第一篇:高频小信号功率放大器
桂林电子科技大学课程设计(论文)报告用纸
摘 要
在无线通信中,发射与接收的信号应当适合于空间传输。所以,被通信设备处理和传输的信号是经过调制处理过的高频信号。高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。高频小信号放大器广泛用于广播、电视、通信、测量仪器等设备中。它的主要功能是从接收的众多电信号中,选出有用信号并加以放大,同时对无用信号、干扰信号、噪声信号进行抑制,以提高接收信号的质量和抗干扰能力。关键词:通信;小信号;功率;放大器
Abstract
In wireless communications, launching and receiving the signal should be adapted to the transmission.Therefore, the communications equipment processing and transmission of the signal is modulated high-frequency signal processing.HF communications equipment is commonly used in small-signal amplifier circuit functions.it magnified hundreds kHz to several MHz frequency signal.High-frequency small-signal amplifier is the function of the high frequency signal is weak fidelity amplification from the content spectrum signal, the output signal after amplification of input signal spectrum and the spectrum are the same.Small-signal amplifier widely used in high-frequency radio, television, telecommunications, measuring instruments and other equipment.Its main function is to receive from the many signals, and to be elected useful signal amplification, the signal useless.signal, signal noise suppressor, to improve signal reception quality and anti-jamming capability.Key words: Communications;Small signal ;power;Amplifier
桂林电子科技大学课程设计(论文)报告用纸
目 录
引言..........................................................................................................................................................1 1 理论知识............................................................................................................................................2 1.1 高频小信号功率放大器概述.........................................................................................................2 1.2基本性能指标..................................................................................................................................2 1.3 晶小信号放大器的有关知识.........................................................................................................3 1.3.1串并联谐振回路的特性......................................................................................................3 1.3.2串并联阻抗的等效互换......................................................................................................3 1.3.3并联谐振回路的耦合联结与接入系数..............................................................................4 2 电路的制作........................................................................................................................................7 2.1 电路原理图及说明:.....................................................................................................................7 2.2 放大器具体分析.............................................................................................................................7 2.2.1放大器的技术指标..............................................................................................................7 2.2.2 稳定性...............................................................................................................................10 2.3 PCB.................................................................................................................................................15 