双足步行机器人相关翻译

时间:2019-05-14 02:25:36下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《双足步行机器人相关翻译》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《双足步行机器人相关翻译》。

第一篇:双足步行机器人相关翻译

本科毕业论文

外文文献及译文

文献、资料题目:Walking Control algorithm of

Biped Humanoid Robot

文献、资料来源:期刊

文献、资料发表(出版)日期:1999.6.3 院(部): 理学院

业: 光信息科学与技术 班

级: 光信112 姓

名: 王若宇 学

号: 2011121135 指导教师: 赵俊卿 翻译日期: 2015.5.14

山东建筑大学毕业论文外文文献及翻译

外文文献:

Walking Control algorithm of Biped Humanoid Robot

Many studies on biped walking robots have been performed since 1970 [1-4].During that period, biped walking robots have transformed into biped humanoid robots through the technological development.Furthermore, the biped humanoid robot has become a one of representative research topics in the intelligent robot research society.Many researchers anticipate that the humanoid robot industry will be the industry leader of the 21st century and we eventually enter an era of one robot in every home.The strong focus on biped humanoid robots stems from a long-standing desire for human-like robots.Furthermore, a human-like appearance is desirable for coexistence in a human-robot society.However, while it is not hard to develop a human-like biped robot platform, the realization of stable biped robot walking poses a considerable challenge.This is because of a lack of understanding on how humans walk stably.Furthermore, biped walking is an unstable successive motion of a single support phase.Early biped walking of robots involved static walking with a very low walking speed [5,6].The step time was over 10 seconds per step and the balance control strategy was performed through the use of COG(Center Of Gravity).Hereby the projected point of COG onto the ground always falls within the supporting polygon that is made by two feet.During the static walking, the robot can stop the walking motion any time without falling down.The disadvantage of static walking is that the motion is too slow and wide for shifting the COG.Researchers thus began to focus on dynamic walking of biped robots [7-9].It is fast walking with a speed of less than 1 second per step.If the dynamic balance can be maintained, dynamic walking is smoother and more active even when using small body motions.However, if the inertial forces generated from the acceleration of the robot body are not suitably controlled, a biped robot easily falls down.In addition, during dynamic walking, a biped robot may falls down from disturbances and cannot stop the walking motion suddenly.Hence, the notion of ZMP(Zero Moment Point)

第二篇:四足步行机器人外文翻译1

新兴的运动模式四足机器人气动肌肉用的模型

保德山田,聪西川,伊士达和康夫国芳 研究生信息科学与技术学院,东京大学

大学院情报研究,东京大学

1、动机,问题的陈述,相关工作

动物的进化过程形成了形态和神经系统从彼此相互适应而达到一个在环境中有效的感觉整合。作为一个结果,各种复杂行为的标志,通过能耗效率以及从动态自组织产生互动的身体、神经系统和环境。这些技能是可能的,一方面,因为神经系统利用身体的物理属性,而另一方面通过感官刺激形成体动力学神经力学结构。这构成了一个体现智能[1] [2] [3]的基本属性。

近年来,许多研究已经发展到更好地了解潜在的机制动物的运动技能和如何将它们应用在机器人[4][5]。此外,特定的注意力被集中在中央的模式发生器在仿生机器人[6]中来复制动物运动。举例来说,像狗一样的铁拳系列[7]可以使用感官反馈实现稳定的运动,而类似昆虫的AMOS-WD06[8]可通过利用中央政府模型的混沌特性产生各种复杂的行为。然而,这些机器人不用容易开发的物理身体就能实现运动,是因为身体过于僵化或受线性电磁马达控制。相反,动物的骨骼肌肉系统是一个复杂和冗余的非线性结构形态构成粘弹性肌腱组织材料[9]的肌肉。一些研究都集中在中枢神经系统和他们的身体的研究[10][11] [12]。出于这个原因,我们建议在四足机器人中调查这个问题,以及神经系统随着体动力学系统如何互相感应,以产生各种适应性行为的议案。

2、技术方法

我们设计了一个简单的十分真实的四足机器人去捕捉动物骨骼系统的重要特征,以实现对神经系统的体现。古典驱动器已被麦吉类型气动人工肌肉替换,根据阻尼和弹性,重现一些生物肌肉的非线性特性 [12] [13] [14](图1)。在真正的肌肉中,传感反馈是通过感觉到的肌肉长度的肌梭和感知肌张力的高尔基腱器官完成的。我们通过使用压力传感器和电位器计算长度和人工肌肉的张力来复制此功能的。

基于生物学的考虑,我们用小原国芳与他的同事们开发的脊髓延髓的系统模型设计了神经系统[15] [16](图2)。一个的脊髓延髓模式的单一元素组成肌肉、一个α和γ运动神经元、传入感觉中间神经元和神经的振荡器模型。虽然每个元素不直接连接到总体,我们预计机器人的振荡器的非线性光学性质将建立弥散的互感器和动力连接器条件从而产生全身的不同运动(图3)。

图1.麦吉气动人造肌肉的类型。

图2.脊髓延髓模型。箭头和填充圈分别代表兴奋和抑制的连接。

图3.脊髓延髓中体现的模型。

3、结果

在我们的实验中,感觉身体之间的动力学与在同样的一个实验中用自我组织的各种行为模式时尚的脊髓延髓系统修改动态的腿配位顺序之间的相互作用。

例如,机器人需要几个步骤产生动态向前运动(图4左)。然后,通过执行向后运动的几个步骤(图4中),机器人切换到另一个模式。一段时间后,返回到其先前的运动状态和重新生成向前运动(图4右)。在实验中每个关节的角度来看,我们观察到一些相同步和相交错模式(图5)。

