四足机器人的动力学分析与仿真

时间:2019-05-15 08:19:42下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《四足机器人的动力学分析与仿真》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《四足机器人的动力学分析与仿真》。

第一篇:四足机器人的动力学分析与仿真

四足机器人的动力学分析与仿真

张锦荣1,王润孝2

(1长安大学,西安 710064,2西北工业大学,西安 710072)

摘 要: 针对四足机器人的结构特点,利用拉格朗日法导出其简化结构多刚体系统的动力学方程组。同时利用ADAMS建立了四足机器人的虚拟样机,采用规划好的步态,对其进行动力学仿真,仿真结果验证了动力学数学建模的正确性及结构设计的可行性,为提升控制品质的后续研究工作提供有价值的数据信息。关键词:四足机器人;动力学;仿真

Dynamic analysis and simulation on quadruped robot

Zhang Jinrong1,Wang Runxiao2

(Chang'an University,Xi an 7100764;Northwestern Polytechnical University,Xi an 710072)Abstract: Based on the structural characteristics of quadruped robot, dynamic equation group for simplified-structure of the quadruped robot’s multi-rigid body system is educed using Lagrange principle.A virtual prototypes is established using ADAMS, and simulated in using its planned gait.Simulation results tested the exactness of dynamics model and the rationality of structure design as well as provide valuable data information for further research on improving control quality of the quadruped robot.Key word: quadruped robot;dynamics;simulation

与传统的轮式、履带式机器人相比,四足机器人有很强的环境适应性和运动灵活性,既可以进入相对狭窄的空间,也可以跨越障碍、上下台阶、上下斜坡甚至在不平整地面上运动,因此,对四足机器人的研究已成为机器人研究领域的重要课题。

四足机器人是主动机械装置,每个关节可单独传动。从控制理论的观点来看,机器人系统是个复杂的动力学耦合系统,其数学模型具有显著的非线性和复杂性,而动力学问题又是实现高精度控制与机械设计的基础。[1] [2]本文以四足机器人为研究对象,对其进行了动力学建模与仿真,为后续机器人的控制算法提供了数学模型,也为机器人的结构优化设计与关节驱动电机、减速器的选型等提供理论依据。四足机器人结构设计

四足哺乳类动物的每条腿由五段组成,通过与躯干的连接构成五个关节,每个关节至少有一个自由度,这种超冗余自由度使动物的运动极其灵活。但是,在四足机器人的结构设计中,为了降低控制的复杂程度,它的腿部不可能像动物那样具有五段和超冗余自由度。[3]在力求达到机器人运动的灵活性的前提下,对机器人的肢体结构进行合理简化,如图1所示,腿部结构包括侧摆、大腿、小腿三部分,这三部分由直流电机带动其绕各自关节轴摆动,形成侧摆、髋和膝关节,其关节配置形式为全肘式,即前后两对腿全部为肘式关节。由于它的每条腿有三个自由度,所以理论上能同时满足空间三个方向的自由度要求。

(a)结构简图

(b)机械结构

图1

四足机器人结构 四足机器人的动力学建模

机器人动力学分析常用的方法有牛顿-欧拉方程和拉格朗日法。拉格朗日法是一种功能平衡法,它只需要速度而不必求内作用力,是一种直截了当和简便的方法。本文利用拉格朗日法来分析和求解了三自由度步行足的动力学方程。

四足机器人的肢体结构如图2所示,侧摆关节在YOZ平面转动,m1、m2和m3分别为侧摆、大腿和小腿的质量,且以腿末端的点质量表示,

1、2和3是关节转角,g为重力加速度。

图2 四足机器人的肢体结构 机械系统的拉格朗日动力学方程[3]为

TidEKEKEP

(1)idtqqiqii为式(1)中,EK为系统的总动能,EP为系统的总势能,qi是为关节的角度坐标,q关节的角速度,Ti称为关节力矩。杆件i质心的线速度和角速度可表示成:

iii1JLiiJL

(2)qq

viJL1q

1JAiqiJAq

(3)

ωiJA1q

式(2)、式(3)中JLi和JAi分别是与第i个连杆重心位置的平移速度和转动速度相关的雅可比矩阵,则:

iii1n(i)T(i)TJL

(4)JLq系统的平动动能

EK1miq

2i11nT(i)T(i)JAIiJAq

(5)系统的转动动能

EK2q 2i1系统的总动能为平动动能和转动动能之和,为

1n(i)T(i)(i)T(i)TJLqTJA)

JLqIiJAq

EKEK1EK2(miq2i11THq

(6)

q 2式(6)中H由公式(7)获得

H系统的总势能为:

(mJii1n(i)TL(i)(i)T(i)JLJAIiJA)

