第一篇:八年级数学下册第十八章说课稿
大荔县安仁初中 赵聪亚
尊敬的各位评委、老师们:
大家好!我叫赵聪亚,来自安仁初中。今天我说课的内容是人教版数学八年级下册第十八章,我将按照说课标、说教材、说建议的流程进行。数学课程内容分为数与代数、图形与几何、统计与概率、综合与实践,我将说的是图形与几何中的勾股定理。
一、说课标
说课表包括说课程理念、说课程总目标、说课程单元目标、说内容标准。
(一)说课程理念
人教版数学教材是以问题情境、呈现形式、注重知识的形成过程与应用过程、螺旋上升的原则进行安排的。教师要给学生营造气氛、提供互动资源、活动过程的鼓励性、对各种认识的开放性,当今数学的教育是以学生为主体,以人为本的发展趋势。
(二)说课程总目标
1、获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。
2、体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。
3了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和科学态度。
(三)课程单元目标
新课标从知识技能、数学思考、问题解决、情感态度等四个方面阐述了义务教育阶段数学课程的总目标。
对第十八章的教学目标我将根据新课标从这四方面说明:
知识技能:
1、体验勾股定理的探索过程,会运用勾股定理进行简单的计算,并解决简单的实际问题。
2、能运用勾股定理在数轴上作表示无理数的点,会运用勾股定理的逆定理判定直角三角形并能解决实际问题。
3、通过具体例子,了解定理的含义;理解原命题、逆命题、逆定理的概念及关系;知道原命题成立其逆命题不一定成立。八年级下册数学第十八章说课标说教材 数学思考:
1、体会数形结合的思想,渗透观察、归纳、猜想、验证的数学方法、体验从特殊到一般的逻辑推理过程。
2、学会独立思考,体会数学的基本思想和思维方式。
3、在解决问题的过程中,体验模型的思想方法,培养学生与他人交流、合作的意识和品质,感受探究的苦中之趣。
解决问题:
1、能判断一个三角形是否为直角三角形,并能运用勾股定理和逆定理的数学模型解决现实世界中的一些简单的实际问题。
2、会在数轴上作出表示无理数的点,进一步体会数轴上的点与实数一一对应的理论。
情感态度:
1、通过了解勾股定理的历史,激发学生热爱祖国,热爱悠久文化的思想,激励学生发奋学习。
2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系。
3、培养数学思维以及合情推理意识,感悟勾股定理和逆定理的应用价值,感受数学图形之美。
(四)内容标准
本章主要研究勾股定理与其逆定理,包括它们的发现、证明和应用。首先让学生通过观察得出直角三角形两条直角边的平方和等于斜边的平方的结论并加以证明,从而得到勾股定理,然后运用勾股定理解决问题。在此基础上,引入勾股定理的逆定理,并结合此项内容介绍逆命题、逆定理的概念。
勾股定理的内容标准包括
了解:了解勾股定理的历史,激发学生学习本节课的知识 理解:理解勾股定理的定义,在直角三角形中知道两边利用定义求出第三边
掌握:使学生在探索勾股定理的过程中掌握直角三角形三边之间的数量关系
运用:运用勾股定理解决简单的计算,并解决实际问题,斌能与用勾股定理表示无理数的点
勾股定理逆定理的内容标准包括
了解:了解勾股定理的逆定理的证明方法和证明过程 理解:理解互逆命题、互逆定理、勾股数的概念及互逆命题之间的关系;
掌握:掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是直角三角形;
运用:会用勾股定理解决实际问题
对本章新旧版本的比较:旧版本是体验勾股定理的探索过程,会用过股定理解决简单问题,会用勾股定理的逆定理判定直角三角形新版本是探索勾股定理及其逆定理,并能运用他们解决一些简单的实际问题。
二、说教材
说教材包括说教材的编写体例、编写特点、内容结构,知识整合
(一)说教材的编写体例、本套教科书在体例安排上有如下特点:
1、每章开始均配有反映本章主要内容的章前图和引言,可供学生预习用,也可作为教师导入新课的材料。
2、正文中设置了 “思考”、“探究”、“归纳”等栏目,栏目中以问题留白或填空等形式为学生提供了思维发展、合作交流的空间;适当安排了“观察与猜想”、“实验与探究”、“阅读与思考”、“信息技术应用”等选学栏目,为加深对相关内容的认识,扩大学生的知识面,运用现代信息技术手段学习等提供资源;正文的边空设有“小贴士”和“云朵”,“小贴士”介绍与正文内容相关的背景知识,“云朵”中是一些有助于理解正文的问题;巩固练习内容包括练习和习题,练习题供课上使用,习题供课内或课外作业时选用。
3、每章最后安排了几个有一定综合性、实践性、开放性的“数学活动”,学生可以结合相关知识的学习或全章的复习有选择的进行活动,不同学生可达到不同层次的结果,“数学活动”也可供教师教学选用;每章安排“小结”包括本章知识结构图和对本章内容的回顾与思考;最后的复习题供复习全章时选用。
(二)本套教科书在编写方面有以下特点:
1、注重从实际出发,比如学习勾股定理就从2002年在北京召开的国际数学大会的会徽以及毕达哥拉斯观察用砖铺成的地面发现勾股定理的传说引入。
2、例题有很好的示例作用。比如第74页例
1、例2用勾股定理的逆定理判断三角形是否为直角三角形及应用它解决实际问题,就给学生指明了解题的方法及书写格式。
3、注重介绍数学文化,让学生获得更多与勾股定理有关的背景知识。如介绍赵爽弦图即赵爽利用弦图证明命题1的基本思路。习题中安排我国古代数学著作《九章算术》中的问题。
不同版本的比较:北师大版主要是问题导入、情境探究,而人教版章节明了、条理清晰,这样可以避免过早出现两极分化;北师大版注重应用,而人教版内容严谨,这样更有利于学生思维能力的培养;北师大版跳跃性大,而人教版循序渐进,这样更便于学生对基本概念和重要思想的掌握。
(三)说内容结构
第十八章勾股定理,共两节,第一节勾股定理,它是建立在三角形、全等三角形、等腰三角形等有关知识的基础上的,它揭示的是直角三角形中三边的数量关系,即两直角边的平方和等于斜边的平方,它是直角三角形的一条非常重要的性质,也是几何中最重要的定理之一;能运用勾股定理解决实际问题,并能运用勾股定理在数轴上作出表示无理数的点。第二节勾股定理的逆定理,介绍如果三角形的三边满足两边的平方和等于第三边的平方,那么这个三角形是直角三角形,同学们可以运用这个定理判定一个三角形是否为直角三角形,接着课本介绍了命题和逆命题之间的关系,并得出勾股定理的逆命题也是正确的定理。
纵观近几年中考命题,本章知识在近几年中考中都有考察,如考察勾股定理的有2012年济宁第8题和2011年天津第23题,考察勾股定理逆定理的有2011年德州第13题,2012年巴中的第15题。
(四)说立体整合
八年级下册共五章内容,数与代数部分有第十六章分式,第十七章反比例函数两章,空间与图形部分有第十八章勾股定理,第十九章四边形,统计与概率部分有第二十章数据的分析,它们都遵循由易到难,由浅入深,循序渐进的认知规律。
纵观整个学段,七下第七章三角形,使同学们初步了解与三角形有关的知识,并能将多边形转化为三角形问题解决。八上第十一章全等三角形,进一步研究三角形全等的性质与判定,并能利用它 们进行证明,全等三角形是研究图形的重要工具。八下第十八章勾股定理,建立在前面学习的基础上,揭示直角三角形的三边关系,架起了代数与几何的桥梁,将数和形密切联系起来,实现了由角向边的跨越,在几何学中占有非常重要的位置,在生产、生活中也有很大的用途。同学们通过对本章的学习,可以在原有基础上对直角三角形有进一步的认识和理解,同时还能对学生进行爱国主义教育。九下第二十七章相似,“相似”也是图形间的一种相互关系,但它与“全等”不同,全等是相似的一种特殊情况,所以研究相似比研究全等更具一般性。使同学们从特殊到一般,逐步加深对三角形的理解,有助于学生更好地掌握三角形的知识。第二十八章锐角三角函数,解直角三角形主要依赖相似三角形和勾股定理等内容,与以前所学知识联系紧密,并为以后高中数学学习作好准备。
三、说建议