2.3.1PCB图..................................................................................................................................15 2.3.2高频PCB设计的布局布线................................................................................................15 3 调试..................................................................................................................................................16 3.1 调试...............................................................................................................................................16 结论........................................................................................................................................................16 谢 辞....................................................................................................................错误!未定义书签。参考文献................................................................................................................................................18 附 录....................................................................................................................................................19
桂林电子科技大学课程设计(论文)报告用纸
第 1 页
共 19 页
引言
本文介绍的高频小信号功率放大器的设计制作电路,高频小信号放大器又称为小信号放谐振放大器。本制作主要功能是:这个电路是两级放大电路,输入信号:100mVpp输出负载:51Ω谐振电压放大倍数:AUO≧30dB,通频带带宽为4MHz。
桂林电子科技大学课程设计(论文)报告用纸
第 2 页
共 19 页 理论知识
1.1 高频小信号功率放大器概述
高频小信号放大器的功用就是放大各种无线电设备中的高频小信号,如常见的无线电接收机中高频和中频放大器。
高频:频率范围从几百kHz到几百MHz。
小信号:所用的非线性放大元件(如晶体管或场效应管)可近似看成线性元件,工作在线性范围,可等效成四端网络。高频小信号放大器的基本组成是:由“放大部分+选频滤波部分”按“级联”方式构成。
具体分为:先放大后选频,先选频后放大,以及选频、放大、再选频的三种基本模式。
放大部分的核心:晶体管、场效应管、集成运放或专用集成放大器等。
选频滤波部分的核心:LC谐振回路或固定滤波器。
1.2基本性能指标
高频小信号放大器的基本性能指标如下:
(1)增益
增益定义为放大器的输出信号电量与输入信号电量的比值,用A加下标(类似于低频放大器的增益)来表示。
图3-1(b)为一典型增益的幅频特性曲线。
(2)通频带
通频带定义为放大器的增益比最大增益下降3dB时的上限截止频率fH 与下限截止频率fL之差,用BW0.7 = fH-fL 表示。(3)选择性
选择性表示放大器对通频带以外的各种干扰信号及其噪声的滤除能力,或者说,从各种干扰中选出有用信号的能力。放大电路的选择性主要由选频电路来决定。衡量选择性的具体指标是矩形系数Kr0.1。
桂林电子科技大学课程设计(论文)报告用纸
第 3 页
共 19 页
(4)工作稳定性
这是指选频放大器中的非线性放大元器件的偏置,交流参数,以及其它电路元件参数发生变化时,电路性能(如增益、通频带、矩形系数等)的稳定程度。(5)噪声系数
与低频放大器一样,选频放大器的输出噪声也来源于输入端和放大电路本身。通常用信噪比来表示噪声对信号的影响,电路中某处信号功率与噪声功率之比称信噪比。信噪比越大,信号质量越好。
噪声系数是用来反映电路本身噪声大小的技术指标。其定义为输入信号的信噪比与输出信号的信噪比的比值。噪声系数越接近于1,说明放大器的抗噪能力越强,输出信号的质量越好。
以上五项性能指标,相互间有联系也有矛盾。如增益和稳定性,通频带和选择性等。因此,应根据要求决定主次和取舍。1.3 晶小信号放大器的有关知识 1.3.1串并联谐振回路的特性
1.3.2串并联阻抗的等效互换 由图:
桂林电子科技大学课程设计(论文)报告用纸
第 4 页
共 19 页
图 2-1 等效互换电路 可知
(2-2)得:
(2-3)根据品质因数的定义,串连电路的品质因数为
代入上式得
可见等效结果 Q 不变。即
若回路品质因数较高,由式(2-3)可得
(2-4)
(2-5)此时可得:串联电路转换为并联电路后,R2 为串联电路 r1 的 电路X1相同,保持不变。
1.3.3并联谐振回路的耦合联结与接入系数
当并连谐振回路作为放大器的负载时,其连接的方式将直接影响放大器的性能。一般来看直接接入是不适用的,因为晶体管的输出阻抗低,会降低谐振回路的品质因数Q。通常,多采用部分接入方式,以完成阻抗变换的要求。
倍,而X2与串联
桂林电子科技大学课程设计(论文)报告用纸
第 5 页
共 19 页
我们定义:接入系数p为转换前的圈数(或容抗)与转换后的圈数(或容抗)的比值。由此定义我们分别可得:
(1)变压器耦合联接的变比关系
图 2-2 变压器耦合联接的变换 根据功率关系,故
(2-6)
根据变压器的电压变换关系,即
可得
(2-7)(2)自耦变压器耦合联接的变比关系
图 2-3 自耦变压器耦合联接的变换
上图是自耦变压器耦合联接形式,其变比关系的分析与变压器耦合相同。同理可得
(2-8)(3)双电容分压耦合联结的变比关系
桂林电子科技大学课程设计(论文)报告用纸
第 6 页
共 19 页
图 2-4 双电容分压耦合联结的变换
其变比关系可以应用串并联等效互换的关系求得,首先将 Rl 与 2 组成的并联支路等效为串联支路。其中X不变 , 电阻 RLS 为
再将 R LS、C 1、C 2 组成的串联支路等效为并联支路。而电阻
又因为:
所以
(2-9)上面以电阻 R L 的等效变换推导了各种联结形式的变比关系。可以得到电阻转换通式为
(2-10)为了以后分析电路时运用方便,可将上述变化关系推广到电导、电抗、电流和电压源的等效变比关系上去,可得
(2-11)
利用上式可以很方便地进行各种变换,这对我们以后分析电路是非常有用的。同学们一定要理解和牢记。