(7)

EpmigTr0,i

(8)

i1n式(8)式中的r0,i是第i根杆件的质心在参考坐标系中的位置 由(1)、(6)、(8)式,得各关节力矩

TiHj1nijjjhijkqjqkmjgTJLiq

(9)

j1k1j1nnnhijk式(9)中,Hijqk0.5Hjkqi

(10)模型的仿真验证

ADAMS(Automatic Dynamic Analysis of Mechanical System)是集建模、求解、可视化技术于一体的虚拟样机软件,是目前世界上使用最广、最负盛名的机械系统仿真分析软件。1)ADAMS仿真模型等效转换

ADAMS软件虽然可以实现机械系统的建模过程,但软件所提供的建模工具相对比较简单,对于复杂的机械统,仍需依靠SolidWorks、Pro/E等三维实体造型软件。

为了减少仿真的困难,本文根据各个部件的实际情况,对一些附加零件进行简化,简化为由数个刚体组成的刚体模型,同时注意尽量保持跟实物相近的几何外观。简化这些附加零件的办法是在用Solidworks软件建立好的完整模型中加入各种零件的材料密度或重心、转动惯量的物理参数,再根据刚体的实体体积,折算出相应的密度,再将这些物理参数加到简化后的模型上。最后将简化后的装配 体导入ADAMS。

2)施加运动约束、驱动与作用力

侧摆、膝关节、髋关节分别用旋转约束副约束,方向与系统实际运动保持一致。四足机器人在爬坡或遇到障碍时,各腿的侧摆关节起到调节机体平衡的作用,为了验证四足机器人在平坦路面行走的动力学特性,假设侧摆关节固定,其余关节采用符合四足哺乳动物肢体运动关系的正弦函数和半波函数驱动。另外,在建立仿真模型时,还做了如下假设:足与地面的摩擦力无穷大,在行走过程中,支撑腿的足端与地面没有滑动;驱动功率满足要求;不考虑关节摩擦。虚拟样机模型如图3所示。

图3 ADAMS/View中的虚拟样机模型

3)仿真结果

对于trot步态[4],即两对对角腿的运动完全对称,选择右前腿和左后腿这一对角腿为例进行分析,它们的髋、膝关节驱动力矩如图(4)~(7)所示。

图4 右前腿髋关节力矩与关节转角

图5 右前腿膝关节力矩与关节转角

图6 左后腿髋关节力矩与关节转角

图7 左后腿膝关节力矩与关节转角

从图(4)~(7)还可以得出如下分析结果:髋关节和膝关节的驱动力在支撑相时大于摆动相;除雅可比奇异状态(摆动相的末端点,J0,仿真图上出现力矩的突变)以外,髋关节的驱动力矩主要集中在25NM的范围内,膝关节的驱动力矩主要集中在50NM的范围内。此外,从拉格朗日动力学方程可以看出,在模型结构参数不变的前提下,驱动力矩与角加速度、角速度有复杂的非线性关系,仿真结果也验证了这一点。结论

1)应用拉格朗日动力学理论建立了四足机器人的动力学模型,为后续机器人的结构优化设计提供了理论依据和为机器人的控制算法提供了数学模型。

2)利用先进的动力学仿真软件建立了四足机器人虚拟样机,通过动力学仿真得出各腿髋关节和膝关节的驱动力矩,仿真结果可以为关节驱动电机和减速器的选型等提供依据,同时也验证了数学建模的正确性与结构设计的合理性。

参考文献

[1]洪嘉振著.计算多体系统动力学.北京:高等教育出版社,2003.[2][德]J.维滕伯格著,谢传锋译.多刚体系统动力学.北京:北京航空学院出版社,1986.[3]王沫楠.基于ADAMS软件两栖仿生机器蟹的动力学建模与仿真[J].哈尔滨工程大学学报,2003,4 [4]张秀丽.四足机器人节律运动及环境适应性的生物控制研究[M].清华大学,2004

第二篇:运用MatlabSimulink对主动悬架动力学仿真与分析

运用Matlab/Simulink对主动悬架动力学仿真与分析

摘要:基于主动悬架车辆1/4动力学模型,采用LQG最优调节器理论确定了主动悬架的最优控制方法,利用matlab软件建立了主动悬架汽车动力学仿真模型,并用某一车型数据进行了动力学分析和仿真,仿真输出量可作为评价主动悬架的控制方法和与平顺性有关的车辆结构参数的依据。