我们注意到,这种类型的运动在整个实验中并不经常发生,这表明了系统的动力学性质。例如,在一个实验中,我们观察到的运动仅仅只是向后的。然而,这种行为运动显示了各种模型例如左腿和右腿之间或者两腿交错间的自动相位同步模型。

图4.运动行为的快照

图5.时间序列的关节角度.4、实验

我们进行了一些实验来生成四足动物骨骼机器人的模型(图6和图7)的运动行为。在脊髓延髓的模型中,每个机器人的腿部肌肉是相互隔离的,并且没有直接联系。然而,我们预测,化身将在与环境的相互作用中为弥散互感器创造条件,目的是产生各种自适应行为模式。

人工肌肉从外部压缩机提供空气,我们使用比例压力控制阀控制肌肉内部的压力。机器人安装有中央处理器板运行实时操作系统向压力阀发送的命令和从压力传感器、电位器接收传感器值。一个CPU板和计算神经动力学与外部PC机进行通信。

图6.四足气动肌肉机器人

图7.肌肉的布局。红色部分代表气动人工肌肉,蓝色部分代表的是被动肌肉构

成弹簧。

5、实验的主要见解

在实验中,虽然我们对神经系统的模型使用相同的参数,但是我们还是观察到各种复杂的运动模式。这些运动模式是个别肌肉的动态连接器的结果–即,它们之间并没有直接的连接:通过物理身体和神经系统与环境的动力相互作用。这一动态同步的机制是复杂和与环境相适应的,它探讨了身体的自然运动模式。

在今后的实验中,我们将进一步研究行为的自我组织模式机制所需的身体的性能和有利于构成这一组织模式机制的神经系统。

参考文献

[ 1]R.A.布鲁克斯.“无表征智能,人工智能”.1991,d第3期,卷47,第139–159.[ 2]R.普法倚费尔,C.西契尔.了解情报.麻省理工学院出版社,1999.[ 3]R.普法倚费尔,J.C 本哥德.我们认为身体是如何形成的:一种新的智力观.麻省理工学院出版社,2006年.[ 4]H.木村,K.土屋,A.石黑,H.维特.动物和机器的自相适应运动.高等教育出版社,2005年.[ 5]J.埃尔斯,J.L.戴维斯,A.鲁道.仿生机器人的神经技术.麻省理工学院出版社,2002年.[ 6]A.J.依思皮特,动物和机器人的中枢模式发生器运动控制:审查,神经网络,2008,第4期,21卷,642页–653页.[ 7]H.木村,Y.福冈,A.H.科恩.“适应在地面上动态行走的四足机器人的生物学概念”.国际机器人研究学报,2007, 第5期,26卷,475页–490页.[ 8]S.斯特恩哥如布,M.泰姆,F.沃尔戈特,P.Manoonpong,“自组织适应一个简单的神经电路,使复杂的机器人的行为成为可能”.自然物理学,2009,卷6,页224 –230.[ 9]R.M.亚力山大,H.班纳特-克拉克.“肌肉和其它组织存储的弹性应变能”.自然科学,1977,第5590期,265卷,114页–117.[ 10]R.普法倚费尔,M.伦加雷拉,Y.小原国芳.自组织生物启发的机器人的化身 ”.科学,2007年11月,卷318,页1088-–1093.[ 11 ]A.彼蒂,Y.小原国芳.产生时空动态分布联合转矩模式同步模式发电机,前沿神经机器人,2009,3卷,2号,1页–14.[ 12 ]AR皮蒂,是有关新山志保,与国芳,“创造和调节节奏的控制身体的物理,“自主机器人,28卷,3号,317页–329,2010.[ 13]G柳巷芳草,J.czerniecki,和B纳福,“麦吉人工肌肉:气动执行器与生物力学的情报,在先进的智能机电一体化,1999.诉讼.1999届国际会议预报,1999,页221 –226.[ 14]R.A是有关新山志保,nagakubo,与国芳,“无忌:一个双足跳跃和着陆机器人与人工肌肉骨骼系统的过程中,“参考国际机器人与自动化(互联网内容分级协会2007),罗马,意大利,四月,2007,页2546-2551(–thc5.2).[ 15]Y国芳和铃木,“动态的出现和适应行为体现为通过耦合混沌领域,“程序.国际参考智能机器人与系统,2004,页2042 –2049.[ 16]Y国芳和美国sangawa,“早期运动的发展从偏序神经体动力学:实验与cortico-spinal-musculosleletal模型,“生物控制论,卷95,页589-–605,2006.

第三篇:四足步行机器人结构设计文献综述_-_副本

四足步行机器人结构设计文献综述

四足步行机器人结构设计文献综述

()

摘要:对国内、外四足步行机器人的研究发展现状进行了综述,对四足步行机器人亟需解决的问题进行了论述,并对未来可能的研究发展方向进行了展望。关键字:四足步行机器人;研究现状;展望

1、引言

四足步行机器人是机器人家族的一个重要分支,其不仅承载能力强,而且容易适应不平的地形。它既能使用静态稳定的步态缓慢平滑地行走,又能以动态稳定的步态跑动。与轮式、履带式移动机器人相比,在崎岖不平的路面,步行机器人具有独特优越性能,在这种背景下,步行机器人的研究蓬勃发展起来。而仿生四足步行机器人的出现更加显示出步行机器人的优势:

(1)四足步行机器人的运动轨迹是一系列离散的足印,运动时只需要离散的点接触地面,对环境的破环程度也较小,可以在可能到达的地面上选择最优的支撑点,对崎岖的地形的适应性强。

(2)四足步行机器人的腿部具有多个自由度,使运动的灵活性大大增强。它可以通过调节腿的长度保持身体水平,也可以通过调节腿的伸展程度调整重心位置,因此不易翻到,稳定性更高。

