第一篇:四足步行机器人外文翻译1
新兴的运动模式四足机器人气动肌肉用的模型
保德山田,聪西川,伊士达和康夫国芳 研究生信息科学与技术学院,东京大学
大学院情报研究,东京大学
1、动机,问题的陈述,相关工作
动物的进化过程形成了形态和神经系统从彼此相互适应而达到一个在环境中有效的感觉整合。作为一个结果,各种复杂行为的标志,通过能耗效率以及从动态自组织产生互动的身体、神经系统和环境。这些技能是可能的,一方面,因为神经系统利用身体的物理属性,而另一方面通过感官刺激形成体动力学神经力学结构。这构成了一个体现智能[1] [2] [3]的基本属性。
近年来,许多研究已经发展到更好地了解潜在的机制动物的运动技能和如何将它们应用在机器人[4][5]。此外,特定的注意力被集中在中央的模式发生器在仿生机器人[6]中来复制动物运动。举例来说,像狗一样的铁拳系列[7]可以使用感官反馈实现稳定的运动,而类似昆虫的AMOS-WD06[8]可通过利用中央政府模型的混沌特性产生各种复杂的行为。然而,这些机器人不用容易开发的物理身体就能实现运动,是因为身体过于僵化或受线性电磁马达控制。相反,动物的骨骼肌肉系统是一个复杂和冗余的非线性结构形态构成粘弹性肌腱组织材料[9]的肌肉。一些研究都集中在中枢神经系统和他们的身体的研究[10][11] [12]。出于这个原因,我们建议在四足机器人中调查这个问题,以及神经系统随着体动力学系统如何互相感应,以产生各种适应性行为的议案。
2、技术方法
我们设计了一个简单的十分真实的四足机器人去捕捉动物骨骼系统的重要特征,以实现对神经系统的体现。古典驱动器已被麦吉类型气动人工肌肉替换,根据阻尼和弹性,重现一些生物肌肉的非线性特性 [12] [13] [14](图1)。在真正的肌肉中,传感反馈是通过感觉到的肌肉长度的肌梭和感知肌张力的高尔基腱器官完成的。我们通过使用压力传感器和电位器计算长度和人工肌肉的张力来复制此功能的。
基于生物学的考虑,我们用小原国芳与他的同事们开发的脊髓延髓的系统模型设计了神经系统[15] [16](图2)。一个的脊髓延髓模式的单一元素组成肌肉、一个α和γ运动神经元、传入感觉中间神经元和神经的振荡器模型。虽然每个元素不直接连接到总体,我们预计机器人的振荡器的非线性光学性质将建立弥散的互感器和动力连接器条件从而产生全身的不同运动(图3)。
图1.麦吉气动人造肌肉的类型。
图2.脊髓延髓模型。箭头和填充圈分别代表兴奋和抑制的连接。
图3.脊髓延髓中体现的模型。
3、结果
在我们的实验中,感觉身体之间的动力学与在同样的一个实验中用自我组织的各种行为模式时尚的脊髓延髓系统修改动态的腿配位顺序之间的相互作用。
例如,机器人需要几个步骤产生动态向前运动(图4左)。然后,通过执行向后运动的几个步骤(图4中),机器人切换到另一个模式。一段时间后,返回到其先前的运动状态和重新生成向前运动(图4右)。在实验中每个关节的角度来看,我们观察到一些相同步和相交错模式(图5)。
我们注意到,这种类型的运动在整个实验中并不经常发生,这表明了系统的动力学性质。例如,在一个实验中,我们观察到的运动仅仅只是向后的。然而,这种行为运动显示了各种模型例如左腿和右腿之间或者两腿交错间的自动相位同步模型。
图4.运动行为的快照
图5.时间序列的关节角度.4、实验
我们进行了一些实验来生成四足动物骨骼机器人的模型(图6和图7)的运动行为。在脊髓延髓的模型中,每个机器人的腿部肌肉是相互隔离的,并且没有直接联系。然而,我们预测,化身将在与环境的相互作用中为弥散互感器创造条件,目的是产生各种自适应行为模式。
人工肌肉从外部压缩机提供空气,我们使用比例压力控制阀控制肌肉内部的压力。机器人安装有中央处理器板运行实时操作系统向压力阀发送的命令和从压力传感器、电位器接收传感器值。一个CPU板和计算神经动力学与外部PC机进行通信。
图6.四足气动肌肉机器人
图7.肌肉的布局。红色部分代表气动人工肌肉,蓝色部分代表的是被动肌肉构
成弹簧。
5、实验的主要见解
在实验中,虽然我们对神经系统的模型使用相同的参数,但是我们还是观察到各种复杂的运动模式。这些运动模式是个别肌肉的动态连接器的结果–即,它们之间并没有直接的连接:通过物理身体和神经系统与环境的动力相互作用。这一动态同步的机制是复杂和与环境相适应的,它探讨了身体的自然运动模式。
在今后的实验中,我们将进一步研究行为的自我组织模式机制所需的身体的性能和有利于构成这一组织模式机制的神经系统。
参考文献
[ 1]R.A.布鲁克斯.“无表征智能,人工智能”.1991,d第3期,卷47,第139–159.[ 2]R.普法倚费尔,C.西契尔.了解情报.麻省理工学院出版社,1999.[ 3]R.普法倚费尔,J.C 本哥德.我们认为身体是如何形成的:一种新的智力观.麻省理工学院出版社,2006年.[ 4]H.木村,K.土屋,A.石黑,H.维特.动物和机器的自相适应运动.高等教育出版社,2005年.[ 5]J.埃尔斯,J.L.戴维斯,A.鲁道.仿生机器人的神经技术.麻省理工学院出版社,2002年.[ 6]A.J.依思皮特,动物和机器人的中枢模式发生器运动控制:审查,神经网络,2008,第4期,21卷,642页–653页.[ 7]H.木村,Y.福冈,A.H.科恩.“适应在地面上动态行走的四足机器人的生物学概念”.国际机器人研究学报,2007, 第5期,26卷,475页–490页.[ 8]S.斯特恩哥如布,M.泰姆,F.沃尔戈特,P.Manoonpong,“自组织适应一个简单的神经电路,使复杂的机器人的行为成为可能”.自然物理学,2009,卷6,页224 –230.[ 9]R.M.亚力山大,H.班纳特-克拉克.“肌肉和其它组织存储的弹性应变能”.自然科学,1977,第5590期,265卷,114页–117.[ 10]R.普法倚费尔,M.伦加雷拉,Y.小原国芳.自组织生物启发的机器人的化身 ”.科学,2007年11月,卷318,页1088-–1093.[ 11 ]A.彼蒂,Y.小原国芳.产生时空动态分布联合转矩模式同步模式发电机,前沿神经机器人,2009,3卷,2号,1页–14.[ 12 ]AR皮蒂,是有关新山志保,与国芳,“创造和调节节奏的控制身体的物理,“自主机器人,28卷,3号,317页–329,2010.[ 13]G柳巷芳草,J.czerniecki,和B纳福,“麦吉人工肌肉:气动执行器与生物力学的情报,在先进的智能机电一体化,1999.诉讼.1999届国际会议预报,1999,页221 –226.[ 14]R.A是有关新山志保,nagakubo,与国芳,“无忌:一个双足跳跃和着陆机器人与人工肌肉骨骼系统的过程中,“参考国际机器人与自动化(互联网内容分级协会2007),罗马,意大利,四月,2007,页2546-2551(–thc5.2).[ 15]Y国芳和铃木,“动态的出现和适应行为体现为通过耦合混沌领域,“程序.国际参考智能机器人与系统,2004,页2042 –2049.[ 16]Y国芳和美国sangawa,“早期运动的发展从偏序神经体动力学:实验与cortico-spinal-musculosleletal模型,“生物控制论,卷95,页589-–605,2006.