关键词:主动悬架 仿真 Matlab

Dynamics Simulation Of Vehicle Active-suspension By Using MATLAB

Abstract: Linear-Quadratic-Gaussian(LQG)optional regulator theory is applied to optional control of active-suspension based on quarter vehicle dynamics model of active-suspension.Using MATLAB software,dynamics on model of vehicle of active-suspension is established to make analysis and simulation according to some actual data.Simulation output can be used to evaluate the control method of active-suspension and structure parameters of vehicle in relation to ride performance.Key words: active-suspension simulation MATLAB

第1页

共6页

悬架作为现代汽车上重要的总成之一,对汽车的平顺性、操纵稳定性等有重要的影响,统的被动悬架虽然结构简单,但其结构参数无法随外界条件变化,因而极大的限制了悬架性能的提高。动悬架通过采用激励器取代被动悬架的弹性和阻尼元件,组成一个闭环控制系统,根据汽车的运动状态和当前激励大小主动做出反应,使其始终处于最佳工作状态。

MATLAB最为流行的以数值计算为主的软件,不但具有卓越的数值计算功能和强大的图形处理能力,而且还具有在专业水平上开发符号计算、文字处理、可视化建模仿真和实时控制能力,使MATLAB成为适合多学科、多部门要求的新一代科技应用软件。在MATLAB中有一个对动态系统进行建模、仿真和分析的软件包——SIMULINK,支持连续、离散及两者混合的线性和非线性系统,与传统的仿真软件包相比,具有更直观、方便、灵活的优点。

1、悬架汽车动力学模型的建立

本文用1/4车辆模型分析车辆特性。被动悬架的结构原理如图1(a)所示,图示Mb、Mw、Ks、Kt、Cs、Xb、Xw、Xg分别代表车辆的1/4车体重、半桥重、悬架刚度、轮胎刚度、悬架阻尼、车体位移、车桥位移、路面输入,动悬架的结构原理如图1(b)所示,图中加设了一个激励器,Ua 为激励器产生的控制力,大小根据系统的状态变量调节。

1.1主动悬架的动力学方程

(1)

(2)

定义状态变量X=[x1,x2,x3,x4,x5]T=[Xb' Xw' Xb Xw Xg]T,路面输入模型为白噪声,x5'=-2πf0x5+2π(G0U0)1/2W(t),f0为底阶段频率,G0为路面粗糙度系数,U0为车辆前进速度。代入上述的动力学方程,可以得到X'=AX+BU,这里

第2页

共6页

1.2 LQG最优控制

最优控制目标是使车体的垂直加速度、轮胎动载荷最小,同时将悬架动挠度保持在允许的范围内,LQG(linear_Quadratic-Gaussian)线性二次调节器是设计最优动态调节器的一种状态空间技术。为实现上述控制目标本文采用LQG技术,引入下面的LQG 控制器性能指标泛函数:

式中 q1、q2 是权系数,代表性能指标的重要程度。q1为控制动态轮胎载荷的权系数,q2 为控制悬架动挠度的权系数。

将状态变量X代入上述的泛函并化为二次形式为:

(3)

这里

2、主动悬架在Matlab上的仿真实现

某车型的相关参数:Mb=320kg,Mw=40kg,ks=2000N/m,kt=200kN/m, Cs=20kN·s/m, G0=5*10-6m3/cycle,U0=20m/s,f0=0.01Hz,q1=8000Hz,q2=100Hz。将这些参数代入上述的表达式,利用Matlab的函数[K,S,E]=LQR(A,B,Q,R,N)求得最优反馈增益矩阵K、Riccati方程的稳态解S和闭环系统的特征值E。

第3页

共6页

2.1 SIMULINK 仿真模型

根据上述的主动悬架动力学模型和最优控制策略,可建立仿真模型,在Matlab上的Simulink 仿真模型如图2 所示

图2 主动悬架仿真模型

2.2 仿真输出

系统的仿真输出量为下列四个参数:汽车车身垂直振动加速度、悬架的动挠度、轮胎的变形、轮胎跳动加速度。这些参数是衡量汽车平顺性和安全性非常重要的量。在图2中的示波器BA 表示该示波器输出车身垂直振动加速度的波形,示波器SWS表示该示波器输出悬架动挠度的波形,示波器DTD 表示该示波器输出轮胎变形的波形,示波器WA 表示该示波器输出轮胎跳动加速度的波形。

进行模拟仿真,得到相应输出量图形如图:

图3 车身垂直振动加速度 图4 悬架的动挠度

第4页

共6页

图5 轮胎的变形 图6 轮胎跳动加速度

3、结束语

利用Matlab软件对安装有主动悬架的汽车进行动力学仿真,可以很方便的建立动力学仿真模型,可以方便的对车身垂直振动加速度、悬架动挠度等变量进行跟踪,就能利用国际标准ISO2631推荐的方法进行车辆的平顺性评价。仿真结果可以帮助评价与汽车平顺性有关的的结构参数,也可以帮助选择最优调节器的控制方法和控制器的设计。本文为了说明方便,利用的是1/4车辆动力学模型。为提高车辆动力学仿真的精度,可以增加系统自由度,采用整车动力学模型。