(3)四足步行机器人身体与地面是分离的,这种机械结构的优点在于:运动系统还具有主动隔振能力即允许机身运动轨迹和足运动轨迹解耦,机器人的身体可以平稳的运动而不必考虑地面的粗糙度和腿的放置位置。

(4)机器人在不平地面和松软路面上的运动速度较快,能耗较低。

2、国内外的发展现状

20世纪60年代,四足步行机器人的研究工作开始起步。随着计算机技术和机器人控制技术的研究和应用,到了20世纪80年代,现代四足步行机器人的研制工作进入了广泛开展的阶段。

世界上第一台真正意义的四足步行机器人是有Frank和McGhee于1977年制作的。该机器具有良好的步态运动稳定性,但缺点是,该机器人的关节是由

四足步行机器人结构设计文献综述

逻辑电路组成的状态机控制的,因此机器人的行为受到限制,只能呈现固定运动形式。

20世纪80,90年代最具代表性的四足步行机器人是日本Shigeo Hirose实验室研制的TITAN系列。1981~1984年Hirose教授研制成功脚步装有传感和信号处理系统的TITAN-III。它的脚底步由形状记忆合金组成,可自动检测与地面接触的状态。姿态传感器和姿态控制系统根据传感信息做出的控制决策,实现在不平整地面的自适应步行。TITAN-VI机器人采用新型的直动性腿机构,避免了上楼梯过程中两腿的干涉,并采用两级变速驱动机构,对腿的支撑相和摆动相分别进行驱动。

2000-2003年,日本电气通信大学的木村浩等人研制成功了具有宠物狗外形的机器人Tekken-IV,如图1所示。它的每个关节安装了一个光电码盘,陀螺仪,倾角计和触觉传感器。系统控制是由基于CPG的控制器通过反射机制来完成的。Tekken-IV能够实线不规则地面的自适应动态步行,显示了生物激励控制对未知的不规则地面有自适应能力的优点。它的另一特点是利用了激光和CCD摄像机导航,可以辨别和避让前方存在的障碍,能够在封闭回廊中实现无碰撞快速行走。

目前最具代表性的四组步行机器人是美国Boston dynamics实验室研制的BigDog,如图2所示。它能以不同的步态在恶劣的地形上攀爬,可以负载高达52KG的重量,爬升可达35°的斜坡。其腿关节类似动物腿关节,安装有吸收震动部件和能量循环部件。同时,腿部连有很多传感器,其运动通过伺服电机控制。该机器人机动性和反应能力都很强,平衡能力极佳。但由于汽油发电机

四足步行机器人结构设计文献综述

需携带油箱,故工作时受环境影响大,可靠性差。另外,当机器人行走时引擎会发出怪异的噪音。

国内四足机器人研制工作从20世纪80年代起步,取得一定成果的有上海交通大学、清华大学、哈尔滨工业大学等。

上海交通大学机器人研究所于1991年开展了JTUWM系列四足步行机器人的研究。1996年该研究所研制成功了JTUWM-III,如图3所示。该机器人采用开式链腿机构,每个腿有3个自由度,具有结构简单,外形轻巧,体积小,质量轻等特点。它采用力和位置混合控制,脚底装有PVDF测力传感器,利用人工神经网络和模糊算法相结合,实线了对角动态行走。但行走速度极慢,极限步速仅为1.7KM/h,另外其负重能力有限,故在实际作业时实用性较差。

清华大学所研制的一款四足步行机器人,它采用开环关节连杆机构作为步进机构,通过模拟动物的运动机理,实现比较稳定的节律运动,可以自主应付复杂的地形条件,完成上下坡行走,越障等功能。不足之处是腿运动时的协调控制比较复杂,而且承载能力较小。

四足步行机器人结构设计文献综述

3、国内外的关键技术分析

(1)机械本体研究

四足步行机器人是机电一体化系统,涉及到机构、步态、控制等,而机械机构是整个系统的基础。在机械本体的设计中腿部机构设计是关键。目前,研制的四足步行机器人的腿部机构形式主要有缩放型机构、四连杆机构、并联机构、平行杆机构、多关节串联机构和缓冲型虚拟弹簧腿机构。其中,并联机构可以实现多方位运动,且负载能力强,所以具有较好的应用前景,但控制系统较为复杂。另外,含有弹性元件的缓冲型虚拟弹簧腿机构,利用弹性元件把刚性连接变为柔性连接,减缓机器人在动态行走时的冲击以及由此产生的振动,因此该机构应用越来越广泛。

(2)步态研究

步行机器人几种典型步态有:爬行、对角小跑、溜蹄、跳跃、定点旋转、转向等。在文献[7]中,提出了爬步态的理论,并证明了该步态具有最大的静稳定性。对角小跑步态属于动态稳定步态,能够提高运动速度。跳跃式步态较其它步态在前进的效率上具有明显的优势,但是由于受到腿机构的摆动惯性力和关节处大冲击力的影响,因此需要较大的瞬时驱动力。另外,跳跃持续的时间是短暂的,为了保证机器人实时可控,必然需要在极短的时间内采集多种信号,这对目前的驱动元件和传感器都提出了极高的要求。目前所研究的各种步态中,跳跃步态的研究是最具挑战性的难点问题。

(3)控制技术研究

复杂四足步行机器人的控制系统是非线性的多输入和多输出不稳定系统,四足步行机器人结构设计文献综述

具有时变性和间歇动态性。目前四足机器人的步行运动大多数是基于步态的几何位置轨迹规划、关节位置控制的规划和控制策略。而对机器人进行单纯的几何位置规划与控制,则会由于惯性、脚力失衡等因素而导致机器人失稳。解决这个问题的关键就是突破单一的位置规划与控制策略,实施机器人力、位置混合控制。在步态生成和控制方面,有理论突破意义的是基于生物中枢模式发生器(CPG)原理的运动控制方法。

