。

在备每一节课中,对于课堂的每一个细节,第一刻钟,第一个教学设计的思考都无不直接影响着你的这一节课,影响着你的课堂效果。静心思考,反思整个过程是一种全新的收获,也是全新的开始,让自己能够重新起步,向前。

第三篇:八年级数学下册:17.2勾股定理逆定理(1)习题

八年级数学课题:17.2勾股定理逆定理(1)

1、在下列长度的各组线段中,能组成直角三角形的是()

A.5,6,7

B.1,4,9

C.5,12,13

D.5,11,122、若一个三角形三边长的平方分别为:32,42,x2,则此三角形是直角三角形的x2的值是()

A.42

B.52

C.7

D.52或73、△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()

A.如果∠C-∠B=∠A,则△ABC是直角三角形。

B.如果,则△ABC是直角三角形,且∠C=90°。

C.如果(c+a)(c-a)=,则△ABC是直角三角形。

D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形。

4、三角形的三边长为,则这个三角形是()

A.等边三角形;

B.钝角三角形;

C.直角三角形;

D.锐角三角形.5、在下列以线段a、b、c的长为三边的三角形中,不能构成直角三角形的是()

A、a=9,b=41,c=40

B、a=b=5,c=

C、a∶b∶c=3∶4∶5

D、a=11,b=12,c=156、分别以下列五组数为一个三角形的边长:6,8,10

13,5,12

1,2,3

9,40,41

32,42,52。其中能构成直角三角形的有_______________.7、已知,则由此a,b,c为三边的三角形是

三角形.8、命题“全等三角形的对应角相等”

(1)它的逆命题是。

(2)这个逆命题正确吗?。

(3)如果这个逆命题正确,请说明理由,如果它不正确,请举出反例。

9、以下列各组线段为边长,能构成三角形的是____________,能构成直角三角形的是____________.(填序号)

①3,4,5

1,3,4

4,4,6

6,8,10

5,7,2

13,5,12

7,25,2410、如图,在△ABD中,∠A是直角,AB=3,AD=4,BC=12,DC=13,△DBC是直角三角形吗?

11、判断由线段a,b,c组成的三角形是不是直角三角形:

(1)a=15,b=8,c=17.(2)a=13,b=14,c=15.12、已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?

⑴a=,b=,c=;

⑵a=5,b=7,c=9;

⑶a=2,b=,c=;

⑷a=5,b=,c=1。

(5)a=5k,b=12k,c=13k(k>0)。

13、已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1)求证:∠C=90°。

14、一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。

15、一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为多少米?此三角形的形状为?

第四篇:《勾股定理的逆定理》的教学反思

《勾股定理的逆定理》的教学反思

一、本节课的成功之处:

本节课以活动为主线,通过从估算到实验活动结果的产生让学生总结过程,最后回到解决生活中实际问题,思路清晰,脉络明了。

例如:活动1问题:据说古埃及人用下图的方法画直角:把一根长蝇打上等距离的13个结,然后以3个结,4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.

这个问题意味着,如果围成的三角形的三边分别为3、4、5.有下面的关系“32+42=52”.那么围成的三角形是直角三角形.

2、体现了“数学源于生活,寓于生活,用于生活”的教育思想;突出了“特征让学生观察,思路让学生探索,方法让学生思考意义让学生概括,结论让学生验证,难点让学生突破,以学生为主体”的教学思路。例如:命题2 如果三角形的三边长a,b,c满足a2+b2=c2那么这个三角形是直角三角形.

如下图,欲过基线MN上的一点C作它的垂线,可由三名工人操作:一人手拿布尺或测绳的0和12尺处,固定在C点;另一人拿4尺处,把尺拉直,在MN上定出A点,再由一人拿9尺处,把尺拉直,定出B点,于是连结BC,就是MN的垂线.

建筑工人用了3,4,5作出了一个直角,能不能用其他的整数组作出直角呢?

生:可以,例如7,24,25;8,15,17等.

3、在本节教学活动过程中,我经常走下讲台,到学生中去,以学生身份和学生一起探讨问题。用一切可能的方式,激励回答问题的学生,激发学生的求知欲,使师生在和谐的教学环境中零距离的接触。课堂上学生们的思维空前活跃,发言的人数不断增多,学生能从多角度认识问题,争先恐后地交流不同的意见和方法,收到比较好的效果。这是本节课的特色。

二、本节课的不足之处及改进方法:

1、本节课我没有利用多媒体辅助教学,如学习目标的发展、习题训练内容的展示、学生活动的要求、作业布置等,这些内容都是为教学服务的。如果用多媒体课件的展示,可以增大了教学密度,使学生的双基训练得到了加强,使传统的课堂走向了开放,使学生真正感受到学习方式在发生变化。在以后的教学中我应加强。

2、在重难点的突破上还应加一些递进的习题,降低题的难度,使优生学好,中等生也能跟上。这是我在以后教学

《反比例的图像和性质》的教学反思

教学反思:

一、本节课的成功之处:

把学生“自主、合作、探索”的学习方式落实到课堂教学的实践中,而不是仅仅停留在理论成面上。在本节课数学中,我结合教材内容,充分考虑初中生的认知特点尝试 用描点法来画出反比例函数的图象.