第5页

共6页

参考文献:

[1] 薛定宇, 控制系统计算机辅助设计—MATLAB 语言及应用[M].北京: 清华大学出版社,2012。

[2] 孙秀明.汽车主动悬架最优控制研究[J].中国科技博览,2013。

[3] 余志生.汽车理论(第5版)[M].北京:机械工业出版社,2009。

[4] 张衍成.基于MATLAB/Simulink的车辆主动悬架模糊控制仿真研究[J].辽宁工业大学,2014。

[5] 张宝琳.汽车主动悬架系统的最优跟踪控制[J].系统仿真学报,2009。

第6页

共6页

第三篇:系统动力学仿真模型运用

山西财经大学实验报告

实验名称 系统动力学模型VENSIM软件运用

实验时间 2017.11.22 姓名 刘衍通

学号 201521030123 班级 自然地理与资源环境班

实验目的:能够熟练运用VENSIM-PLE软件进行系统动力学一阶正、负反馈系统的仿真计算并得到正确的结果示意图。

实验内容:运用VENSIM-PLE软件对给定题目

一、题目二进行系统动力学一阶正、负反馈系统的仿真系统计算并得到正确的结果示意图。

实验步骤:

打开VENSIM-PLE软件的操作界面,熟悉掌握其工具栏、绘图栏、分析工具栏、状态列功能列等软件功能和操作环境

根据题目要求确定变量关系并建立反馈回路图和流程图,写出dynamo方程式

根据流程图、反馈回路和变量关系,写出仿真分析表并画出仿真分析图 观察分析软件运用结果,并进行灵敏度分析 实验结果:实验结果如附图所示

注:实验题目一反馈回路如图4-1所示

实验题目一流程图如图4-2所示

实验题目一仿真预测1如图4-3所示

实验题目一仿真预测2如图4-4所示

实验题目一仿真分析图如4-5所示

实验题目二反馈回路如图4-6所示

实验题目二流程图如图4-7所示

实验题目二仿真预测1如图4-8所示

实验题目二仿真预测2如图4-9所示 实验题目二仿真分析图如4-10所示

图4-1

图4-2

图4-3

图4-4

图4-5

图4-6

图4-7

图4-8

图4-9

图4-10

第四篇:实验四 虚拟邮局仿真与分析

实验四 虚拟邮局仿真与分析 建立概念模型 1.1系统描述

这是一个邮局内部信件处理系统的模拟。模拟邮局在处理各方送来的信件时内部的处理流程,由于邮局处理信件必须先将信件过滤分类,但是现实中邮件种类繁多,因此本模型仅将邮件分成国内信件与国外信件。信件到达后,依其类型给予2种不同类型(用不同颜色区分),经由传送带到达处理器处理,此步骤主要是把信件按照其不同的类型分开来,再分别送到不同的货架上等待邮车运送出去。在此仅考虑内部分类处理部分,故外送部分在这个模型中不做讨论。

1.2系统数据

产品到达:随机产生两种类型的产品,分布呈正态分布,平均每15秒到达一个产品,标准差为2秒。

产品加工:平均加工时间1秒,分布呈正态分布,标准差为0.5秒 产品运送:使用两辆叉车,装载和卸载时间均为3秒 建立Flexsim模型 第1步:调整传送带的布局

将两条传送带各增加弯曲的一小段,并调整布局。

第2步:连接端口

第3步:给发生器指定临时实体的到达速率和到达种类

产品到达:随机产生两种类型的产品,分布呈正态分布,平均每15秒到达一个产品,标准差为2秒。

2种不同类型(用不同颜色区分)。

第4步:设置处理器处理时间及输出

产品加工:平均加工时间1秒,分布呈正态分布,标准差为0.5秒 输出:类型号为1的送第1个端口,类型号为2的送第2个端口

第5步:加入两台叉车将临时实体分别从暂存器送到货架。

注意两个步骤。

第6步:两辆叉车,装载和卸载时间均为3秒 3 模型运行 4 模型分析

用实验控制器求叉车1和叉车2一小时搬运的平均数量,重复运行3次。问为什么要重复运行?