桂林电子科技大学课程设计(论文)报告用纸
第 7 页
共 19 页 电路的制作
2.1 电路原理图及说明:
高频小信号谐振放大器是由放大电路(由晶体管、场效应管或集成电路组成)与选频电路(主要是LC谐振回路)组成,作用是将微小的高频信号进行线性放大,选出中心频率(输入信号对应)的信号,并滤除不需要的干扰频率信号。原理图如下:
L3330uFC3103R122KCT15-20PC2L522K3.3uFGNDGNDL2C92.2uF22KC4103GNDL4330uFC5103GNDGNDC6103C11100uFGNDJ21234CON4CT25-20PC10C8J312CON2100P4321CON4GNDR26.2KR333L6330uFR4101102T29018J1C1T19018102J4CON1C7103RL51GNDGNDGNDGNDGNDGND 本放大器由共发射极组态的晶体管和并联谐振回路组成,如图,其直流偏置由R1、R2、Re来实现,CT1,C2,L5和 CT2,C9,L2 分别组成L、C谐振回路。C7为高频旁路电容。若晶体管用y参数等效电路等效,信号源用Is和Ys等效。变压器次级的负载为下一级放大器的输入导纳Yie2。2.2 放大器具体分析 2.2.1放大器的技术指标
(1)电压增益 根据定义,由上图得
桂林电子科技大学课程设计(论文)报告用纸
第 8 页
共 19 页
从等效关系可知
则
(2-26)放大器谐振时,对应的谐振频率为
(2-27)则
通常,在电路计算时,电压增益用其模表示,即
可表示为
(2)谐振曲线
放大器的谐振曲线是表示放大器的相对电压增益与输入信号频率的关系。
(2-28)由式(2-28)可得
桂林电子科技大学课程设计(论文)报告用纸
第 9 页
共 19 页
对谐振放大器来讲,通常讨论的 f 与 f 0 相差不大,可认为 f 在 f 0 附近变化,则
(2-29)式中,令,称为一般失谐。,称为广义失谐。代入上式得
(2-30)取模得
(2-31)下图是谐振特性的两中表示形式 :
图2-11放大器的谐振特性(3)放大器的通频带 通频带的定义是
时所对应的
为放大器的通频带。根据定义得
则
桂林电子科技大学课程设计(论文)报告用纸
第 10 页
共 19 页
故
(2-32)(4)放大器的矩形系数 矩形系数的定义是
其中,是
时所对应的频带宽度,即
故
根据矩形系数的定义得
(2-33)由此可以看出,单调谐回路放大器的矩形系数远大于1。也就是它的谐振曲线与矩形相差较远,选择性差。
2.2.2 稳定性
(1)谐振放大器存在不稳定的原因
前面分析电路曾假定晶体管的yre=0。但是,在实际运用中,晶体管存在着反向传输导纳yre,放大器的输出电压可通过晶体管的yre反向作用到输入端,引起输入电流的变化,这种反馈作用将可能引起放大器产生自激等不良后果。
桂林电子科技大学课程设计(论文)报告用纸
第 11 页
共 19 页
图2-12等效输入电路
由上图可见:输入导纳Yi为 Yi=yie+YF 其中,YF =gF+jbF为反馈导纳。负载导纳影响输入导纳,输入导纳影响负载导纳。值得注意的是,YF是频率的函数,在某些频率上,gF有可能为负值,还会使放大器自激振荡;bF使回路失谐,中心频率偏移。(2)放大器的稳定系数及稳定增益
①放大器的稳定系数
下图是调谐放大器的等效电路。当信号源提供输入电压后,通过晶体管得到,而
通过 y re 反馈到输入端得
图 2-13 调谐放大器等效电路
如果反馈电压在相位和幅度上Ui′与Ui相同,这就意味着放大器要产生自激振荡。现将Ui与Ui′的比值定义为稳定系数,即
(2-39)S 越大,放大器越稳定; S=1 为维持自激振荡的条件。
由于,Y s 是信号源的内导纳,它是有前级放大器的谐振回路等效而得,即
桂林电子科技大学课程设计(论文)报告用纸
第 12 页
共 19 页
(2-40)式中,用幅值与相角表示
(2-41)其中
同理,输出回路也可用相同形式表示,即
(2-42)其中,通常,放大器的输入贿回路和输出回路相同,即,则,(2-43)根据相位相同的条件,可得
桂林电子科技大学课程设计(论文)报告用纸
第 13 页
共 19 页
代入得
(2-44)②单级调谐放大器的稳定增益
所谓稳定增益,是指晶体管不加任何稳定措施,而满足稳定系数 S 要求时,放大器工作于谐振频率的最大电压增益。从图 2-9 所示等效电路可求得放大器的电压增益。设各级放大器的参数相同,且晶体管接入系数为 p 1,下级负载接入为 p 2,则单级电压增益为
由于各级参数相同,从输出电压 Uo 处向放大器输出端看,可认为其等效导纳为,故可得
于是
则
当回路谐振时,谐振电压为
故稳定电压增益为
桂林电子科技大学课程设计(论文)报告用纸
第 14 页
共 19 页
(2-45)③提高谐振放大器稳定性的措施
由于yre的反馈作用,晶体管是一个双向器件。使晶体管的反馈作用消除的过程称为单向化,其目的是提高放大器的稳定性。单向化的方法有中和法和失配法。
(一)中和法
所谓中和,是在晶体管放大器的输出与输入之间引入一个附加的外部反馈电路,以抵消晶体管内部yre的反馈作用。
图 2-14 具有中和电路的放大器
应该注意的是,严格的中和很难达到。因晶体管的 yre 是随频率变化的。
(二)失配法
所谓失配是指信号源内阻不与晶体管的输入阻抗匹配,晶体管输出端的负载不与本级晶体管的输出阻抗匹配。
失配法的实质是降低放大器的电压增益,以确保满足稳定的要求。可以选用合适的接入系数p1、p2或在谐振回路两端并联阻尼电阻来实现降低电压增益。在实际运用中,较多的是采用共射-共基级联放大器,其等效电路如下:
图2-15共射-共基级联放大器
从图中可以看出,输入回路与晶体管采用部分接入,而输出回路与晶体管直接接入,这是由于共基晶体管输出电阻很大,不用部分接入。
桂林电子科技大学课程设计(论文)报告用纸
第 15 页
共 19 页
2.3 PCB 2.3.1PCB图 如下图:
2.3.2高频PCB设计的布局布线
(1)高频微波板的基本要求
① 基材 电讯工程师在设计时,已经根据实际阻抗的需要,选择了指定的介电常数、介质厚度、铜箔厚度,因此,在接受订单时,要认真核对,一定要满足设计要求。② 传输线制作精度要求 高频信号的传输,对于印制导线的特性阻抗要求十分严格,即对传输线的制作精度要求一般为±0.02mm(±0.01mm精度传的输线也很常见),传输线的边缘要非常整齐,微小的毛刺、缺口均不允许产生。
③ 镀层要求 高频微波板传输线的特性阻抗直接影响微波信号的传输质量。而特性阻抗的大小与铜箔的厚度有一定的关系,特别对于孔金属化的微波板,镀层厚度不仅影响总的铜箔厚度,而且影响蚀房刻后导线的精度,因此,镀层厚度的大小及均匀性,要严格控制。
④ 机械加工方面的要求 首先高频微波板的材料与印制板的环氧玻璃布材料在机加工方面有很大的不同;其次是高频微波板的加工精度比印制板的要求高很多,一般外形公差为±0.1mm(精度高的一般为±0.05mm或者为0~-0.1mm)。
⑤ 特性阻抗的要求 前面已经谈到了有关特性阻抗的内容,它是高频微波板最基本的要求,不能满足特性阻抗的要求,一切都是徒劳的。(2)高频微波板生产中应注意的问题
① 工程资料的处理:对客户的文件进行CAM处理时,一定要把握两方面的内容,一是要认真吃透传输线的制作精度要求;二是根据精度要求并结合本厂的制程能力,作出适当的工艺补偿。