第二篇:双足步行机器人相关翻译
本科毕业论文
外文文献及译文
文献、资料题目:Walking Control algorithm of
Biped Humanoid Robot
文献、资料来源:期刊
文献、资料发表(出版)日期:1999.6.3 院(部): 理学院
专
业: 光信息科学与技术 班
级: 光信112 姓
名: 王若宇 学
号: 2011121135 指导教师: 赵俊卿 翻译日期: 2015.5.14
山东建筑大学毕业论文外文文献及翻译
外文文献:
Walking Control algorithm of Biped Humanoid Robot
Many studies on biped walking robots have been performed since 1970 [1-4].During that period, biped walking robots have transformed into biped humanoid robots through the technological development.Furthermore, the biped humanoid robot has become a one of representative research topics in the intelligent robot research society.Many researchers anticipate that the humanoid robot industry will be the industry leader of the 21st century and we eventually enter an era of one robot in every home.The strong focus on biped humanoid robots stems from a long-standing desire for human-like robots.Furthermore, a human-like appearance is desirable for coexistence in a human-robot society.However, while it is not hard to develop a human-like biped robot platform, the realization of stable biped robot walking poses a considerable challenge.This is because of a lack of understanding on how humans walk stably.Furthermore, biped walking is an unstable successive motion of a single support phase.Early biped walking of robots involved static walking with a very low walking speed [5,6].The step time was over 10 seconds per step and the balance control strategy was performed through the use of COG(Center Of Gravity).Hereby the projected point of COG onto the ground always falls within the supporting polygon that is made by two feet.During the static walking, the robot can stop the walking motion any time without falling down.The disadvantage of static walking is that the motion is too slow and wide for shifting the COG.Researchers thus began to focus on dynamic walking of biped robots [7-9].It is fast walking with a speed of less than 1 second per step.If the dynamic balance can be maintained, dynamic walking is smoother and more active even when using small body motions.However, if the inertial forces generated from the acceleration of the robot body are not suitably controlled, a biped robot easily falls down.In addition, during dynamic walking, a biped robot may falls down from disturbances and cannot stop the walking motion suddenly.Hence, the notion of ZMP(Zero Moment Point)
第三篇:四足步行机器人结构设计文献综述_-_副本
四足步行机器人结构设计文献综述
四足步行机器人结构设计文献综述
()
摘要:对国内、外四足步行机器人的研究发展现状进行了综述,对四足步行机器人亟需解决的问题进行了论述,并对未来可能的研究发展方向进行了展望。关键字:四足步行机器人;研究现状;展望
1、引言