(4)驱动能源研究

在线提供能源受到空间的限制,而蓄电池组受体积和重量的限制,因此寻求提供持续可靠的离线自带电源就成了必须。随着新型电池的研发,新型太阳能电池、燃料电池、锂电池等成为较为理想的能量供给来源。另外,通过微波对微型机器人提供能量和控制信号也是一种较为可观的方法。

4、存在的问题

从20世纪60年代至今研究者们对四足步行机器人关键技术的分析做了大量的工作,在一些基础理论问题上取得了一定的突破,使四足步行机器人的技术水平不断得到提高。但在四足步行机器人发展过程中仍有一些亟需解决的问题:

(1)步行机器人的结构仿生设计问题;(2)在不平地面移动的速度、稳定性问题;(3)四足步行机器人的步态规划问题;(4)步行机器人仿生控制方面的问题;

(5)有些步行机器人的体积和质量都很大问题;(6)多数步行机器人研究平台的承载力不强问题;

5、展望

随着对四足步行机器人的研究的日益深入和发展,四足步行机器人在速度、稳定性、机动性和对地面的适应能力等方面的性能都将不断提高,自主化和智能化也将逐步的实现,从而使其能够在更多特殊环境和场合中使用,因此具有广阔的应用前景。

纵览当前四足机器人的发展,四足步行机器人有以下几个值得关注的趋势:

四足步行机器人结构设计文献综述

(1)实现腿机构的高能,高效性;(2)轮,足运动相结合;(3)步行机器人微型化;

(4)增强四足步行机器人的负载能力;(5)机器人仿生的进一步深化;

6、总结

尽管四足步行机器人技术有了很大的发展,足式机器人的研究平台有很多,但制约四足机器人技术进一步发展的基础理论问题并没有得到根本的解决,其中,许多样机还达不到生物简单运动的速度和稳定性。正如著名机器人学家Geles教授所言:“步行机器人的理论研究步伐要远远落后于其技术开发的步伐”。现有的四足机器人的基础技术研究尚不够成熟和完善,足式机器人的关键技术还有待于进一步大力开发。

7、参考文献

[1] McGhee.R.B.Robot locomotion[A].In R.Herman, S.Grillner,P.Stein,and

D.Stuart, editors, al control of lNeurocomotion[C].Plenum Press.1976:237-264.[2] Shigeo.Hirose, Tomoyuki.Masui, Hidekazu.Kikuchi.TITAN-III: A Quadruped

Walking Vehicle-Its Structure and Basic Characteristics.Robotic

Research(2nd Int.Symp.).The MIT Press, 1985:325-331.[3] 王洪波,徐桂玲,胡星,张典范,张雄.四足并联腿步行机器人动力学[J].燕山大学河北省并联机器人与机电系统实验室.秦皇岛.066004.[4] 雷静桃,高峰,崔莹.多足步行机器人的研究现状及展望 [M ].北京航空航天大学 汽车工程系.北京.100083.[5] 查选芳,张融甫.多足步行机器人腿机构的运动学研究[J].东南大学学报.1995.25(2).[6] 郭成,谈士力,翁盛隆.微型爬壁机器人研究的关键技术[J].制造业自动化.2004.26(7).[7] 王吉岱,卢坤媛,徐淑芬,雷云云.四足步行机器人研究现状及展望[M ].山

四足步行机器人结构设计文献综述

东科技大学 机械电子工程学院.青岛.266510.[8] 陆学东.多足步行机器人运动规划与控制.[M ].华中科技大学出版社.2006.2.[9] 宣奇波,张怀相,戴国骏.四足步行机器人稳定性步态规划.杭州电子科技大学计算机应用技术研究所.浙江 杭州 310018.[10] 朱学彪.液压驱动四足机器人机械结构设计.[M ].武汉科技大学 机械自动化学院,武汉 430081

第四篇:【外文翻译】双足机器人上楼梯的步态规划

双足机器人上楼梯的步态规划

Zhang Qin, Fan Chang-xiang and Yao Tao School of Mechanical and Automotive Engineering

South China University of Technology Guang zhou, Guangdong Province, China

zhangqin@scut.edu.cn

Yoshitsugu Kamiya Department of Mechanical Systems Engineering

Kanazawa University Kanazawa, Japan

kamiya@t.kanazawa-u.ac.jp

【摘要】上楼梯是双足机器人的一种基本动作。一个有效的算法对双足步行的稳定性是至关重要的。在本文中,我们以双足机器人爬楼梯为例,提出一个基于重复变换法(RDK)的算法来规划上楼梯动作和前向运动。在本文提出的算法中,为了满足上楼梯的稳定性,机器人通过上身来调整质心的位置,并且由重复变换法(RDK)进行计算和修正。重复变换法的作用是有保证性的,其可行性和有效性已经通过双足机器人上楼梯仿真实验的验证;而本文提出的算法也适用于双足机器人下楼梯。

【索引词】双足机器人;上楼梯;重复变换法;重心运动;

1.介绍

双足机器人和人类一样拥有多自由度的特点,每一个关节可以通过巧妙的组合从而可以完成各种动作。而且双足机器人对环境具有良好的适应性,并能进入相对狭窄空间替代人类执行各种操作,所以它们具有广阔的应用前景。上下楼梯只是双足机器人具有的基本功能。而建立机器人的运动学模型,分析其上下楼梯的过程,并研究其步态规划方法,是实现双足机器人稳定的步态非常重要的保证。