第五篇:四足机器人的翻译有图兼容

机器人技术和计算机集成制造

多功能四足机器人的模块化设计

摘要

现代工业使用多种类型的机器人。除了普通的机械手臂,两足,三足,还有四足机器人,四足机器人最初是为了开发玩具,现在越来越多的应用于制造业中。这项研究始于建立具有多种功能的四足机器人平台,高灵敏度,模块化装配,这是我们构造工业机器人的基本模型。在额外负载下,四足机器人的四条腿能增强其承载能力,它的可靠性要高于两足或三足机器人,这有助于它携带更多的物品并提高性能。根据不同的要求和制造工艺要求,高度敏感的四足机器人提供了一个扩展接口,添加不同的传感元件。此外,当与无线通讯模块或独立的1.2GHz的射频电荷耦合装置无线图像传输系统相结合,用户可以远程控制机器人,即时。该设计有助于四足机器人扩大其应用。通过拆装模块和改变传感元件,高度敏感的四足机器人可用于不同的任务。此外,机器人的远程控制功能将增加与人类的相互作用,因此它可以非常多的卷入人们的生活工作。四足机器人平台将为不同的工业机器人的商业化设计提供参考,并将提供更多的选择和有用的创意应用工业机器人的设计。1.介绍 1977年,Gollidary和Hemani [1]采用拉格朗日动力学理论推导出的线性化的双足机器人数学模型来分析其稳定性,可操作性,和可观察性。1980年,Miyazaki和Arimoto [2] 应用奇摄动法将双足机器人的快速模式和慢速模式的动力学行为进行分类,然后他们在此方法的基础上设计的控制器。1986年,Railbert出版了他的著作《步行机器人的平衡》,这对单足,双足和四足油压机器人的研究作出了卓越贡献。双足机器人结合不同学科的研究,如机械学,电子工程,控制工程,生物工程和机器人技术。主要研究内容包括腿部机制的设计,步态规划,步行跟踪和平衡控制理论。Hira [3]设计的全负荷二自由度双足机器人,该机器人是由一个骨架和两个延伸脚。它的机械系统有4个自由度,2个旋转和2个移动自由度,减去2个限制自由度,两足的总长度是一个常数。骨架存放在两腿之间的中心。为了防止它倾倒,机器人的腿和脚安装垂直于地面。从侧面看,它就像3连杆的运动。因此,双足机器人能够在地面上直立行走。日本本田的第一代机器人是由本田R&D中心[3]研发。

该机器人没有身体,只有一个连接手臂的悬空骨架。这个双足机器人有12个自由度,包括3个髋关节自由度,1个膝关节自由度,2个踝关节自由度,从正面看有5联接4自由度,从侧面看有7联接6自由度。两腿的重量大约只有总重量5-10%。如果装载的手臂对平衡没有影响,并且两个手臂重量占总重量的比重小,那么机器人将可以步行上下楼梯,在斜度小于10度的斜面上前进或者后退。在成功操作机器人移动或者将物品从一个地方搬运到另一个地方之前,必须要跟随一种运动轨道。有几种方法来生成行走轨道,一种是通过观察真人的步态,而另一种通过即时计算。1970年,Vukobratovic等人,通过数值方法计算双足机器人的动态移动路径,Kato通过相同的方法得出了他的双足机器人的动态移动路径,然而,当机器人移动时,它需要较长的时间来计算所涉及到的轨迹,而且这很难适应不同的表面。除非CPU可以更快或简化算法,数值方法仍然有计算缓慢的问题,其他的方法来生成行走轨道包括输入最小能量,用神经网络和遗传法则。

机器人的手臂自由度取决于机器人的类型,灵活性可以像人类的手臂一样。机器人手臂运动学是关于机器人手臂在一段时间内相对于固定坐标系的运动。在传统的分析中,机器人的底部被当作一个参考点,其他运动必须以该参考点为基础。一旦我们知道机器人手臂上所有联结点的位置,我们可以计算出手臂端部在空间的确切位置。现代商业机器人配备了混合旋转和滑动节点来与手臂或机器人手腕部分相连。旋转结点控制了两个连杆精确的角度运动,滑动结点仅控制两个连杆的线性运动。从理论上讲,其他的连接关系是可能的,然而,事实上只采用这两个连接。连杆和结点的串行联结叫做链,链可以打开或关闭。每一个链末端的连杆只连接一个结点,一个开式链指不连接靠近底部的连杆,相反一个闭合链指连接在前结点的连杆。现代工业机器人的主要类型是开式链。分析和控制机器人的手臂需要分析控制理论的发展。一个拥有多个结点的手臂被相互作用的内力和外部环境所影响,需要更加复杂的分析,Paul在同质变换矩阵方法和坐标转换领域的研究对机器人运动的分析是有益的参考。给定一个较大的模型或一个复杂的生物系统,人们通常面临的问题是需要对很多的参数进行调整。参数之间的广泛因素的相互作用,使得对模型的动态行为分析变得困难,参数的含义和值有助于克服这个问题。在这里,我们可以使用一个渐进的实验技术(称为侦察)去自主探索参数空间。这是一种自主探测技术,它使用理论值和实验值之间的偏差作为合适的估算值。为了获得大的动态生物学模型的运动信息,这种方法已被广泛应用。