② 下料:通常印制板下料均使用剪板机或自动开料机,但对于微波介质材料则不能一概而论,要根据不同的介质特性,而选择不同的下料方法,多以铣、割为主,以免影响材料的平整度以及板面的质量。
③ 钻孔:对于不同的介质材料,不仅钻孔的参数有所不同,而且对钻头的顶角、刃长、螺旋角等都有其特殊的要求,对于铝基、铜基的微波介质材料,钻孔时加工方式也有所
桂林电子科技大学课程设计(论文)报告用纸
第 16 页
共 19 页
不同,以避免毛刺的产生。
④ 导通孔接地:一般情况下,导通孔采用化学沉铜的方法接地,化学沉铜时通常使用化学法或等离子法进行处理,从安全方面考虑,我们采用等离子法,效果很好;而对于铝基的微波介质材料,若使用通常的化学沉铜,有相当大的难度,一般建议采用金属导电材料灌孔接地的方法较为合适,但孔电阻一般小于20m?。
⑤ 图形转移:本工序是保证图形精度的一个重要工序。在选择光刻胶、湿膜、干膜等感光材料时,必须满足图形精度的要求;同时光刻机或曝光机的光源也必须满足制程的需要。
⑥ 蚀刻:本工序要严格控制蚀刻的工艺参数,如:蚀刻液各成份的含量、蚀刻液的温度、蚀刻速度等。确保导线边缘整齐,无毛刺、缺口,导线精度在公差要求的范围内。要切切实实做好这一点,需要细功夫,是非常必要的。
⑦ 涂镀:高频微波板导线上最后涂层一般有锡铅合金、锡铟合金、锡锶合金、银、金等。但以电镀纯金较为普遍。
⑧ 成形:高频微波板的成形与印制板一样,以数控铣为主。但铣削的方法对于不同的材料,是有很大区别的。金属基微波板的铣削需要使用中性冷却液进行冷却,而且铣削的参数也有相当大的差异。
总之,高频微波板的生产中,除了要注意以上的一些问题,还必须小心热风整平时锡缸温度、风压的大小及周转、装夹过程中的压痕和划伤。只有认真仔细地注意每一个环节,才能真正做出合格的产品来。调试
3.1 调试
调试时,可先检查印制板及焊接的质量是否符合要求,有无虚焊点及线路间有无短路、断路。然后用万用表测试或通电检测,检查无误后,可通12V电压,在加入100mv,11.9MHZ(我个人的学号的后三位)的信号,先调节第一级的,使得其输出频率为11.9MHZ,在调节第二级的,最后使得输出电压大于2V以上,频率为11.9MHZ,这样就成功了。我这次做电路板运气比较好,接入电源和信号,随便调节一下就得了。
结论
次此设计不但复习巩固了三年来所学习的专业知识,而且让我门更进一步掌握我们的所学知识。此过程对我们的动手能力又有进一步的提高。首先掌握高频小信号放大器的电路组成、晶体管工作的内部物理机制、高频参数、高频等效电路、参数等效电路。其次掌握高频小信号放大器放大倍数、输入阻抗、出入阻抗的计算公式的推导与使用方法。再次掌握高频小信号放大器阻抗匹配、接入系数的概念与基本计算方法。所以次此设计将对我们以后的工作起到不可磨灭的作用。此次设计还让我明白了,做什么事情都要认真仔细,来不得半点马虎,此次制作达到了我预期的结果。
桂林电子科技大学课程设计(论文)报告用纸
第 17 页
共 19 页
桂林电子科技大学课程设计(论文)报告用纸
第 18 页
共 19 页
参考文献
[1] 沈伟慈.通信电路.西安电子科技大学出版社,2004 [2] 曾兴雯.高频电子线路.高等教育出版社,2004 [3] 懂尚斌.高频电子线路实验指导.武汉大学电子信息学院,2003 18
桂林电子科技大学课程设计(论文)报告用纸
第 19 页
共 19 页
附 录
正确使用电烙铁
1、选用合适的焊锡,应选用焊接电子元件用的低熔点焊锡丝。
2、助焊剂,用25%的松香溶解在75%的酒精(重量比)中作为助焊剂。
3、电烙铁使用前要上锡,具体方法是:将电烙铁烧热,待刚刚能熔化焊锡时,涂上助焊剂,再用焊锡均匀地涂在烙铁头上,使烙铁头均匀的吃上一层锡。
4、焊接方法,把焊盘和元件的引脚用细砂纸打磨干净,涂上助焊剂。用烙铁头沾取适量焊锡,接触焊点,待焊点上的焊锡全部熔化并浸没元件引线头后,电烙铁头沿着元器件的引脚轻轻往上一提离开焊点。
5、焊接时间不宜过长,否则容易烫坏元件,必要时可用镊子夹住管脚帮助散热。
6、焊点应呈正弦波峰形状,表面应光亮圆滑,无锡刺,锡量适中。
7、焊接完成后,要用酒精把线路板上残余的助焊剂清洗干净,以防炭化后的助焊剂影响电路正常工作。
8、集成电路应最后焊接,电烙铁要可靠接地,或断电后利用余热焊接。或者使用集成电路专用插座,焊好插座后再把集成电路插上去。
9、电烙铁应放在烙铁架上。
第二篇:高频功率放大器实验
实验报告
课程名称:
高频电子线路实验
指导老师:
韩杰、龚淑君
成绩:__________________ 实验名称:
高频功率放大器
实验类型:
验证型实验
同组学生姓名:
_
一、实验目的和要求(必填)
二、实验内容和原理(必填)
三、主要仪器设备(必填)
四、操作方法和实验步骤
五、实验数据记录和处理
六、实验结果与分析(必填)
七、讨论、心得
一、实验目的
1、了解高频功率放大器的主要技术指标——输出功率、中心频率、末级集电极效率、稳定增益或输入功率、线性动态范围等基本概念,掌握实现这些指标的功率放大器基本设计方法,包括输入、输出阻抗匹配电路设计,回路及滤波器参数设计,功率管的安全保护,偏置方式及放大器防自激考虑等。
2、掌握高频功率放大器选频回路、滤波器的调谐,工作状态(通角)的调整,输入、输出阻抗匹配调整,功率、效率、增益及线性动态范围等主要技术指标的测试方法和技能。
二、实验原理
高频功率放大器实验电路原理图如下图图1所示。电路中电阻、电容元件基本上都采用贴片封装形式。放大电路分为三级,均为共射工作,中心频率约为10MHz。
图1 高频功率放大器
第一极(前置级)管子T1采用9018或9013,工作于甲类,集电极回路调谐于中心频率。第二级(驱动级)管子T2采用3DG130C,其工作状态为丙类工作,通角可调。通角在45°~60°时效率最高。调整RW1时,用示波器在测试点P2可看到集电极电流脉冲波形宽度的变化,并可估测通角的大小。第二级集电极回路也调谐于中心频率。第三级(输出级)管子T3也采用3DG130C,工作于丙类,通角调在60°~70°左右。输出端接有T形带通滤波器和π型阻抗变换器,具有较好的基波选择性、高次谐波抑制和阻抗匹配性能。改变短路器开关K1~K4可观看滤波器的失谐状态,为保证T3管子安全,调整时应适当降低电源电压或减小激励幅度。改变K5、K6可影响T3与51Ω负载的匹配状态。匹配时,51Ω负载上得到最大不失真功率为200mW左右,二次谐波抑制优于20dB,三级总增益不小于20dB,末级集电极到负载上的净效率可达30%左右,考虑滤波匹配网络的插入损耗,集电极效率可达40%以上。开关K8只有在接通后才能使功放达到预定效率,但实验时,为了使R16对末级管子T3起到限流保护作用,K8不要接通,而R16上的电压降也不必扣除,这只使功放总效率略有降低。电源开关K7用于防止稳压电源开机或关机时电压上冲导致末级功放管损坏。
三、主要仪器设备
10MHz高频功率放大器实验板、BT3C(或NW1252)扫频仪、高频信号发生器(QF1056B或EE1461)、示波器、超高频毫伏表(DA22)、直流稳压电源(电压5~15V连续可调,电流1A)、500型万用表(或数字万用表
四、实验内容和步骤
主要测试指标:功率、效率、线性动态范围 实验准备与仪器设置
1、实验板:
开关K7用于防止稳压电源开机或关机时电压上冲导致末级功放管损坏,所以稳压电源开机或关机前,开关K7必须置于关闭(向下);
短路开关置于K1、K3、K6、K9、K10,否则滤波器失谐,影响T3与51Ω负载的匹配状态,从而影响实验结果。