一些目前的研究成果已经计算出双足机器人的上下楼梯的步态规划。如Yusuke Sugahara以及其他人提出通过调整腰部关节的角度和预先设置的零点力矩(ZMP)轨迹来设计机器人的步态规划方法爬楼梯。而Jeon以及其他人通过四项多项式计算关节的运动轨迹,并优化的机器人上下楼所需的最小能耗,实现机器人上楼梯的步态规划。Eun-Su等人则通过优化多项式参数与动态加密算法和自适应遗传算法,并且结合低阶多项式来计算各关节的运动轨迹,最后研究轴承扭矩和能源消耗和ZMP,直至机器人能稳定上下楼梯从而规划机器人的上楼梯轨迹。Song Xian-xi等学者利用踝关节的运动轨迹,并调整踝关节的旋转角与利用模糊控制算法使ZMP的位置接近支撑区域的中心,实现机器人稳定上楼梯的步态规划。除此之外,其他一些国际和国内学者也做了相关研究关于双足机器人的上下楼梯或上下斜坡的步态规划。上面的算法主要是基于关节轨迹的预先计算,然后通过模糊控制算法或遗传算法优化步态等,这些算法相当复杂,因为计算量是非常巨大的,而且处理时间非常长。

本文在分析双足机器人动作的基础上,提出一个基于重复变换法(RDK)的新算法来规划攀爬动作和前向运动。算法的核心主要是通过腰部关节的运动来调整重心位置,以满足重心位置变化的需求,规划机器人能稳定地上楼梯且不让机器人摔倒的步态。

2.仿真模型的建立

双足机器人的仿真模型如图1所示。

图1 双足机器人的仿真模型

图1中的模型有 6个自由度。分别是每条腿有3个自由度,右腿包括踝关节JR1,膝关节JR2,髋关节JR3。而左腿包括踝关节JL1,膝关节JL2和髋关节JL3。腰关节是两个自由度的球形关节。J7能够使腰部关节向前和向后旋转,而J8能够使腰部关节左右摆动。根据资料分析,一个普通人的的质量75%都是集中于腰部的,所以我们可以忽略身体下部的质量,而在建立模型时可以令机器人的腰部位置设为重心点c建立坐标系,并简化机器人的上半身。假设每个关节的顺时针旋转为负方向,而逆时针旋转方向为正方向。接着我们可以忽略动力学的影响,只考虑机器人上楼梯的静态步行的过程。

通过静力学的公式,我们可以得到重心的投影坐标是:

在公式中,θ7是腰部关节向前和向后旋转的角度,而θ8是腰部关节左右旋转的角度。鉴于FL和FR在地面上的支撑力分别作用于机器人的左、右脚,所以我们得出:

在公式中g是重力加速度,M的质量重心,Lw是左脚和右脚之间的横向距离。在机器人上楼梯的过程中,首先应该保证机器人不会摔倒,所以当它双脚支撑全身时,ZMP应该时刻保持在两脚之间的区域,也就是说F = min(FR,FL)> 0。机器人一只脚支撑时,ZMP应该保持在支撑区域,也就是说,FL > 0或FR > 0。当机器人一只脚支撑整体时,支撑脚的中心是最稳定的支点,坐标设为B(x0,y0),为了表达机器人的稳定度,机器人ZMP和B点之间的距离关系,公式是:

3.上楼梯的步态分析

机器人上楼梯的动作可以分解为以下步骤:首先机器人从两脚的中间移动ZMP到支撑脚(右脚);然后当重心完全转移到右脚时,弯曲左腿并向前移动;第三重心逐渐从右脚移动向左脚,最后重心完全转移到左脚时,机器人弯曲左腿和伸直腰部上楼梯。然后机器人的右脚重复上述流程从而完成整个操作。在上述过程中,机器人的重心点C在地面上的投影如(1)所示,和运动的重心是图2所示:

图2 机器人的重心轨迹,在图中重心的初始位置是,重心移动是

A基于重复变换法(RDK)算法的重心移动

调整机器人的重心位置使其上部的身体满足ZMP的约束要求,而身体上半身的重心基于重复变换法算法实现。机器人上楼梯的过程中,可以通过旋转腰部关节的自由度θ7θ8来计算机器人的9个姿态。由于腰部关节有限制的旋转范围,根据(1)机器人的重心位置C投影在地上计算相应的每个姿势和根据(2)分别计算左脚和右脚的支撑力FL和FR。重复这种方式,直到机器人完成其重心的运动。详细算法描述如下:(1)设置机器人的腰部关节旋转范围(θimin,θimax)和初始角度θi(i = 1、2、3、7、8)。

(2)给定腰部关节两个旋转方向的旋转角度(-θi,0,+θi)(i = 7、8),并计算32个步态和相应的正运动学方程。

(3)在计算出的32个动作中,限定机器人不会摔倒的条件下,然后挑出符合要求的动作,并增加支撑力。如果上面的要求并不存在,也就是说支撑脚的反作用力或FR小于0,那么这意味着目标任务不能完成。

(4)通过(3)得出在每个符合要求的姿势中,设ZMP到最稳定的支点距离l,并选择最低值lmin是机器人的步态。然后再回到(2)。

不断重复上述过程并更改腰部关节的步态。根据优化条件规划ZMP运动轨迹,使机器人本身不摔倒且满足需求,使其最稳定地上楼梯。

B上楼梯的步态规划算法

由于机器人的重心在两脚中间,根据该算法机器人的总重心转移到支撑脚(右脚),并抬高另一只脚(左脚)时,机器人的重心保持在前向(右脚),我们可以得到旋转角θL1和θL2,根据机器人每个关节之间的几何关系确定腿的姿势。然后根据该算法对重心的运动,ZMP通过机器人调整腰部关节θ7和θ8转移到左脚。接下来,逐渐伸直腰部和支撑脚(左脚)来抬起身体。抬起身体的同时,ZMP应该保持固定(左脚下)。详细的方法是通过正向运动学确定重心的位置C在支撑脚(左脚),然后基于重复变换法优化腰部关节的旋转角和总重心的位置,实现保持ZMP保持不变。机器人重复上述过程,直到腰部和支撑脚再伸直,抬起身体能够完整爬楼梯。具体方法描述如下:(1)根据上述步骤和机器人之间的几何关系,确定各关节的旋转角θL1和θL2。(2)根据算法对重心的运动在一个部分中,移动机器人的ZMP到左脚。