对于建立多种功能的四足机器人平台要结合不同的学科,如机械力学,电子工程,控制工程,生物工程和机器人技术等。影响设计四足机器人的因素中,首先要探讨腿部机制的设计,步态规划,路径跟踪,平衡控制理论。本研究采用程序语言去设计一切与构建多种功能的四足机器人平台有关的步态运动,编辑整合之后,加载所有运动到机器人的内部存储器,另外,这项研究结合了一种可靠的低成本的电路程序,用以减少发展四足机器人的障碍,并鼓励作进一步的研究。我们还开发了外部控制连接接口来加载不同的传感器到机器人上,此外1.2GHz的无线图像传输系统安装在机器人上为用户提供了实时监测功能,最后,机器人加载无线通信模块,该模块的开发有利于改善机器人的灵活性,并有效的降低开发成本。这样新模块在设计和执行机器人的特殊运动时将缩短发展过程大大降低机器人成本。2.研究方法 2.1.文件分析

收集所有涉及步行机器人的文献和数据筛选出制造步行机器人的相关理论。2.2.理论分析

在正式执行之前,对步行机器人的运动作理论分析,这包括分析机器人的重心,电机的运转方向,角度和旋转速度。在实际执行之前必须要有理论上的可行性。2.3.模块理论

在这项研究中,四足机器人的所有功能被分为五个模块来执行和监测。当所有功能运作时这些模块连接在一起,这种方法不仅简化了开发了过程,而且会导致调试更加简便。此外,它大大改善了机器人的生产。下面来描述这五个模块: a)控制模块接口和电路设计; b)机器人身体模块——发动机机构;

c)视觉系统模块——1.2G电磁耦合图像传输系统; d)无线通信模块——2.4GHz射频通信模块或GSM模块;e)传感器:红外传感器,二氧化碳传感器,温度和湿度传感器等。2.4.测试理论

该方法包括发展四足机器人的不同步行运动和节省内存消耗,用户通过无线通信模块远程控制机器人并且通过视觉系统观测实时图像。最后,装在机器人上的传感器收集外部数据利用通信模块向用户报告。2.5.四足机器人的运动分析

在这项研究中,四足机器人的运动学,动力学和静力平衡将被使用。D30 ——高达31种智能电动机用来控制。位置代码:0-254(位置)

结束代码:(电动机转速串行代码XOR位置代码)0*7F

图2显示了串行控制示范。

图二:串行控制的示范 3.6.完整系统四足机器人的基本结构

控制端(PC和单片机)能够同时控制多达31个智能电机,采用串行传输,控制端驱动电机移动到目标角度,利用电动机之间的数据传输,控制端能够控制和连接电机。在这项研究中四足机器人的设计分为三部分,第一部分是基础结构的设计,包括14个电机的连接,电机连接组件和四足机器人的外形。第二部分是有关控制器的设计,包括固件设计(用KeilC语言在微处理器中程序控制),硬件设计(简单的控制电路),以及软件设计(用VB语言进行人机交换)。最后一部分是外部硬件集成,包括两重半双工无线通信模块,1.2GHz的无线图像传输系统和传感器。三个部分综合,四足机器人的原型就设计完成了。图3显示了完整系统四足机器人的基本结构。

图三:完整系统四足机器人的基本结构 3.7.设计和执行四足机器人的硬件控制电路

图4显示了设计和执行四足机器人的硬件控制电路,硬件设计集成了微控制器(来自ATMEL公司的AT89S52芯片),内存(四足机器人运动命令的存储空间),电源模块(提供电机和电路所需的电源),智能电机的控制接口(连续传输的电机控制),无线通信接口(2.4GHz射频无线通信模块),接受来自外部传感器的数据连接引脚,用于连接到电脑,下载运动命令的PC端通信接口,以及用来切换不同控制模式的旋转开关。结合上述电路,就完成了机器人的控制功能。

图四:设计和执行硬件控制电路 3.8.四足机器人的路径规划

为了让四足机器人平稳的移动,四足机器人的运动曲线被用来解释它如何运动,相应的程序如图5。在这项研究中,运动学,动力学和四足机器人的静力平衡将被使用。DH的坐标系中用连接轴来描述。当每个关节旋转角度已知,机器人的关节在坐标系中的位置矢量能够通过矩阵变换计算得出,通过求解矩阵,可以获得运动学的解决方法,然后用几何学推倒出逆运动。如果四足机器人的位置和连接轴的长度已知,有必要用运动学反解来得出每个连接轴的角度。