画出反比例函数y= 和y=-的图象.

解:列表

x…-6-5-4-3-2-1123456…

y=

-1-1.5-2-6

31y=-

11.236-1.(请把表中空白处填好)

描点,以表中各对应值为坐标,在直角坐标系中描出各点.

连线,用平滑的曲线把所描的点依次连接起来.

探究 反比例函数y= 和y=-的图象有什么共同特征?它们之间有什么关系?

2、在教学中每个小组的成员都非常活跃,积极寻找解决问题的办法。学生自己归纳公式,在小组交流中完善表述。这样既调动了学生学习数学的积极性与主动性,增强了学生参与数学活动的意识,又培养了学生的动手实验、观察和归纳能力。

例如:归纳 反比例函数y= 和y=-的图象的共同特征:

(1)它们都由两条曲线组成.

(2)随着x的不断增大(或减小),曲线越来越接近坐标轴(x轴、y轴).

(3)反比例函数的图象属于双曲线(hyperbola).

此外,y= 的图象和y=-的图象关于x轴对称,也关于y轴对称.

二、本节课的不足之处及改进方法:

1、对与初二的学生的学习情况还是不够不了解,因此在教学过程中,我们配合得还不十分默契,尽管我在教学中采取了一些积极措施,但在教学中还有死角存在。在以后的教学中还应调动都多数学生的积极性,使更多的学生参与到教学中。

2、在今后的教学中,我会不断地更新教育理念,结合学生的认知规律、生活经验对数教材进行再创造,选取密切联系学生现实生活和生动有趣的数学素材,为学生提供充分的数学活动和交流的空间,真正把创造还给学生,让学生动起来,让课堂焕发新的活力。

第五篇:八年级数学_勾股定理的逆定理说课稿(精品教案)

勾股定理的逆定理说课稿

尊敬的各位评委,各位老师,大家好:

我今天说课的内容是《勾股定理的逆定理》第一课时。下面我将从教材、目标、重点难点、教法、教学流程等几个方面向各位专家阐述我对本节课的教学设想。

一、说教材。

这节内容选自《人教版》义务教育课程标准实验教科书数学八年级下册第十八章《勾股定理》中的第二节。勾股定理的逆定理是几何中一个非常重要的定理,它是对直角三角形的再认识,也是判断一个三角形是不是直角三角形的一种重要方法。还是向学生渗透“数形结合”这一数学思想方法的很好素材。八年级正是学生由实验几何向推理几何过渡的重要时期,通过对勾股定理逆定理的探究,培养学生的分析思维能力,发展推理能力。在教学中渗透类比、转化,从特殊到一般的思想方法。

二、说教学目标。

教学目标支配着教学过程,教学目标的制定和落实是实施课堂教学的关键。考虑到学生已有的认知结构心理特征及本班学生的实际情况,我制定了如下教学目标:

1、知识与技能:探索并掌握直角三角形判别思想,会应用勾股定理及逆定理解决实际问题。

2、过程与方法:通过对勾股定理的逆定理的探索和证明,经历知识的发生,发展与形成的过程,体验“数形结合”方法的应用。

3、情感、态度、价值观:培养数学思维以及合情推理意识,感悟勾股定理和逆定理的应用价值。渗透与他人交流、合作的意识和探究精神,体验数与形的内在联系。

三、说教学重点、难点,关键。

本着课程标准,在吃透教材的基础上,我确立了如下的教学重、难点及关键。

重点:理解并掌握勾股定理的逆定理,并会应用。

难点:理解勾股定理的逆定理的推导。

关键:动手验证,体验勾股定理的逆定理。

四、说教法。

在本节课中,我设计了以下几种教法学法:

情景教学法,启发教学法,分层导学法。

让学生实践活动,动手操作,看自己画的三角形是否为一个直角三角形。体会观察,作出合理的推测。同时通过引入,让学生了解古代都用这种方法来确定直角的。对学生进行动手能力培养的同时,引导命题的形成过程,自然地得出勾股定理的逆定理。既锻炼了学生的实践、观察能力,又渗透了人文和探究精神。

五、说教学流程。

1、动手实践,检测猜测。引导学生分别以 3cm,4cm,5cm , 2.5cm,6cm,6.5cm和

4cm, 7.5 cm, 8.5 cm , 2cm, 5cm, 6cm为边画出两个三角形,观察猜测三角形的形状。再引导启发学生从这两个活动中归纳思考:如果三角形的三边长a、b、c满2足 a