2、电源:
为保证T3管子安全,电源电压最高不超过+15V,实验时设置为+14.5V~+15V。
实验内容与步骤
4)用信号源及示波器测功放输出功率及功率增益
(1)适当改变信号幅度(200~300mV左右),使51Ω负载上得到额定功率200mW。
(2)在测试点P2观察电流脉冲,宽度应为周期的1/3左右。
(3)从输入输出信号幅度求得功放的(转换)功率增益。
(4)比较滤波器输入输出幅度,估计滤波器插入衰减。
5)用双踪示波器观察电流电压波形
(1)比较功放末级发射极电流脉冲波形和负载上基波电压波形的相位。(2)比较功放第二级发射极电流脉冲波形与集电极电压基波波形的相位,并分别画出波形。
6)高频功放效率(主要是末级)的调试与测量
(1)用示波器观看第二级发射极电阻电流脉冲宽度。
(2)用示波器在第三级功放发射极电阻上观看其电流脉冲波形。
8)功放线性观察
(1)调幅波通过功率放大器
将中心频率为10MHz、调制度为60%的调幅信号电压加到功放输入端,适当调整输入信号幅度(200mV),使51Ω负载上输出调幅波峰值功率不超过功放额定功率200mW,用双踪
示波器比较输入、输出调幅波的波形并加以说明。
(2)调频波通过功率放大器
将中心频率为10MHz的调频波(频偏60KHz)输入功放,调节信号幅度使负载上调频信号功率不超过功放额定功率,比较输入、输出调频波的波形并加以说明。
五、实验数据记录和处理
1、用信号源及示波器测功放输出功率及功率增益
(1)适当改变信号幅度(200~300mV左右),使51Ω负载上得到额定功率200mW。
本次实验采用的电路板,当输入信号幅度为350mv时,51Ω负载上可以达到200mW的额定功率,此时负载两端输出电压峰峰值为9.02V。
当输入信号幅度为350mW时,负载两端波形如下所示:
由图可知此时波形峰峰值为9.02V,与理论计算的9.03V十分接近,所以实验数据可靠。
(2)测试点P2的电流脉冲: 已测:频率为10MHz,周期为T=100ns,电流脉冲宽度为43ns,约为周期的1/3。
(3)功放的(转换)功率增益:
∵VPP-in=300mV*2=0.6V
Vpp-out=9.03V
又输入输出阻抗匹配
2Vpp9.032out∴功率增益:A10lg210lg23.55dB2Vppin0.6
上述结果满足实验原理中三级总增益不小于20dB的结论。
(4)比较滤波器输入输出幅度,估计滤波器插入衰减。
滤波器输入:信号峰峰值= 2.01V
滤波器之后的输出峰峰值=1.27V 插入损耗为:20*lg(1.27/2.01)=-3.99db
2、用双踪示波器观察电流电压波形。
(1)功放末级发射极电流脉冲波形的相位与负载上基波电压波形的相位比较:
由上图可知,两者之间的相位差约为180度。
(2)功放第二级发射极电流脉冲波形与集电极电压基波波形的相位比较:
根据波形比较可知,两者之间的波形相位相差180度。
3、高频功放频率(主要是末级)的调试与测量
(1)第二级发射极电阻电流脉冲宽度:
第二级发射极电流脉冲宽度约为42ns
(2)第三级功放发射极电阻上观察电流脉冲波形:
4、功放线性观察:
(1)输入、输出调幅波的波形:
如图可以看出,输出调幅波与输入调幅波相比较,可知输入调幅波通过高频功放之后波形产生了很大的失真。
(2)输入、输出调频波的波形:
如图所示,通过高频功率放大器之后调频波的输入输出波形并没有太大的差别(均为正弦波),只是输出波形稍微有些失真,但是并不明显。
六、实验结果与分析
1、用信号源及示波器测功放输出功率及功率增益
实验中,通过调节变阻器的值调节电路,最终当输入信号幅度取到300mV时,51Ω负载上得到的功率为200mW。由于实验中T2管子工作状态为丙类,即为C类高频功放,导通角约为60度,因此在发射极P2测试点测得的电流脉冲为周期T的1/3左右(60°/180°=1/3)。比较滤波器的输入输出波形可以看出,功率增益为23.55dB,满足三级功放的功率增益不小于20dB,插入的滤波器可以将C类放大器引起的非线性失真补偿,这是因为T形带通滤波器和π型阻抗变换器具有较好的基波选择性、高次谐波抑制和阻抗匹配性能,但同时付出了增加插入损耗的代价。实验中测得滤波器的插入损耗为
dB。
2、用双踪示波器观察电流电压波形
比较功放第2级发射极P2电流脉冲波形与集电极P3电压基波波形的相位,发现相位差约为180度,这与三极管的反相特性吻合;当比较功放末级发射极P4电流脉冲波形与负载上基波电压波形的相位,发现相差也为180度。
3、高频功放频率的调试与测量
通过观察高频功放末级发射极上电流脉冲波形,发现仍然存在失真,脉冲宽度约为一周期的0.4,但是信号的幅度与第二级发射极电流脉冲来讲已经被放大了。
4、功放线性观察
试验中分别观察了调幅波通过高频功放与调频波通过高频功放之后的失真,发现调幅失真度比调频的失真度要大很多,这是因为实验中T2T3均为C类放大器,是属于非线性放大器,不适合放大为非恒定包络的已调信号。对于普通调幅波信号,C类放大器对幅度不同的输入信号的导通角不同,输出电流基波分量的幅度与导通角成非线性关系,使得输出电压幅度的包络与输入电压包络不成正比,从而产生较大失真,而调频信号适合使用C类高频功放,因此输入输出波形没有太大差别。
八、思考题
1、简述放大器分类以及各类放大器的区别与应用?
答:功率放大器根据输出功率与效率不同,分为A、B、C、D、E等几类。
按照信号一周期内晶体管的导通情况,即按导通角的大小,功率放大器可分为A、B、C三类。在信号一周期内管子均导通,导通角为180°,称为A类放大器,理想效率为50%,负载为电阻。一周期内只有一半导通的称为B类放大器,导通角为90°,理想效率为78.5%,电路一般采用两个管子轮流导通的推挽形式。AB类放大器介于A、B类两者之间,导通角为90°~180°,理想效率为50%~78.5%,电路同样采用推挽形式。而导通时间小于一半周期的成为C类放大器,即导通角小于90°,理想效率大于78.5%。
如果按照晶体管的等效电路分,则A、B、C属于一大类,它们的晶体管都等效为一个受控电流源。而D、E属于另一类功放,它们的晶体管被等效为受输入信号控制的开关,导通角都近似为90°,都属于高效率的非线性功率放大器。
对于音频功率放大器,目前使用最多的是AB 类功放,这类功放优点是音质较好,缺点是它的平均效率不高,大约40%左右,在大音量时整机温升较高。因此许多电子工作者设计了其他种类的音频功率放大器,如G类功放。G类功率放大器设计基本思想是,当功放输出幅度较小时功放末级供电采用低电压,当输出幅度升高时功放末级供电采用较高一些电压,如输出幅度继续升高时,功放末级供电再用更高一些电压,这样就减小了信号小幅度下的管耗,大大提高了整机效率。采用数字切换电源方式的G类功放的功率管功耗很低,带来的好处是整机发热大大降低,提高了电路的可靠性,减小了电源的功率和功率管散热片的大小,而音质又与AB 类功放差不多,是很值得推广的一种音频功率放大器。
2、当高频功放负载电阻发生短路或开路时,功放管会发生什么危险?
答:当负载短路时会使功放管烧毁,当负载开路时会使功放管击穿。
3、当高频功放集电极回路或滤波器电路严重失谐时,功放管可能出现什么危险,为什么?
答:功放管可能因集电极电流过大而烧毁,也可能因集电极脉冲电压过大而击穿。具体情况与激励幅度、信号频率、回路或滤波器阻抗、Q值、失谐量、阻抗变换比、电源电压等因素有关。
4、当高频功放激励幅度过大或过小时,会产生什么不良后果?