四足步行机器人是机器人家族的一个重要分支,其不仅承载能力强,而且容易适应不平的地形。它既能使用静态稳定的步态缓慢平滑地行走,又能以动态稳定的步态跑动。与轮式、履带式移动机器人相比,在崎岖不平的路面,步行机器人具有独特优越性能,在这种背景下,步行机器人的研究蓬勃发展起来。而仿生四足步行机器人的出现更加显示出步行机器人的优势:
(1)四足步行机器人的运动轨迹是一系列离散的足印,运动时只需要离散的点接触地面,对环境的破环程度也较小,可以在可能到达的地面上选择最优的支撑点,对崎岖的地形的适应性强。
(2)四足步行机器人的腿部具有多个自由度,使运动的灵活性大大增强。它可以通过调节腿的长度保持身体水平,也可以通过调节腿的伸展程度调整重心位置,因此不易翻到,稳定性更高。
(3)四足步行机器人身体与地面是分离的,这种机械结构的优点在于:运动系统还具有主动隔振能力即允许机身运动轨迹和足运动轨迹解耦,机器人的身体可以平稳的运动而不必考虑地面的粗糙度和腿的放置位置。
(4)机器人在不平地面和松软路面上的运动速度较快,能耗较低。
2、国内外的发展现状
20世纪60年代,四足步行机器人的研究工作开始起步。随着计算机技术和机器人控制技术的研究和应用,到了20世纪80年代,现代四足步行机器人的研制工作进入了广泛开展的阶段。
世界上第一台真正意义的四足步行机器人是有Frank和McGhee于1977年制作的。该机器具有良好的步态运动稳定性,但缺点是,该机器人的关节是由
四足步行机器人结构设计文献综述
逻辑电路组成的状态机控制的,因此机器人的行为受到限制,只能呈现固定运动形式。
20世纪80,90年代最具代表性的四足步行机器人是日本Shigeo Hirose实验室研制的TITAN系列。1981~1984年Hirose教授研制成功脚步装有传感和信号处理系统的TITAN-III。它的脚底步由形状记忆合金组成,可自动检测与地面接触的状态。姿态传感器和姿态控制系统根据传感信息做出的控制决策,实现在不平整地面的自适应步行。TITAN-VI机器人采用新型的直动性腿机构,避免了上楼梯过程中两腿的干涉,并采用两级变速驱动机构,对腿的支撑相和摆动相分别进行驱动。
2000-2003年,日本电气通信大学的木村浩等人研制成功了具有宠物狗外形的机器人Tekken-IV,如图1所示。它的每个关节安装了一个光电码盘,陀螺仪,倾角计和触觉传感器。系统控制是由基于CPG的控制器通过反射机制来完成的。Tekken-IV能够实线不规则地面的自适应动态步行,显示了生物激励控制对未知的不规则地面有自适应能力的优点。它的另一特点是利用了激光和CCD摄像机导航,可以辨别和避让前方存在的障碍,能够在封闭回廊中实现无碰撞快速行走。
目前最具代表性的四组步行机器人是美国Boston dynamics实验室研制的BigDog,如图2所示。它能以不同的步态在恶劣的地形上攀爬,可以负载高达52KG的重量,爬升可达35°的斜坡。其腿关节类似动物腿关节,安装有吸收震动部件和能量循环部件。同时,腿部连有很多传感器,其运动通过伺服电机控制。该机器人机动性和反应能力都很强,平衡能力极佳。但由于汽油发电机
四足步行机器人结构设计文献综述
需携带油箱,故工作时受环境影响大,可靠性差。另外,当机器人行走时引擎会发出怪异的噪音。
国内四足机器人研制工作从20世纪80年代起步,取得一定成果的有上海交通大学、清华大学、哈尔滨工业大学等。
上海交通大学机器人研究所于1991年开展了JTUWM系列四足步行机器人的研究。1996年该研究所研制成功了JTUWM-III,如图3所示。该机器人采用开式链腿机构,每个腿有3个自由度,具有结构简单,外形轻巧,体积小,质量轻等特点。它采用力和位置混合控制,脚底装有PVDF测力传感器,利用人工神经网络和模糊算法相结合,实线了对角动态行走。但行走速度极慢,极限步速仅为1.7KM/h,另外其负重能力有限,故在实际作业时实用性较差。
清华大学所研制的一款四足步行机器人,它采用开环关节连杆机构作为步进机构,通过模拟动物的运动机理,实现比较稳定的节律运动,可以自主应付复杂的地形条件,完成上下坡行走,越障等功能。不足之处是腿运动时的协调控制比较复杂,而且承载能力较小。
四足步行机器人结构设计文献综述
3、国内外的关键技术分析
(1)机械本体研究
四足步行机器人是机电一体化系统,涉及到机构、步态、控制等,而机械机构是整个系统的基础。在机械本体的设计中腿部机构设计是关键。目前,研制的四足步行机器人的腿部机构形式主要有缩放型机构、四连杆机构、并联机构、平行杆机构、多关节串联机构和缓冲型虚拟弹簧腿机构。其中,并联机构可以实现多方位运动,且负载能力强,所以具有较好的应用前景,但控制系统较为复杂。另外,含有弹性元件的缓冲型虚拟弹簧腿机构,利用弹性元件把刚性连接变为柔性连接,减缓机器人在动态行走时的冲击以及由此产生的振动,因此该机构应用越来越广泛。
(2)步态研究
步行机器人几种典型步态有:爬行、对角小跑、溜蹄、跳跃、定点旋转、转向等。在文献[7]中,提出了爬步态的理论,并证明了该步态具有最大的静稳定性。对角小跑步态属于动态稳定步态,能够提高运动速度。跳跃式步态较其它步态在前进的效率上具有明显的优势,但是由于受到腿机构的摆动惯性力和关节处大冲击力的影响,因此需要较大的瞬时驱动力。另外,跳跃持续的时间是短暂的,为了保证机器人实时可控,必然需要在极短的时间内采集多种信号,这对目前的驱动元件和传感器都提出了极高的要求。目前所研究的各种步态中,跳跃步态的研究是最具挑战性的难点问题。
(3)控制技术研究
复杂四足步行机器人的控制系统是非线性的多输入和多输出不稳定系统,四足步行机器人结构设计文献综述
具有时变性和间歇动态性。目前四足机器人的步行运动大多数是基于步态的几何位置轨迹规划、关节位置控制的规划和控制策略。而对机器人进行单纯的几何位置规划与控制,则会由于惯性、脚力失衡等因素而导致机器人失稳。解决这个问题的关键就是突破单一的位置规划与控制策略,实施机器人力、位置混合控制。在步态生成和控制方面,有理论突破意义的是基于生物中枢模式发生器(CPG)原理的运动控制方法。
(4)驱动能源研究
在线提供能源受到空间的限制,而蓄电池组受体积和重量的限制,因此寻求提供持续可靠的离线自带电源就成了必须。随着新型电池的研发,新型太阳能电池、燃料电池、锂电池等成为较为理想的能量供给来源。另外,通过微波对微型机器人提供能量和控制信号也是一种较为可观的方法。
4、存在的问题
从20世纪60年代至今研究者们对四足步行机器人关键技术的分析做了大量的工作,在一些基础理论问题上取得了一定的突破,使四足步行机器人的技术水平不断得到提高。但在四足步行机器人发展过程中仍有一些亟需解决的问题:
(1)步行机器人的结构仿生设计问题;(2)在不平地面移动的速度、稳定性问题;(3)四足步行机器人的步态规划问题;(4)步行机器人仿生控制方面的问题;