图五:机器人运动的程序研究 3.9.四足机器人的身体模块

在这项研究中,14个智能电机被用来作为四足机器人的主要动力,在头部和颈部有一个单独的电机,四个脚上各有3个电机。通过连接电机的附件,单个的铝芯片,铜柱子,就完成了四足机器人原型。装载以前的硬件电路和所有运动程序(前进,后退,左转,右转,坐下,跌倒后自动站起来)后,包括留在内存中的运动,机器人能够完成机构范围内的所有运动。四足机器人的身体模块如图6所示。

图六:四足机器人的身体模块 3.10.四足机器人的视觉系统模块

外部1.2GHz的无线图像传输模块通过USB转换接口将图像传输进PC端,用户甚至可以用录像功能将目标图像保存为AVI(MPEG-4)格式。

3.11.四足机器人的无线通讯模块

在这项研究中用到的2.4GHz射频无线通信模块具有nRF2401的单片机和2.4GHz无线收发器,采用半双工交流来双重传回数据。只要2.4GHz无线通信模块在运作,发射机的功率灯就一直亮着。当按下任何控制键,由于数据的传输将会亮,此时,控制按钮可以用来驱动四足机器人的运动。当传感器接收到返回数据时,灯变亮并显示传感器的状态。如果没有按下控制键,发射器和接收器保持通信连接来提供双/半双工功能。用GSM通信模块,用户可以使用手机远程控制机器人。当用户按下了移动电话的按钮传送信号到GSM模块,机器人的微控制器解码信号然后机器人移动,接着控制器发送AT命令,并与GSM模块通信得到传感器的状态报告。

本研究使用红外接收器模块来作为监测装置。该传感器随着温度的变化而产生电荷,因为它是热电红外接收器。接收器的温度范围为-10和+50℃,直流电压范围为3至15V。通过扩大探测器的输出,经过电压比较器电路的传递,接收器可以监测到人体。传感器接受所有发热物体发出的红外线,包括人体。当没有监测到发热物体的运动,传感器的输出为0V。当监测到发热物体,传感器的输出为5V。机器人通过分析传感器的输出监测发热物体,并将结果通过2.4GHz的射频无线通信模块传回给用户。这项研究将开发可扩展的连接电路,当用户将不同的传感器连接到仪器板,物体被监测到时仪器板上会输出一个5V电压,控制器立即将返回的信号实时报告给用户。3.12.四足机器人模块

上述图像的上半部分显示了1.2GHz的射频无线图像传输模块的镜头。四足机器人可以为用户端提供从镜头捕获的图像,通过控制在颈部和头部的电动机的运动,机器人可以移动镜头的位置并锁定观测图像,红外传感器位于颈部的电机上方的乳白色半圆顶,是人体探测器。控制器分为两个部分,上半部分是2.4GHz射频无线通信模块,用来接受用户的命令和传回检测信号,下半部分是控制机器人运动的控制模块。控制器下方是8.4 V,2000 mAH的锂电池,这种电池完全支持四足机器人的电力需求。图7显示了四足机器人的整体设计。

图七:四足机器人的整体设计 4.结论

多种功能的四足机器人平台的主要设计概念是基于固定硬件的规格与不同传感器的组合,用来满足不同情况下的特别要求。因此,不需要因特别需求而开发新的机器人。另外,这项决议减少了开发成本和时间,随着机器人的传感器格式而重新设计传感器,用户可以在短时间内改变机器人的固件。通过改变模块,四足机器人能够扩展功能,用以监测,扫描,援救,监视甚至家庭护理,它的遥控功能增强了机器人与人的互动,并有可能大大改善人们的生活。在研究中固件改变这一观念将是机器人发展的主要方向之一,这一概念不仅降低了开发成本,而且使廉价多功能机器人成为可能,这将大大有利于在未来发展和传播机器人。多功能四足机器人平台的确立将为工业机器人的设计和生产提供多种选择。在工程制造领域,我们可以设想四足机器人将适用于今后不同的应用,工业机器人的应用前景将取决于制定四足机器人规范的实际需求。鸣谢

这项研究是由美国国家科学理事会支持,根据合同96-2622-E-152-001-CC3 和 96-2411-H-152-003.参考书目

[1] Golliday CL, Hemami H.《两足运动的分析和机器人运动控制的设计》。自动化控制电子工程理事会,1997,22(6):963–72.[2] Miyazaki F, Arimoto S.《两足动态运动控制理论的研究》。ASME期刊动态系统测量和控制1980年,102:233-9。