答:若高频功放管激励幅度过小时,则输出功率太小,观察不明显,容易与噪声混淆。若输入信号激励过大时则可能会产生波形的失真、模糊等现象,即出现寄生调制,间歇振荡或高频自激等,从而可能使得功放管烧毁或击穿。
5、调节RW1减小功放第二级导通角时,功放总幅频特性会发生什么变化,为什么?导通角改变对功放管安全性有什么影响?
答:当调节RW1减小功放第二级导通角时,可能使功放总特性输出幅度升高,而带宽变窄,并在中心频率的1/
2、1/
3、1/4……处产生增益。因为导通角减小时,管子阻抗升高,从而使得贿赂的损耗减小,Q值升高,进而使得功放级等效阻抗升高,电压增益升高,线性动态范围减小,因而出现严重非线性失真,即在中心频率1/
2、1/3……处出现明显的高次谐波输出。这会使得末级功放容易被击穿,并可能在带外产生严重的杂波辐射,对其他射频信号产生干扰。
6、高频功放电源电压应如何选定?若外接负载固定为50Ω,为得到最大输出功率,甲类、乙类高频功放的输出阻抗匹配应如何考虑?
答:高频功放电源电压一般小于BVCEO/2(30/2V=15V),并尽可能采用通用标准直流电压,即功放调谐后,电源电压最高不超过15V。为了提高功率,功放末级管子T3采用3DG130C,工作于丙类,通角在60°~70°左右,此时集电极匹配负载阻抗约为(2.5~3)BVCEO/ICM,再将50Ω负载阻抗转换成这个值即可。末级功放甲类、乙类工作时,上述阻抗括号内数字为1和2。
8、如何提高高频功放的稳定功率增益?
答:根据公式
功放管稳定功率增益与管子的工作点及稳定系数大小有关,当满足绝对稳定条件: |K|>
1、|S11|<
1、|S22|<1时,只要输入输出端满足阻抗共轭匹配,即可达到最大稳定功率增益。然而大多数管子不满足绝对稳定条件,因而通常只在输入端实行共轭匹配,而输出端失配,失配负载阻抗可能有两个值,也可能有一个值或者没有值。如有两个值,则可根据其他指标作出选择;如只有一个值,则没有选择余地;如没有稳定失配阻抗值,则应改变工作点,电源电压或跟换管子。稳定失配负载电阻为:
式子中Vsat为管子高频饱和压降(比直流饱和压降大很多,测试方法为:输入额定功率,监视输出电压或功率,逐渐降低VCC至电压或功率开始下跌时,记下VCC值,并测出输出电压幅值Vom,则Vsat=、VCC-Vom。
9、高频功放的实际功率增益如何测量?
答:高频功放的实际功率增益测量,主要是不匹配输入阻抗实部Rin的测量。方法有开路(高阻为近似开路)法,等效 阻抗置换法及电流取样法等。
1)开路法最简单信号源内阻Rs通常为50Ω已知,加上额定激励幅度Uin(注意输入回路调谐),再断开后测信号源开路电势E,则Rin=UinRs/(E-Uin),Pin=Uin/Rin,实际功率增益Kp=Pout/Pin。
2)等效阻抗置换法稍麻烦,既要保证管子输入端回路
调谐,又要调整等效电阻大小,使电阻上电压与管子额定输入电压幅度相等。
3)电流取样法需要在输入端调谐后串接一个小电阻R,测出电阻两端电压差Vin-Vin,求出电流Iin=(Vin-Vin)/R,则Pin=VinIin,实际功率增益Kp=Pout/Pin=PoutR/Uin(Vin-Vin)。
10、怎样防止高频功放自激?
答:预防功放自激措施如下所示。
1)选择合适的管子参数(功率PcM、电流IcM、频率fT、耐压BVce0等; 2)选择合适的工作状态(电源电压、导通角(60~70º)); 3)正确选择电路形式;
4)正确设计电路参数,特别是回路阻抗、带宽及扼流圈电感量等,并根据绝对稳定条件,充分留有稳定性余量;
5)准确测出管子S参数,并适当修正设计参数;
6)正确设计结构布局,充分缩短电路走线和元件引线(特别是管子发射极引线)长度,减少元件之间的分布电容,级间双电容宽带去耦、级间及总体屏蔽,采用大面积地线及就近接地;
7)准确调谐频率和调整信号激励幅度;
8)微带功放要采用较薄、高 εr的氧化铍陶瓷基板,采用加散热器、风冷等稳定措施,进行低频滤波,采用低频短路负载等。
11、用3DG130C管设计一个5MHz高频功放,负载为50Ω,输出功率200mW,功率增益大于20dB,二次谐波抑制优于20dB,末级放大器到负载净效率大于35%,电源电压为12~15V。
答:电路的设计与本次实验及其类似,但是几个元器件的工作参数发生了变换,具体参数如下: 1.第一级
1)管子:9013(fT 300MHz,PcM 700mW,BVce0实测 ≥30V)2)工作状态:甲类 2.第二级
1)管子:3DG130C(fT≥300MHz,IcM≥300mA,PcM≥700mW,BVce0≥30V,实测≥30V)
2)工作状态:丙类-乙类-甲乙类-甲类连续可调。3.第三级
1)管子: 3DG130C(参数同第二级)2)工作状态:
丙类通角:60~70°
集电极负载:300Ω
最大输出功率:约300mW
集电极效率:约35% 3)滤波器 :
最平型带通T型3级(视谐波抑制指标而定)
中心频率:
5MHz
相对带宽(2Δf/f。):约0.05~0.1
终端阻抗:
200~300Ω
插入损耗:
约3~5dB 4)π型导纳变换器:
特征阻抗:
约50Ω
第三篇:小信号调谐放大器专题
实验报告
课 程: 高频电子线路实验 实 验: 小信号调谐放大器 班 级: 09电信2班 姓 名: 林小龙 学 号: 20090662224
日 期: 年 月 日
一、实验目的
①通过实验进一步熟悉小信号调谐放大器的工作原理,初步了解工程估算的方法。②掌握调谐放大器的电压增益、选择性、通频带及动态范围的测试方法。③掌握使用频率特性测试仪调整小信号谐振放大器谐振特性的方法。
二、实验原理
小信号调谐放大器的主要特点是晶体管的集电极负载不是纯电阻,而是由LC组成的并联谐振回路,如图1-1所示。由于LC并联谐振回路的阻抗是随频率而变的,在谐振频率
处其阻抗是纯电阻,达到最大值。因此,用并联谐振回路作集电极负载的调谐放大器在回路的谐振频率上具有最大的电压增益。稍离开此频率,电压增益迅速减小。我们用这种放大器可以放大所需要的某一频率范围的信号,而抑制不需要的信号或外界干扰信号。因此,调谐放大器在无线电通信系统中被广泛用作高频和中频放大器。
图1—1 小信号调谐放大器
三、实验电路
图1-1所示电路为实验电路,它是由共发射极组态的晶体管和并联谐振回路组成的单级单调谐放大器。
本实验电路要求完成单级调谐放大器的技术指标:中心频率f0=15MHz,通频带2△f0.7=4MHz,增益A>20dB,RL=1 kΩ。