(3)为了伸直腿和抬起身体,给左膝关节的θL1和踝关节θL2相应的微小增量+θLi(i = 1、2),然后确定重心的位置C在左脚的正向运动学方程。

(4)基于重复变换法优化腰部关节的转动角度θ7和θ8,总重心的位置和保持ZMP不变。回到3),重复上述过程,直到机器人抬起身体,再次申直腰部和支撑脚,并顺利地上楼梯。

4.仿真例子

根据上面的仿真模型和算法,我们模拟机器人上楼梯的动作。让高度Sh = 150mm和宽度Sw = 275mm,机器人的质量M = 60 kg,脚的宽度W = 70mm。机器人各关节的参数和初始角的设置如表1和表2所示。

表1 机器人的结构参数

图3双足机器人的步态图

机器人上楼梯的整个过程如图所示。图4表示ZMP的变化轨迹,虚线的部分是两个脚之间的区域,灰色线是正确的位置。图6表示支持脚的力随着时间的变化。图7表示各关节的角度随着时间的变化。

机器人的ZMP位置从两脚之间移动到右脚,令FR变得越来越大。虽然FL= 0,但是ZMP的位置完全在右脚。保持ZMP不变,机器人可以弯曲左脚并前向运动。可以通过几何关系计算出左下肢关节角度即θL1和θL2。在这个阶段,机器人的步态变化如(a)和(b)所示的图,图4所示为ZMP轨迹变化。图6所示脚的支持力随时间变化的图。图7表示腰部关节的角度随时间的转换和基于重复变换法的重心的运动。机器人反复调整θ7和θ8移动身体,使ZMP逐渐转移到左脚。在运动的过程中,身体上部的运动如图(c),图(d)和图(e)所示。相关参数变化作为EF的一部分如图4,图6和图7。

由支撑脚(左脚)的正向运动学,我们可以逐步确定重心位置和腰部关节参数,基于重复变换法确定腰部关节的构成(θ7和θ8),同时保持机器人的ZMP。重复上面的过程,直到腰部和支撑脚协调和抬起身体完成上楼梯的动作。机器人的姿态在这个过程中显示为图(e)-(h),腰部关节角和左脚的变化如图7所示。在这个过程中腰和左脚变得笔直,机器人的ZMP本质上是保持在点F如图4所示,然后右脚弯曲向前移动一步。机器人以这种循环方式完成上楼梯的动作。

图4双足机器人的ZMP轨迹

图7双足机器人的关节轨迹

讨论:本文仍然适用于参数变化时,也就是说增加脚步的高度或跨度,机器人可以调整其ZMP在支撑脚上的位置。但当姿态的参数超过机器人重心的移动范围,机器人将无法满足ZMP的要求上楼梯。如果我们不考虑机器人的各关节的扭矩范围和所有机器人的参

数,设置与上一节相同的高度和宽度,分别改变Sh = 350mm和Sw = 650mm。机器人上楼梯的动作显示在图8。从图中,我们可以看到,无论怎样的上半身动作,也就是说无论θ7和θ8如何调整,ZMP不能移动到机器人的支撑脚来完成其上楼梯。

图8 双足机器人的姿态图

事实上在关节可承受扭力矩围内,机器人的各关节都可以承受上楼梯所需的力。当我们考虑各关节的扭矩范围时,我们只需要改变算法(4)的一部分,根据反复调整ZMP的重复变换法在第三节的其中一个部分,可以改变扭矩Ti(i = 1、2、3、7、8)各关节的姿势(在第3部分)并确定关节之间的最小转矩值所做出相应的机器人姿势,然后回到(2)。

5.结论

本文以6自由度机器人为例提出了一个重复变换法来规划上楼梯的步态,并得出以下结论:机器人可以通过其腰部关节调整重心的位置,以满足ZMP稳定的要求,基于重复变换算法(RDK)规划上楼梯动作和利用机器人的正运动学可以先后规划机器人的稳定步态。算法也适用于机器人的下楼梯的动作。