(5)有些步行机器人的体积和质量都很大问题;(6)多数步行机器人研究平台的承载力不强问题;
5、展望
随着对四足步行机器人的研究的日益深入和发展,四足步行机器人在速度、稳定性、机动性和对地面的适应能力等方面的性能都将不断提高,自主化和智能化也将逐步的实现,从而使其能够在更多特殊环境和场合中使用,因此具有广阔的应用前景。
纵览当前四足机器人的发展,四足步行机器人有以下几个值得关注的趋势:
四足步行机器人结构设计文献综述
(1)实现腿机构的高能,高效性;(2)轮,足运动相结合;(3)步行机器人微型化;
(4)增强四足步行机器人的负载能力;(5)机器人仿生的进一步深化;
6、总结
尽管四足步行机器人技术有了很大的发展,足式机器人的研究平台有很多,但制约四足机器人技术进一步发展的基础理论问题并没有得到根本的解决,其中,许多样机还达不到生物简单运动的速度和稳定性。正如著名机器人学家Geles教授所言:“步行机器人的理论研究步伐要远远落后于其技术开发的步伐”。现有的四足机器人的基础技术研究尚不够成熟和完善,足式机器人的关键技术还有待于进一步大力开发。
7、参考文献
[1] McGhee.R.B.Robot locomotion[A].In R.Herman, S.Grillner,P.Stein,and
D.Stuart, editors, al control of lNeurocomotion[C].Plenum Press.1976:237-264.[2] Shigeo.Hirose, Tomoyuki.Masui, Hidekazu.Kikuchi.TITAN-III: A Quadruped
Walking Vehicle-Its Structure and Basic Characteristics.Robotic
Research(2nd Int.Symp.).The MIT Press, 1985:325-331.[3] 王洪波,徐桂玲,胡星,张典范,张雄.四足并联腿步行机器人动力学[J].燕山大学河北省并联机器人与机电系统实验室.秦皇岛.066004.[4] 雷静桃,高峰,崔莹.多足步行机器人的研究现状及展望 [M ].北京航空航天大学 汽车工程系.北京.100083.[5] 查选芳,张融甫.多足步行机器人腿机构的运动学研究[J].东南大学学报.1995.25(2).[6] 郭成,谈士力,翁盛隆.微型爬壁机器人研究的关键技术[J].制造业自动化.2004.26(7).[7] 王吉岱,卢坤媛,徐淑芬,雷云云.四足步行机器人研究现状及展望[M ].山
四足步行机器人结构设计文献综述
东科技大学 机械电子工程学院.青岛.266510.[8] 陆学东.多足步行机器人运动规划与控制.[M ].华中科技大学出版社.2006.2.[9] 宣奇波,张怀相,戴国骏.四足步行机器人稳定性步态规划.杭州电子科技大学计算机应用技术研究所.浙江 杭州 310018.[10] 朱学彪.液压驱动四足机器人机械结构设计.[M ].武汉科技大学 机械自动化学院,武汉 430081
第四篇:机器人外文翻译
沈阳航空工业学院学士学位论文
机 器 人
工业机器人是在生产环境中以提高生产效率的工具,它能做常规乏味的装配线工作,或能做那些对于工人来说是危险的工作,例如,第一代工业机器人是用来在 核电站中更换核燃料棒,如果人去做这项工作,将会遭受有害的放射线的辐射。工业机器人亦能工作在装配线上将小元件装配到一起,如将电子元件安放在电路印制板,这样,工人就能从这项乏味的常规工作中解放出来。机器人也能按程序要求用来拆除炸弹,辅助残疾人,在社会的很多应用场合下履行职能。
机器人可以认为是将手臂末端的工具、传感器和(或)手爪移到程序指定位置的一种机器。当机器人到达位置后,它将执行某种任务。这些任务可以是焊接、密封、机器装料、拆卸以及装配工作。除了编程以及系统的开停之外,一般来说这些工作可以在无人干预下完成。如下叙述的是机器人系统基本术语:
1.机器人是一个可编程、多功能的机械手,通过给要完成的不同任务编制各种动作,它可以移动零件、材料、工具以及特殊装置。这个基本定义引导出后续段落的其他定义,从而描绘出一个完整的机器人系统。
2.预编程位置点是机器人为完成工作而必须跟踪的轨迹。在某些位
沈阳航空工业学院学士学位论文
置点上机器人将停下来做某些操作,如装配零件、喷涂油漆或焊接。这些预编程点贮存在机器人的贮存器中,并为后续的连续操作所调用,而且这些预编程点想其他程序数据一样,可在日后随工作需要而变化。因而,正是这种编程的特征,一个工业机器 人很像一台计算机,数据可在这里储存、后续调用与编译。
3.机器手是机器人的手臂,它使机器人能弯曲、延伸和旋转,提供这些运动的是机器手的轴,亦是所谓的机器人的自由度。一个机器人能有3~16轴,自由度一词总是与机器人轴数相关。
4.工具和手爪不是机器人自身组成部分,但它们是安装在机器人手臂末端的附件。这些连在机器人手臂末端的附件可使机器人抬起工件、点焊、刷漆、电弧焊、钻孔、打毛刺以及根据机器人的要求去做各种各样的工作。
5.机器人系统还可以控制机器人的工作单元,工作单元是机器人执行任务所处的整体环境,该单元包括控制器、机械手、工作平台、安全保护装置或者传输装置。所有这些为保证机器人完成自己任务而必须的装置都包括在这一工作单元中。另外,来自外设的信号与机器人通讯,通知机器人何时装配工件、取工件或放工件到传输装置上。机器人系统有三个基本部件:机械手、控制器和动力源。
A.机械手
沈阳航空工业学院学士学位论文
机械手做机器人系统中粗重工作,它包括两个部分:机构与附件,机械手也用联接附件基座,图21-1表示了一机器人基座与附件之间的联接情况。
机械手基座通常固定在工作区域的地基上,有时基座也可以移动,在这种情况下基座安装在导轨回轨道上,允许机械手从一个位置移到另外一个位置。
正如前面所提到的那样,附件从机器人基座上延伸出来,附件就是机器人的手臂,它可以是直动型,也可以是轴节型手臂,轴节型手臂也是大家所知的关节型手臂。
机械臂使机械手产生各轴的运动。这些轴连在一个安装基座上,然后再连到拖架上,拖架确保机械手停留在某一位置。
在手臂的末端上,连接着手腕(图21-1),手腕由辅助轴和手腕凸缘组成,手腕是让机器人用户在手腕凸缘上安装不同的工具来做不同的工作。
机械手的轴使机械手在某一区域内执行任务,我们将这个区域为机器人的工作单元,该区域的大小与机械手的尺寸相对应,图21-2列举了一个典型装配机器人的工作单元。随着机器人机械结构尺寸的增加,工作单元的范围也必须相应的增加。
机械手的运动有执行元件或驱动系统来控制。执行元件或驱动系统