电路主要元件参数:晶体管3DG6C,β=60,查手册知在f0=30MHz,IC=2mA,Vcc=9V条件下测得y参数为gie=2mS,Cie=12PF,goe=250μs,Coe=4pF,yfc=40mS,yre=350μS。如果工作条件发生变化,则上述参数值仅作为参考。要得到晶体管的y参数也可由混合π参数计算出y参数。中频变压器参数:L=4μH,Q0=100,P1=0.6,P2=0.3。回路电容C1=10PF,C2=(5~20)PF,在调谐过程中使用微调电容C2,调整中心频率。直流偏置由Rb1、Rb2、Rc实现,电阻器W1为47kΩ,用于调整静态工作点。电路中的电容一般使用体积小的瓷片电容。
四、调谐放大器的调整与测试
首先应调整每一级所需的直流工作点。其调试方法与阻容耦合放大器相同。但要注意一点:在多级调谐放大器中,由于增益高,容易引起自激振荡。因此,在测试其直流工作点时,应先用示波器观察一下放大器的输出端是否有自激振荡波形。如果已经有自激振蔼,应先设法排除它,然后再测试其直流工作点。否则,所测数据就是不准确的。对于调谐放大器的频率特性、增益及动态范围的调整与测试,一般有两种方法:一种是逐点法;一种是扫频法。后者比较简单、直观。但由于其频标较粗,对于窄带调谐放大器难以精确测试。
(一)逐点法
所谓逐点法,就是以高频信号发生器为信号源,用示波器或电压表为测试仪器,直接接线如图1-4所示。
图1-4调谐放大器的测试电路
1.谐振频率的调试
将信号发生器的输出频率置于f=15MHz,输出电压Uo=10mv,Vcc=+12v,调可变电容器C2使回路谐振,即高频毫伏表的指示值达到最大,回路处于谐振状态。
对于多级单调谐放大器的谐振频率的调试,应该从末级开始,逐级向前进行调试。即先将信号源的输出电压加到末级放大器的基极,调节末级放大器调谐回路中的电感或电容,使输出电压达到最大。……如此推进到第一级后,就说明各级的谐振同路都基本上工作在所需的fo附近了。但由于各级之间存在着相互影响,因此当信号源输出电压加到第·级输入端后还应再反复调节各级调谐回路的电感或电容,使输出电压达到最大。
在调整过程中,应注意几点:第一,信号源输出幅度对末级应适当大些,越呈向前级推进,其输出幅度就应该相应减小。否则由于输入幅度过大而使放大器进入非线性状态,将使调谐不准。第二,当信号源输出端接到各级输入端时,应有隔直电容,否则信号源的接入会影响放大器的直流工作点。第三,在调谐回路的电感或电容时,最好采用绝缘材料做的改锥,以减小金属改锥对回路电感或电容的影响。
2.幅频特性的调试
当中心频率调整好后,就可测试放大器的频率特性了。在输出幅度不超过放大器线性动态范围的条件下,保持输入电压幅度不变,在谐振频率fo两旁逐点改变信号频率,用示波器或高频毫伏表测出相应的输出电压Uo,计算出各点的放大倍数Au,就可描出放大器的谐振曲线Au-f,如图1-5所示。从曲线上即可求出2△f0.7和2△f0.1。
若这些指标的测量值与设计值相差较远,应根据它们的表达式分析。例如放大倍数
Au0较小,可以通过调整静态工作点Ic,接入系数p1或更换β较大的晶体管,使Auo增加。如果2△f0.7窄了,可以通过调整阻尼电阻R使之变小,从而增加插入损耗使2△f0.7变宽。
由于分布参数的影响,放大器的各项技术指标满足要求后的元件参数与设计计算值有一定偏差。
采用逐点法测量,调整起来比较麻烦,花费的时间也比较多。因此目前采用最多的方法是扫频法,用BT-3频率特性测试仪测量回路的谐振曲线。
(二)扫频法
I.放大器的调谐
将BT-3频率特性测试仪提供的扫频信号用终端接有75Ω电阻的电缆加到单级放大器的输入端,检波探头接到末级的输出负载上,然后调节中心频率旋钮,屏幕上就可显示出放大器的谐振特性曲线。这时调节回路电容或回路电感,使谐振特性曲线在规定的中心频率上出现最大值。
多级单调谐放大器的调谐,要先调谐末级放大器的谐振回路,然后调前一级回路,使中心频率上出现的峰值增大。按此逐级向前推移。这种从后级调到前级的方法,可以减小后级回路参数通过晶体管内部反馈对前级回路的影响。实际上,这种影响是难免的,因此必须多次由后级向前级反复调谐。应注意的是各调谐回路调到同一频率时,放大器的增益不断提高,扫频信号必须相应减小,以防止放大器饱和。
2.增益的测量
参考第四章频率特性测试仪中有关增益的测量方法。
五、实验仪器
高频信号产生器
QF-1056
1台
双踪示波器
DOS-645B
1台
频率特性测试仪
BT-3
1台
超高频毫伏表
DA-36
1台
晶体管直流稳压电源
1台
万用表
1块 高频Q表
QBC-3
1台 无感起子
1把 小信号调谐放大器实验电路板
1块
六、实验内容
(一)单级单调谐放大器的调整与测试
①知图1-1为单调谐放大器的实验电路图。L=4μH,p1=0.6,p2=0.3,晶体管为3DG6C,Vcc=+12V,RL=1 KΩ
主要技术指标:中心频率fo=15 MHz,谐振电压放大倍数Au0≥20dB,通频带2△f0.7=4 MHz。
②拟定实验步骤。
③确定测量方法。
④测量主要技术指标‘
⑤实验分析与研究。
(二)两级单调谐放大器的调整与测试
①用两块如图1-1所示的单级单调谐放大器实验板组成两级单调谐放大器。
注意:把作为第一级放大器的输出负载RL取下,即第二级的输入阻抗为第一级的输出负载。
②主要技术指标:谐振频率fo=15MHz,谐振电压放大倍数Auo=40db,通频带2△f0.7=2.5MHz
③拟定实验步骤。
④确定测量方法。
⑤误差分析。
⑥电路的改进意见及本次实验中的收获体会。
七、实验研究与思考题
①回路的谐振频率fo与哪些参数有关?如何判断谐振回路处于谐振状态,用实验说明。
解:回路谐振频率主要和电容电感的大小有关,由于谐振实放大电路输出的增益应最大,故只要测出功率最大的频率即谐振频率。判断方法有两种:
1、用高频毫伏表观测Uo,当Uo得最大值时,并联谐振回路处于谐振状态;
2、用示波器监测Uo,当波形最大不失真时,并联谐振回路处于谐振状态。②为什么说提高电压放大倍数Auo时,通频带2△f0.7,会减小?可以采取哪些措施提高放大倍数Auo?可以采取哪些措施使2△f0.7加宽?实验结果如何? 解:因为AUP1P2YfeGT,要提高AV,则可适当增加接入系数,但因为接入系数过大导致GT增加,由BW0.7f0可知,GT增大,BW0.7减小,即带宽BW减小。GT③在调谐LC谐振回路时,对放大器的输入信号有何要求?如果输入信号过大会出现什么现象?