本文只是初步研究双足步行机器人上楼梯的静态步态。在未来的工作中,我们将进一步分析动态步态规划来补充本文的算法。

【参考文献】

[1] Zhang Qin,Wu Zhi-bin,Kamiya Yoshitsugu.Lift-up gene-ration for robot using repeatedly direct kinematics [J].Robot,2011,33(3): 340-346.[2] Liu Li,Wang Jin-song,Chen Ken,et al.The research on the biped humanoid robot THBIP-I[J].Robot,2002,24(3): 262-267 [3] Yusuke Sugahara,Akihiro Ohta,Hun-ok Lim,et al.Walking up and down stairs carrying a human by a biped locomotor with parallel mechanism[C]//2005 IEEE/RSJ International Conference on Intelligent Robots and Systems,Canada: IEEE,2005: 1489–1494.[4] Kweon Soo Jeon,Ohung Kwon,Jong Hyeon Park.Optimal trajectory generation for a biped robot walking a staircase based on genetic algorithms[C]//Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems,Sendai,Japan: IEEE,2004: 2837-2842.[5] Jong-Wook Kim.On the global convergence of univariate dynamic encoding algorithm for searches(uDEAS)[C]//SICE-ICASE International Joint Conference,Busan,Korea: IEEE,2006: 5776–5781 [6] Taegyu Kim,Jong-Wook Kim.Planning walking patterns of a biped robot with uDEAS optimization[C]//International Conference on Control,Automation and Systems 2007,Seoul,Korea: IEEE,2007,2693–2698(2007).[7] Eun-Su Kim,Jo-Hwan Kim,Jong-Wook Kim.Generation of optimal trajectories for ascending and descending a stair of a humanoid based on uDEAS[C]//IEEE International Conference Fuzzy System,Korea: IEEE,2009: 660-665.[8] Eun-Su Kim,Jo-Hwan Kim,Jong-Wook Kim.Three dimensional modeling of a humanoid in three planes and a motion scheme of biped turning in standing[C]//IET Control Theory and Applications,2009: 1155-1166.[9] Song Xian-xi,Zhou Feng,Liang Qing,et al.Gait Planning and control of a biped robot climbing upstairs [J].Computer Simulation,2011,28(4): 176-180 [10] Chen Hua-zhi,Xie Cun-xi,Zeng De-huai.Simulation of a neural network-based path planning algorithm for mobile robot [J].Journal of South China University of Technology,2003,31(6): 56-60.[11] Ke Xian-xin,Gong Zhen-bang,Wu Jia-qi.Restrictions on a realizable gait of a biped robot climbing up stairs [J].Journal of Applied Sciences,2003,21(1): 63-67 [12] Xu Kai,Chen Ken,Lu Li,et al.Fast walking gait planning algorithm for humanoid robots based on optimization of the main support leg [J].Robot,2005,27(3): 203-210.[13] Bi Sheng,Min Hua-qing,Cheng Qiang,et al.Gait planning of humanoid robots walking on slope [J].Journal of South China University of Technology,2010,38(11): 148-154 [14] Bi Sheng,Min Hua-qing,Cheng Qiang,et al.Multi-objective optimization for a humanoid robot climbing stairs based on genetic algorithms[C]// 2009 IEEE International conference on Information and automation.Zhu Hai: IEEE,2009: 66-71.[15] G.Figliolini,M.Ceccarelli.Climbing stairs with EP-WAR2 biped robot[C]// Proceedings of the 2001 IEEE International Conference on Robots and Automation,Seoul,Korea: IEEE,2001: 4116-4121 [16] Tomoyuki Suzuki,Kouhei Ohnishi.Trajectory planning of biped robot with two kinds of inverted pendulums[C]//12th International Power Electronics and Motion Control Conference.portoroz.IEEE,2006: 396-401

致谢

本文由广东工业大学研究合作项目(No.2012B091100145)支持。

第五篇:双足竞步机器人技术总结报告

编制单位:侏罗纪工作室作 者:侯兆栋 版 本:V0.1 发布日期:2010-8-20 审 核 人: 批 准 人:

双足竞步机器人技术总结报告

• 引言

2010年中国机器人大赛已经结束,回顾整个比赛及赛前调试过程,我们遇到了很多问题,下面就将我们遇到的问题做一分析和总结,并提出改进方案,对我们以后的工作有所帮助。

• 遇到的问题及原因分析

• 机器人稳定性不好

机器人在走路的过程中不稳,比较晃。造成此问题的原因有两个: 1.机器人高度过高。

由于我们用成型的U型套件,套件高度是固定的,我们必须将腿做成一定的高度才能保证腰翻下去不压脚;下面两个套件决定了腰的高度,所以总体下来我们的机器人高度比较高,导致机器人重心比较高,平衡性不好,造成不稳定。2.步态设计不合理。

在动作上需要6个舵机同时配合,要做到很协调,还是很有难度的,某个舵机的角度,速度都会对整个机器人的行走造成影响,这也是造成机器人走路不稳定的原因。• 舵机控制问题

舵机控制原理

控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。它内部有一个基准电路,产生周期为 20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。

电源线和地线用于提供舵机内部的直流电机和控制线路所需的能源.电压通常介于4~6V,一般取5V。注意,给舵机供电电源应能提供足够的功率。

控制线的输入是一个宽度可调的周期性方波脉冲信号,方波脉冲信号的周期为20 ms(即频率为50 Hz)。当方波的脉冲宽度改变时,舵机转轴的角度发生改变,角度变化与脉冲宽度的变化成正比。

• 上电机器人乱动

问题在于上电程序初始化时,没有给出一个确定的值来产生一个确定的脉冲,脉冲给舵机后,舵机状态不定,就出现了乱动的现象。• 舵机抖动

在调试过程中,舵机出现抖舵的问题,主要原因有:

1、控制板供电电源电压不足

控制板供电电源电压不足,引起芯片电源电压不稳定,导致输出脉冲抖动,测得当供电电压降低到5V以下经过78M05稳压,再经过ASM1117稳压后,输出脉冲高电平电压再2.5V左右,是一不可靠的高电平,输入舵机控制电路后,输出的直流偏置电压不准确,导致舵机抖动。

2、脉冲精度不够

很多舵机的位置等级有1024个,如果舵机的有效角度范围为180度的话,其控制的角度精度是可以达到180/1024度,约0.18度,从时间上看其实要求的脉宽控制精度为2000/1024us,约2us。

此次为节省芯片资源,先将时钟进行一次分频,再拿分频产生的时钟来控制脉冲的时基计数器和步进计数器,这样,每个计数器的计数值变小,节省了一定的资源,但在控制精度上有所下降,控制板产生的脉冲精度为:

脉冲时基计数值为:1600;步进计数值为:1或2; 则: 脉冲精度为1/1600 * 20 ms = 12.5 us 与舵机的要求精度相差很大,由于模拟舵机的无反应区比较大,当以较低精度的脉冲来控制舵机时,在某个时刻舵机状态不定就会出现抖舵现象。

• 烧电路板

电路板原理图如下:

此原理图比较简单,没有什么原理性的东西,也没有做隔离和保护,电源模块有两路供电,一路经过开关后直接给舵机供电,另一路经过两级稳压输出3.3V电压,满足EPM1270的供电需求;复位是直接通过一电阻拉到地上,进行低电平复位;时钟模块是一有源晶振,接上电源后就可以起振;其他都是接口。

在调试过程中,有一段时间,老烧电路板,每次烧的都是CPLD芯片,从CPLD手册上查得:

芯片3.3V供电时,I/O口的单端输出电压为3.3V

3.3V供电时,输出高电平电流为16mA,输出低电平电流为8 mA;由以上资料分析,烧板子的原因可能是: 1.电平不匹配。

CPLD输出电平电压为3.3V,而舵机需要的为TTL电平,由于外部再没有加驱动电路,这样CPLD的I/O端口驱动能力有限,当同时有几个舵机转时或者舵机转的角度比较大时负载过重,导致CPLD烧坏。

2.电流回流和尖峰脉冲

舵机中有一直流电机,当直流电机转的时候,自身也会产生电流,若多个舵机同时转,且转的角度比较大时,各舵机自身产生的电流汇集到一起应该是表较大的,若电流倒流入电路板,电路板可能因电流过大而烧坏;另一点就是尖峰脉冲,舵机在转的过程中若产生尖峰脉冲,倒灌入电路板也可能因电流过大而烧坏芯片。

这应该是此次电路板烧的主要原因。3.电路板制作工艺

在刻PCB板时,板子阻焊做的不好,在焊接的过程中,容易在电路板上留下焊锡渣,如果掉入芯片两引脚之间,也可能引起短路,导致电路板烧坏。• 解决方案

• 机器人稳定性解决方案

结构

对机器人整体结构应该在现有基础上加以改进,比如在机器人高度上,以及腰部;对于U型套件,自己做,用AutoCAD设计出机器人结构图、套件图,拿到机床去加工,这样能保证套件精度,和结构的合理性,将机器人结构对研究带来的影响减到最小。• 步态设计

对机器人走路的步态进行更合理的设计,保证走路过程中的平稳。

• 舵机控制解决方案

上电乱动

在上电程序初始化时应该给舵机一个确定的脉冲,而且此状态持续时间应稍长,问题就会得到解决。• 舵机抖动

首先,保证电源电量充足,电压保持稳定,给芯片一个稳定的电压,保证输出脉冲的稳定性;其次,增加脉冲精度,即脉冲宽度的步进不要太大,这样既能精确的控制舵机,又能避免舵机的抖动;另外,可以在后端加一脉冲整形电路,可以滤除毛刺等脉冲。

• 电路板解决方案

电平不匹配问题。

对于此问题,可在后端加一电平转换芯片,增强驱动能力,保证I/O口有足够的能力来驱动舵机。• 电流回流和尖峰脉冲

方案一:加电容吸收

在舵机前端加一电容来吸收尖峰脉冲,但此方法经过实际验证不可行。加电容后,从I/O口输出的脉冲被电容吸收了,舵机不转。

方案二:光电隔离 + 整形

为了防止干扰,舵机控制信号和驱动电路应光耦光电隔离, 将信号隔开,避免舵机转动对控制板的影响。

通过隔离出来的控制信号, 还必须经过整形以消除毛刺, 增加信号的稳定性, 提高信号的输出电流。整形可采用施密特触发器,施密特触发器是脉冲波形变换中经常使用的一种电路,它是具有滞后特性的数字传输门,且受电源限制,可对输入波形进行变换和整形;另外,还可以采用通过比较器整形的方法来消除毛刺比如用LM324,LM393等。• 电路板制作工艺

在今后做板的时候应该加强阻焊和助焊这两道工序,能保证焊接时不出现板子上有杂物而导致短路的情况;在板子焊好后,在引脚密集的芯片处采取一些措施,如涂上硅胶或者蜡,以防短路。

• 总结

本文针对此次比赛中出现的问题,进行原因分析,并提出解决办法,为以后的研究提供一个参考。针对出现的问题,具体解决方案需在今后的研究中结合实际情况来确定。

下载双足步行机器人相关翻译word格式文档
下载双足步行机器人相关翻译.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    四足机器人的翻译有图兼容

    机器人技术和计算机集成制造 多功能四足机器人的模块化设计 摘要 现代工业使用多种类型的机器人。除了普通的机械手臂,两足,三足,还有四足机器人,四足机器人最初是为了开发玩具,......

    中英文翻译机器人

    中英文翻译机器人 机器人 工业机器人是在生产环境中用以提高生产效率的工具,它能做常规的装配线工作,或能做那些对于工人来说是危险的工作,例如,第一代工业机器人是用来在核电站......

    机器人外文翻译

    沈阳航空工业学院学士学位论文 机 器 人 工业机器人是在生产环境中以提高生产效率的工具,它能做常规乏味的装配线工作,或能做那些对于工人来说是危险的工作,例如,第一代工业机器......

    多足机器人行走机构设计(论文)

    高职学生毕业设计 题目: 多足机器人行走机构设计 学 院: 专 业: 学 号: 学生姓名: 指导教师: 日 期: 机械自动化学院 武汉科技大学高职生毕业设计(论文) 摘要 本文旨......

    中英文翻译--工业机器人-精品

    Industrial robots There are variety of definitions of the term robot. Depending on the definition used, the number of robot installations worldwide varies widel......

    智能机器人外文翻译

    Robot Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer......

    机器人算法外文翻译

    Improved Genetic Algorithm and Its Performance Analysis Abstract: Although genetic algorithm has become very famous with its global searching, parallel computi......

    爬墙机器人外文翻译

    The development trend of the robot 1. Preface: Climbing robot is an important branch in the field of mobile robot, flexible mobile on vertical wall, replace art......