沈阳航空工业学院学士学位论文
允许各轴力经机构转变为机械能,驱动系统与机械传动链相匹配。由链、齿轮和滚珠丝杠组成的机械传动链驱动着机器人的各轴。
B.控制器
机器人控制器是工作单元的核心。控制器储存着预编程序供后续调用、控制外设,及与厂内计算机进行通讯以满足产品更新的需要。
控制器用于控制机械手运动和在工作单元内控制机器人外设。用户可通过手持的示教盒将机械手运动的程序编入控制器。这些信息储存在控制器的储存器中以备后续调用,控制器储存了机器人系统的所有编程数据,它能储存几个不同的程序,并且所有这些程序均能编辑。
控制器要求能够在工作单元内与外设进行通信。例如控制器有一个输入端,它能标识某个机加工操作何时完成。当该加工循环完成后,输入端接通,告诉控制器定位机械手以便能抓取已加工工件,随后,机械手抓取一未加工件,将其放置在机床上。接着,控制器给机床发出开始加工的信号。
控制器可以由根据事件顺序而步进的机械式轮鼓组成,这种类型的控制器可用在非常简单的机械系统中。用于大多数机器人系统中的控制器代表现代电子学的水平,是更复杂的装置,即它们是由微处理器操纵的。这些微处理器可以是8位、16位或32位处理器。它们可以使得控制器在操作过程中显得非常柔性。
沈阳航空工业学院学士学位论文
控制器能通过通信线发送电信号,使它能与机械手各轴交流信息,在机器人的机械手和控制器之间的双向交流信息可以保持系统操作和位置经常更新,控制器亦能控制安装在机器人手腕上的任何工具。
控制器也有与厂内各计算机进行通信的任务,这种通信联系使机器人成为计算机辅助制造(CAM)系统的一个组成部分。
存储器。给予微处理器的系统运行时要与固态的存储装置相连,这些存储装置可以是磁泡,随机存储器、软盘、磁带等。每种记忆存储装置均能贮存、编辑信息以备后续调用和编辑。
C.动力源
动力源是给机器人和机械手提供动力的单元。传给机器人系统的动力源有两种,一种是用于控制器的交流电,另一种是用于驱动机械手各轴的动力源,例如,如果机器人的机械手是有液压和气压驱动的,控制信号便传送到这些装置中,驱动机器人运动。
沈阳航空工业学院学士学位论文
液压与气压系统
仅有以下三种基本方法传递动力:电气,机械和流体。大多数应用系统实际上是将三种方法组合起来而得到最有效的最全面的系统。为了合理地确定采取哪种方法。重要的是了解各种方法的显著特征。例如液压系统在长距离上比机械系统更能经济地传递动力。然而液压系统与电气系统相比,传递动力的距离较短。
液压动力传递系统涉及电动机,调节装置和压力和流量控制,总的来说,该系统包括:
泵:将原动机的能量转换成作用在执行部件上的液压能。阀:控制泵产生流体的运动方向、产生的功率的大小,以及到达执行部件流体的流量。功率大小取决于对流量和压力大小的控制。
执行部件:将液压能转成可用的机械能。
介质即油液:可进行无压缩传递和控制,同时可以润滑部件,使阀体密封和系统冷却。
联接件:联接各个系统部件,为压力流体提供功率传输通路,将液体返回油箱(贮油器)。
油液贮存和调节装置:用来确保提供足够质量和数量并冷却的液体。
沈阳航空工业学院学士学位论文
液压系统在工业中应用广泛。例如冲压`钢类工件的磨削几一般加工业、农业、矿业、航天技术、深海勘探、运输、海洋技术,近海天然气和石油勘探等行业,简而言之,在日常生活中有人不从液压技术中得到某种益处。
液压系统成功而又广泛使用的秘密在于它的通用性和易操作性。液压动力传递不会象机械系统那样受到机器几何形状的制约,另外,液压系统不会像电气系统那样受到材料物理性能的制约,它对传递功率几乎没有量的限制。例如,一个电磁体的性能受到钢的磁饱和极限的限制,相反,液压系统的功率仅仅受材料强度的限制。
企业为了提高生产率将越来越依靠自动化,这包括远程和直接控制生产操作、加工过程和材料处理等。液压动力之所以成为自动化的组成部分,是因为它有如下主要的特点:
1.控制方便精确
通过一个简单的操作杆和按扭,液压系统的操作者便能立即起动,停止、加减速和能提供任意功率、位置精度为万分之一英寸的位置控制力。图13-1是一个使飞机驾驶员升起和落下起落架的液压系统,当飞行向某方向移动控制阀,压力油流入液压缸的某一腔从而降下起落架。飞行员向反方向移动控制阀,允许油液进入液压缸的另一腔,便收回起落架。
2.增力 一个液压系统(没有使用笨重的齿轮、滑轮和杠杆)能简单
沈阳航空工业学院学士学位论文
有效地将不到一盎司的力放大产生几百吨的输出。
3.恒力或恒扭矩
只有液压系统能提供不随速度变化而变化的恒力或恒扭矩,他可以驱动对象从每小时移动几英寸到每分钟几百英寸,从每小时几转到每分钟几千转。
4.简便、安全、经济
总的来说,液压系统比机械或电气系统使用更少的运动部件,因此,它们运行与维护简便。这使得系统结构紧凑,安全可靠。例如 一种用于车辆上的新型动力转向控制装置一淘汰其他类型的转向动力装置,该转向部件中包含有人力操纵方向控制阀和分配器。因为转向部件是全液压的,没有方向节、轴承、减速齿轮等机械连接,使得系统简单紧凑。
另外,只需要输入很小的扭矩就能产生满足极其恶劣的工作条件所需的控制力,这对于因操作空间限制而需要小方向盘的场合很重要,这也是减轻司机疲劳度所必须的。
液压系统的其他优点包括双向运动、过载保护和无级变速控制,在已有的任何动力、系统中液压系统也具有最大的单位质量功率比。
尽管液压系统具有如此的高性能,但它不是可以解决所有动力传递问题的灵丹妙药。液压系统也有缺点,液压油有污染,并且泄露不可能完全避免,另外如果油液渗漏发生在灼热设备附近,大多数液压油能引起火灾。
沈阳航空工业学院学士学位论文
气压系统
气压系统是用压力气体传递和控制动力,正如名称所表明的那样,气压系统通常用空气(不用其他气体)作为流体介质,因为空气是安全、成本低而又随处可得的流体,在系统部件中产生电弧有可能点燃泄露物的场合下(使用空气作为介质)尤其安全。
在气压系统中,压缩机用来压缩并提供所需的空气。压缩机一般有活塞式、叶片式和螺旋式等类型。压缩机基本上是根据理想气体法则,通过减小气体体积来增加气体压力的。气压系统通常考虑采用大的中央空气压缩机作为一个无限量的气源,这类似于电力系统中只要将插头插入插座边可获得电能。用这种方法,压力气体可以总气体源输送到整个工厂的各个角落,压力气体可通过空气滤清器除去污物,这些污染可能会损坏气动组件的精密配合部件如阀和汽缸等,随后输送到各个回路中,接着空气流经减压阀以减小气压值适合某一回路使用。因为空气不是好的润滑油,气压系统需要一个油雾器将细小的油雾注射到经过减压阀减压空气中,这有帮助于减少气动组件精密配合运动件的磨损。