2 b

c 2,那么此三角形是什么三角形?在整个过程的活动中,尽量给学生充足的时间和空间,以平等的身份参与到学生活动中来,帮助指导学生的实践活动。

2、探索归纳,证明猜测。

勾股定理逆定理的证明不同于以往的几何图形的证明,需要构造直角三角形才能完成,构造直角三角形就成为解决问题的关键。如果此时直接将问题抛给学生证明,学生定会觉

得无从下手。我就采用分层导进的方法,让学生从具体的例子中感受总结,再归纳到中抽象中来。于是我就设计了这样的两个步骤:

先补充一道例题:三边长度为3cm,4cm,5cm的三角形与以3cm,4cm为直角边的直角三角形之间有什么联系?你是怎么得到的?请简单说明理由。

然后再更改上面的例题,变为△ABC三边长为a、b、c,满足

b 2 

c 2,与以a 2 a、b为直角边的直角三角形之间有什么联系呢?你们又是如何想的?试说明理由。通过推理证明得出勾股定理的逆定理。

在这个过程中,要努力引导学生联想到“全等”,进而设法构造直角三角形,让学生在不断的尝试、探究的过程中,总结出勾股定理的逆定理。有效地突破本节的难点。同时提出原命题与逆命题及其关系。培养良好的数学学习习惯对学生的可持续发展是非常重要的,归纳出定理后,与学生一起分析定理的题设与结论,并与勾股定理进行对比,明白两定理是互逆定理。

3、尝试运用,熟悉定理。

课本中的例题是让学生进一步熟练掌握勾股定理的逆定理及其运用的步骤。

4、分层训练,能力升级。有针对性有层次性地布置练习,及时反馈教学效果,查缺被漏,并对有困难的学生给予指导。

5、总结内容,强化认识。使学生再次感悟勾股定理的逆定理,体会定理的互逆性,加深对“数形结合”的理解,更深刻地理解数学思想方法在解题中的地位和作用,激发学生学习数学的兴趣。

6、布置作业。有代表性地布置不同层次的作业,尊重学生的个体差异,满足多样化学习的需要。

结束语:我的说课完了,非常感谢各位领导和专家给了我这次学习、聆听、参与、锻炼的机会。谢谢大家!

下载人教版八年级数学下册《勾股定理逆定理》教学反思word格式文档
下载人教版八年级数学下册《勾股定理逆定理》教学反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    勾股定理逆定理教学设计

    18.2 勾股定理的逆定理 一、教学目标 知识与技能:1.应用勾股定理的逆定理判断一个三角形是否是直角三角形。 2.灵活应用勾股定理及逆定理解综合题。 3.进一步加深性质定理与判定......

    勾股定理逆定理教学设计

    勾股定理逆定理教学设计 勾股定理逆定理教学设计1 一、教材分析(一)教材所处的地位这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定......

    新课标初中数学八年级下册勾股定理的逆定理导学案(一)

    17.2.1 勾股定理的逆定理导学案 班级:组名:姓名:完成情况: 一、学习目标: 1、理解勾股定理的逆定理的证明(难点) 2、掌握勾股定理的逆定理在判定直角三角形上的应用(重点) 3、理解什......

    勾股定理的逆定理的教学设计说明

    勾股定理的逆定理的教学设计说明 本教案的教学设计是围绕勾股定理的逆定理的证明与应用来展开.根据学生的认知结构与教材地位,结合二期课改精神,为了达到本节课的教学目标,我设......

    勾股定理的逆定理教学设计

    勾股定理的逆定理教学设计目标和目标解析1.目标(1)理解勾股定理的逆定理.(2)了解互逆命题、互逆定理.2.目标解析达成目标(1)的标志是学生经历“实验测量-猜想-论证”的定理......

    八年级勾股定理教学反思

    八年级勾股定理教学反思 八年级勾股定理教学反思 1 在讲解勾股定理的结论时,为了让学生更好地理解和掌握勾股定理的探索过程,先让学生自己进行探索,然后同学进行讨论,最后上台......

    新人教版八年级数学下册《勾股定理》教学反思2

    勾股定理是中学数学几个重要定理之一,它揭示了直角三角形三边之间的数量关系,既是直角三角形性质的拓展,也是后续学习“解直角三角形”的基础.它紧密联系了数学中两个最基本的......

    2020-2021学年人教版数学八年级下册17.2.3勾股定理逆定理的综合应用教案

    课题勾股定理逆定理应用课时第二课时教学目标1.灵活运用勾股定理及逆定理解决实际问题。2.在解决问题的过程中继续体验模型的思想方法,培养学生与他人交流、合作的意识。3.培......