[3] Hira K.《从当前和未来角度看本田拟人机器人》。见:1997年国际电子工程师协会会议关于智能机器人系统,1997.p.500–8.[4] Sadain P, Rostami M, Thomas E, Bessonnet G.《双足机器人:工艺设计和动态行为的相关性》。控制工程实践,1999;7:401–11.[5] Ambarish Goswami.《双足机器人的稳态和脚步旋转指示点》。国际机器人研究杂志,1999,18:523–33.[6] Frank AA.《近似动态分析和双足机械运动的合成》。医学和生物工程,1970,8:465–76.[7] McGeer T.《用膝盖被动运动》。电子工程师协会会议关于机器人与自动化,1998,3:1640–5.[8] Shih GL, Zhu Y, Gruver WA.《双足机器人的运动轨迹优化》。见:复杂系统的辅助决策,会议记录,国际电子工程师协会会议,vol.2, 1991.p.899–903.[9] Meifen Cao, Kawamura A.《对双足运动模式的产生的神经网络优化设计安排》。见:第五届先进运动控制的国际研讨会,1998.p.666–71.[10] Denavit J, Hartenberg RS, Kinematic A.《基于矩阵的低副机构符号》。美国机械工程师协会期刊关于应用力学,1995:215–21.[11] Shih CL, Chi CT, Lee YW.《直流电机的双足机器人的行走实验和位置控制》。第四届国际电力电子会议,日本东京,2000.p.1249–54.[12] Jen-Chao Tai, Hsin-Te Liao, Ch’ing-T’ien Ch’en.《机电一体化》。台北,高李图书,2003.p.307.[13] Jones Bryan A.《机器人连续运动的实时执行》。电气与电子工程师协会理事会关于机器人技术,2006,22(6):1087–99.[14] Woodarz D, Nowak A.《特效治疗机制可以导致长期的免疫控制》。HV.PANS 1999,96(25):14464–9.[15] Pfaffmann JQ, Zauner KP.见:Keymeulen D, Stoica A, Lohn J, Zebulum RS编辑《侦查上下敏感度综合》。Los Alamitos, 2001.p.14–20,Nowak A.《特效治疗机制可以导致长期的免疫控制》HV.PANS 1999,96(25):14464–9.

下载四足机器人的动力学分析与仿真word格式文档
下载四足机器人的动力学分析与仿真.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    四足步行机器人结构设计文献综述_-_副本

    四足步行机器人结构设计文献综述 四足步行机器人结构设计文献综述 () 摘要:对国内、外四足步行机器人的研究发展现状进行了综述,对四足步行机器人亟需解决的问题进行了论述,并对......

    四足步行机器人外文翻译1(5篇)

    新兴的运动模式四足机器人气动肌肉用的模型 保德山田,聪西川,伊士达和康夫国芳 研究生信息科学与技术学院,东京大学 大学院情报研究,东京大学 1、 动机,问题的陈述,相关工作 动物......

    机器人-红绿灯-仿真实验报告

    “机器人控制”课程总结报告 机器人控制 综合仿真实验 ——红绿灯 姓名:李铃年级:2011级 系别:信息工程学院 计科(师) 学号:1111000048 同组人姓名:杨晨年级:2011级 系别:信息工程学......

    动力学分析方法

    1 动力学分析方法 结构动力学的研究方法可分为分析方法(结构动力分析)和试验方法(结构动力试验)两大类。[7-10] 分析方法的主要任务是建模(modeling),建模的过程是对问题的去粗取精......

    弹道动力学分析

    导引弹道动力学分析与动态特性分析在导弹总体设计中的作用 在导引弹道动力学分析中,我们需要设定的参数有目标的初速度、目标的初始x向位置、目标的初始y向速度,发动机的推力......

    柔性机器人的动力学研究(精选5篇)

    柔性机器人的动力学研究 摘要:现代机械向高速、精密、轻型和低噪声等方向发展,为了提高机械产品的动态性能、工作品质,必须十分重视机构动力学的研究。特别对于高速运行的机器......

    多足机器人行走机构设计(论文)

    高职学生毕业设计 题目: 多足机器人行走机构设计 学 院: 专 业: 学 号: 学生姓名: 指导教师: 日 期: 机械自动化学院 武汉科技大学高职生毕业设计(论文) 摘要 本文旨......

    双足步行机器人相关翻译

    本科毕业论文 外文文献及译文 文献、资料题目:Walking Control algorithm of Biped Humanoid Robot 文献、资料来源:期刊 文献、资料发表(出版)日期:1999.6.3 院 (部): 理学院 专......