由于来自大气中的空气含不同数量的水分,这些水分是有害的,它可以带走润滑剂引起的过分磨损和腐蚀,因此,在一些使用场合中,要用空气干燥器来除去这些有还的水分。由于气压系统直接向大气排
沈阳航空工业学院学士学位论文
气,会产生过大的噪声,因此可在气阀和执行组件排气口安装销声器来降低噪声,以防止操作人员因接触噪声及高速空气粒子有可能引发的伤害。
用气动系统代替液压系统有以下几条理由:液体的惯性远比气体大,因此,在液压系统中,当执行组件加速减速和阀突然开启关闭时,油液的质量更是一个潜在的问题,根据牛顿运动定律,产生加速度运动油液所需的力要比加速同等体积空气所需的力高出许多倍。液体比气体具有更大的粘性,这会因为内摩擦而引起更大的压力和功率损失;另外,由于液压系统使用的液体要与大气隔绝,故它们需要特殊的油箱和无泄露系统设计。气压系统使用可以直接排到周围环境中的空气,一般来说气压系统没有液体系统昂贵。
然而,由于空气的可压缩性,使得气压系统执行组件不可能得到精确的速度控制和位置控制。气压系统由于压缩机局限,其系统压力相当低(低于250psi),而液压力可达1000psi之高,因此液压系统可以是大功率系统,而气动系统仅用于小功率系统,典型例子有冲压、钻孔、夹紧、组装、铆接、材料处理和逻辑控制操作等。
第五篇:智能机器人外文翻译
Robot Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on.With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being.The practicality use of robot products not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program.At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use.To development economic practicality and high reliability robot system will be value to robot social application and economy development.With the rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly: With the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realized the importance and urgent of sewage disposal.Active bacteria method is an effective technique for sewage disposal,The lacunaris plastic is an effective basement for active bacteria adhesion for sewage disposal.The abundance requirement for lacunaris plastic makes it is a consequent for the plastic producing with automation and high productivity.Therefore, it is very necessary to design a manipulator that can automatically fulfill the plastic holding.With the analysis of the problems in the design of the plastic holding manipulator and synthesizing the robot research and development condition in recent years, a economic scheme is concluded on the basis of the analysis of mechanical configuration, transform system, drive device and control system and guided by the idea of the characteristic and complex of mechanical configuration, electronic, software and hardware.In this article, the mechanical configuration combines the character of direction coordinate and the arthrosis coordinate which can improve the stability and operation flexibility of the system.The main function of the transmission mechanism is to transmit power to implement department and complete the necessary movement.In this transmission structure, the screw transmission mechanism transmits the rotary motion into linear motion.Worm gear can give vary transmission ratio.Both of the transmission mechanisms have a characteristic of compact structure.The design of drive system often is limited by the environment condition and the factor of cost and technical lever.'The step motor can receive digital signal directly and has the ability to response outer environment immediately and has no accumulation error, which often is used in driving