解:由AUP1P2YfeGT 知AV与输入信号大小无关。但由于UO的增大将可能超出小信号放大器的线形动态范围。引起信号失真,也会通过外部寄生耦合导致放大器工作不稳定。所以,输入信号不能太大,过大则引起信号失真和放大器工作不稳定。
④影响小信号调谐放大器稳定的因素(使放大器不稳定的因素)有哪些?如果实验中出现自激现象,采取什么措施解决? 解:有温度,电阻电容值,信号源等等。如果实验中出现自激现象可以使用:(1)中和法:
在晶体管的输出和输入端之间插入一个外加的反馈电路,使它的作用恰好和晶体管的内反馈互相抵消。
外加的反馈电路克服自激
(2)失配法:
失配法一般采用共射——共基级联放大器实现,失配法是用牺牲增益换来提高放大器的稳定性。如下图:
⑤谐振回路的接入系数对放大器的性能有哪些影响? Av0与接入系数p1、p2有关, 但不是单调递增或单调递减关系。而p1和p2还会影响回路有载Q值,并进一步影响通频带,所以p1与p2的选择应全面考虑, 选取最佳值。
第四篇:高频小信号放大器实验报告
南京信息工程大学滨江学院
高频电子线路实验报告
作者 徐飞 学号 20092334925 系部 电子工程系 专业班级 通信三班
实验一 高频小信号放大器实验
一、实验原理
高频小信号放大器的作用就是放大无线电设备中的高频小信号,以便作进一步变换或处
理。所谓“小信号”,主要是强调放大器应工作在线性范围。高频与低频小信号放大器的基 本构成相同,都包括有源器件(晶体管、集成放大器等)和负载电路,但有源器件的性能及负载电路的形式有很大差异。高频小信号放大器的基本类型是以各种选频网络作负载的频带 放大器,在某些场合,也采用无选频作用的负载电路,构成宽带放大器。
频带放大器最典型的单元电路如图所示,由单调谐回路做法在构成晶体管调谐放大器。
图电路中,晶体管直流偏置电路与低频放大器电路相同,由于工作频率高,旁路电
容Cb.、Ce可远小于低频放大器中旁路电容值。调谐回路的作用主要有两个:
晶体管单调谐回路调谐放大器
第一、选频作用,选择放大ff0的信号频率,抑制其它频率信号。
第二、提供晶体管集电极所需的负载电阻,同时进行阻抗匹配变换。
高频小信号频带放大器的主要性能指标有:
(1)中心频率 f0:指放大器的工作频率。它是设计放大电路时,选择有源器件、计算
谐振回路元件参数的依据。
(2)增益:指放大器对有用信号的放大能力。通常表示为在中心频率上的电压增益和
功率增益。
电压增益 AVOVO/Vi
功率增益 APOPO/Pi
式中 VO、Vi分别为放大器中心频率上的输出、输入电压幅度,PO、Pi分别为放大器中心频率上的输出、输入功率。增益通常用分贝表示。
(3)通频带:指放大电路增益由最大值下降 3db 时对应的频带宽度。它相当于输入不
变时,输出电压由最大值下降到 0.707 倍或功率下降到一半时对应的频带宽度。(4)选择性:指放大器对通频带之外干扰信号的衰减能力。通常有两种表征方法: 其一,用矩形系数说明邻近波道选择性的好坏。
其二,用抑制比来说明对带外某一特定干扰频率 fn信号抑制能力的大小,其定义为中心频率上功率增益 APf0与特定干扰频率fn上的功率增益 APfn之比:
df0
ApfnAp还有其它一些性能指标参数,如工作稳定性,噪声系数等。
高频小信号谐振放大电路如图所示:
高频小信号谐振放大器
晶体管基极为正偏,工作在甲类,负载为 LC 并联谐振回路,调谐在输入信号的频率
465khz 上。该放大电路能够对输入的高频小信号进行反向放大。
在 Multisim 7 电路窗口中,创建如图所示的高频小信号放大电路图,其中晶体管
Q1 选用虚拟晶体管。单击“防真”按钮,就可以从示波器中观察到输入与输出的信号波形。
二、实验内容
(一)频带放大器的测量
1.观察高频小信号放大器输入输出信号的波形,注意幅度变化和相位关系。
高频小信号放大器输入输出信号
2.高频小信号的选频作用
观察输入输出波形,分析产生此种现象的原因
3.高频小信号放大电路的通频带和矩形系数
利用 Multisim 7 仿真软件中所提供的波特图仪观察上述高频小信号放大电路的通频
带,将波特图仪接入高频小信号谐振放大电路,观察幅频特性。
4.观察双调谐回路高频小信号放大器输入与输出波形,分析幅频特性。
(二)宽带放大器的测量
观察输入输出信号的波形,分析幅频特性。
第五篇:高频小信号谐振放大器
高频小信号谐振放大器实训电路
高频小信号谐振放大器实训电路
高频小信号谐振放大器的输入、输出波形图 高频小信号谐振放大器实训电路
高频小信号谐振放大器的幅频特性曲线