system.In this driving system, open-loop control system is composed of stepping motor, which can satisfy the demand not only for control precision but also for the target of economic and practicality.on this basis, the analysis of stepping motor in power calculating and style selecting is also given.The analysis of kinematics and dynamics for object holding manipulator is given in completing the design of mechanical structure and drive system.Kinematics analysis is the basis of path programming and track control.The positive and reverse analysis of manipulator gives the relationship between manipulator space and drive space in position and speed.The relationship between manipulator’s tip position and arthrosis angles is concluded by coordinate transform method.The geometry method is used in solving inverse kinematics problem and the result will provide theory evidence for control system.The f0unction of dynamics is to get the relationship between the movement and force and the target is to satisfy the demand of real time control.in this chamfer, Newton-Euripides method is used in analysis dynamic problem of the cleaning robot and the arthrosis force and torque are given which provide the foundation for step motor selecting and structure dynamic optimal ting.Control system is the key and core part of the object holding manipulator system design which will direct effect the reliability and practicality of the robot system in the division of configuration and control function and also will effect or limit the development cost and cycle.With the demand of the PCL-839 card, the PC computer which has a.tight structure and is easy to be extended is used as the principal computer cell and takes the function of system initialization, data operation and dispose, step motor drive and error diagnose and so on.A t the same time, the configuration structure features, task principles and the position function with high precision of the control card PCL-839 are analyzed.Hardware is the matter foundation of the control.System and the software is the spirit of the control system.The target of the software is to combine all the parts in optimizing style and to improve the efficiency and reliability of the control system.The software design of the object holding manipulator control system is divided into several blocks such as 2 system initialization block, data process block and error station detect and dispose model and so on.PCL-839 card can solve the communication between the main computer and the control cells and take the measure of reducing the influence of the outer signal to the control system.The start and stop frequency of the step motor is far lower than the maximum running frequency.In order to improve the efficiency of the step motor, the increase and decrease of the speed is must considered when the step motor running in high speed and start or stop with great acceleration.The increase and decrease of the motor’s speed can be controlled by the pulse frequency sent to the step motor drive with a rational method.This can be implemented either by hardware or by software.A step motor shift control method is proposed, which is simple to calculate, easy to realize and the theory means is straightforward.The motor' s acceleration can fit the torque-frequency curve properly with this method.And the amount of calculation load is less than the linear acceleration shift control method and the method which is based on the exponential rule to change speed.The method is tested by experiment.At last, the research content and the achievement are sum up and the problems and shortages in main the content are also listed.The development and application of robot in the future is expected.机器人
机器人是典型的机电一体化装置,它综合运用了机械与精密机械、微电子与计算机、自动控制与驱动、传感器与信息处理以及人工智能等多学科的最新研究成果,随着经济的发展和各行各业对自动化程度要求的提高,机器人技术得到了迅速发展,出现了各种各样的机器人产品。机器人产品的实用化,既解决了许多单靠人力难以解决的实际问题,又促进了工业自动化的进程。目前,由于机器人的研制和开发涉及多方面的技术,系统结构复杂,开发和研制的成本普遍较高,在某种程度上限制了该项技术的广泛应用,因此,研制经济型、实用化、高可靠性机器人系统具有广泛的社会现实意义和经济价值。
由于我国经济建设和城市化的快速发展,城市污水排放量增长很快,污水处理己经摆在了人们的议事日程上来。随着科学技术的发展和人类知识水平的提高,人们越来越认识到污水处理的重要性和迫切性,科学家和研究人员发现塑料制品在水中是用于污水处理的很有效的污泥菌群的附着体。塑料制品的大量需求,使得塑料制品生产的自动化和高效率要求成为经济发展的必然。
本文结合塑料一次挤出成型机和塑料抓取机械手的研制过程中出现的问题,综述近几年机器人技术研究和发展的状况,在充分发挥机、电、软、硬件各自特点和优势互补的基础上,对物料抓取机械手整体机械结构、传动系统、驱动装置和控制系统进行了分析和设计,提出了一套经济型设计方案。采用直角坐标和关节坐标相结合的框架式机械结构形式,这种方式能够提高系统的稳定性和操作灵活性。传动装置的作用是将驱动元件的动力传递给机器人机械手相应的执行机构,以实现各种必要的运动,传动方式上采用结构紧凑、传动比大的蜗轮蜗杆传动和将旋转运动转换为直线运动的螺旋传动。机械手驱动系统的设计往往受到作业环境条件的限制,同时也要考虑价格因素的影响以及能够达到的技术水平。由于步进电机能够直接接收数字量,响应速度快而且工作可靠并无累积误差,常用作数字控制系统驱动机构的动力元件,因此,在驱动装置中采用由步进电机构成的开环控制方式,这种方式既能满足控制精度的要求,又能达到经济性、实用化目的,在此基础上,对步进电机的功率计一算及选型问题经行了分析。
在完成机械结构和驱动系统设计的基础上,对物料抓取机械手运动学和动力学进行了分析。运动学分析是路径规划和轨迹控制的基础,对操作臂进行了运动学正、逆问题的分析可以完成操作空间位置和速度向驱动空间的映射,采用齐次坐标变换法得到了操作臂末端位置和姿态随关节夹角之间的变换关系,采用几何法分析了操作臂的逆向运动学方程求解问题,对控制系统设计提供了理论依据。机器人动力学是研究物体的运动和作用力之间的关系的科学,研究的目的是为了4 满足是实时性控制的需要,本文采用牛顿-欧拉方法对物料抓取机械手动力学进行了分析,计算出了关节力和关节力矩,为步进电机的选型和动力学分析与结构优化提供理论依据。
控制部分是整个物料抓取机械手系统设计关键和核心,它在结构和功能上的划分和实现直接关系到机器人系统的可靠性、实用性,也影响和制约机械手系统的研制成本和开发周期。在控制主机的选用上,采用结构紧凑、扩展功能强和可靠性高的PC工业控制计算机作为主机,配以PCL-839卡主要承担系统功能初始化、数据运算与处理、步进电机驱动以及故障诊断等功能;同时对PCL-839卡的结构特点、功能原理和其高定位功能等给与了分析。硬件是整个控制系统以及极限位置功能赖以存在的物质基础,软件则是计算机控制系统的神经中枢,软件设计的目的是以最优的方式将各部分功能有机的结合起来,使系统具有较高的运行效率和较强的可靠性。在物料抓取机械手软件的设计上,采用的是模块化结构,分为系统初始化模块、数据处理模块和故障状态检测与处理等几部分。主控计算机和各控制单元之间全部由PCL-839卡联系,并且由该卡实现抗干扰等问题,减少外部信号对系统的影响。
步进电机的启停频率远远小于其最高运行频率,为了提高工作效率,需要步进电机高速运行并快速启停时,必须考虑它的升,降速控制问题。电机的升降速控制可以归结为以某种合理的力一式控制发送到步进电机驱动器的脉冲频率,这可由硬件实现,也可由软件方法来实现。本文提出了一种算法简单、易于实现、理论意义明确的步进电机变速控制策略:定时器常量修改变速控制方案。该方法能使步进电机加速度与其力矩——频率曲线较好地拟合,从而提高变速效率。而且它的计算量比线性加速度变速和基于指数规律加速度的变速控制小得多。通过实验证明了该方法的有效性。
最后,对论文主要研究内容和取得的技术成果进行了总结,提出了存在的问题和不足,同时对机器人技术的发展和应用进行了展望。