(一)说教学建议
对于本章的教学内容,在教学过程中我有以下建议:
1、拉长思维链条,让学生体验勾股定理的探索和运用过程。从等腰直角三角形为基点,引导学生沿着从特殊到一般的认知规律发现一般直角三角形三边关系。勾股定理的运用是重中之重,可以在教科书探究的基础上,适当拓宽,在问题的具体处理过程中,鼓励学生大胆参与,积极交流。
2、结合具体例子,介绍抽象概念,适当总结与定理、逆定理有关的内容。
教学中可以结合勾股定理及其逆定理的具体内容介绍定理、逆命题、逆定理等抽象概念,学生接受它们困难不大,但对于不是以“如果„„那么„„”的形式给出的命题,叙述其逆命题难度较大,可以适当复习命题的有关内容,学会把它变为“如果„„那么„„”的形式。
3、注重联系实际
比如在“勾股定理”一节,应注意从实际例子引入勾股定理,并让学生自己探索结论,既可以使学生易于理解相关概念,也可以调动他们学习的积极性。
(二)说评价建议
评价应采用多样化的评价方式,恰当地呈现并合理利用评价结果,发挥评价的激励作用,保护学生的自尊心和自信心。
1、注重对学生学习过程的评价,分析他们在不同阶段的表现特征和发展变化。如:是否主动参与学习活动;是否乐于与他人合作;是否能独立思考问题等。
2、恰当评价学生对基础知识与基本技能的应用能力,要允许一部分学生经过一段时间的努力逐步达到。
3、体现评价主体的多元化,评价主体的多元化包括教师评价、家长评价、同学相互评价、自我评价等方式,对学生的学习情况进行全面考查。如每一章结束时,可要求学生自我设计一个“学习小结”,用合适的形式归纳学到的知识和方法,学习中的收获,遇到的问题等。
4、体现评价方式的多样化,包括书面检测,口头测验,课堂观察,课后访谈,课内外作业等。可针对不同需要进行选择,如从作业中了解学生对知识的掌握情况,通过书面检测考查学生课程目标达成状况,试题需准确把握课程内容的要求,应淡化特殊解题技巧,不出偏题怪题。
(三)说课程资源的开发利用
数学课程资源主要包括教材资源(如教科书、教师用书、教与学辅导用书等);课外资源(如多媒体、图书馆、报刊、杂志、电视广播、数学课外活动小组、日常生活中的数学信息、各类教具、学具等);生成性资源(如教学活动中提出的问题、学生的作品、学生学习过程中提出的问题、课堂实录等)。数学教学过程中应该有意识、有目的地开发与利用数学课程资源,可以在很大程度上提高学生从事数学活动的水平和教师从事教学活动的质量。
我相信,只要我们认真钻研教材,充分利用学生这无形的资产,让每一节课都透射出生命的活力,那么在不久的将来,我们不再是一般的教书匠,而是具有一定研究能力的专家型教师,学生也将成为具有思想、创新能力的新一代。
谢谢大家!
第二篇:八年级数学下册说课稿
八年级数学下册说课稿
今天我说课的内容是八年级下册内容。我主要从以下三个方面进行阐述:
一.说课标
二.说教材(编写特点、体例安排、知识内容、中考要求)三.说建议(教学建议、评价建议、课程资源开发与利用)
一.说课标.1、新课程标准对八年级下册书的基本要求:
知识与技能:体验从具体情境中抽象出数学符号,理解代数式、函数;掌握必要的运算(包括估算)技能;探索并证明基本性质及判定。
数学思考:在探索勾股定理、四边形转化过程中,初步建立空间观念,发展几何直觉。能独立思考,体会数学的基本思想和思维方式。
解决问题 :尝试从不同角度寻求解决问题的方法并能有效地解决问题;体会在解决问题的过程中与他人合作的重要性。
情感与态度:乐于接触社会环境中的数学信息,能够在数学活动中发挥积极作用;认识通过观察、实验、归纳、类比、推断可以获得数学猜想;体验数学活动充满着探索性和创造性。
2、初中数学四个领域,针对各章内容的要求:
第十六章二次根式: 理解二次根式的概念,了解被开方数必须是非负数的理由;了解最简二次根式的概念;理解二次根式的性质:
(1)a(a0)是非负数;(2)
a22a(a0);(3)aa(a0);
第十七章勾股定理: 探索并掌握勾股定理及逆定理,并能运用它们解决一些简单的问题。
第十八章四边形:理解平行四边形、矩形、菱形、正方形的概念,掌握它们的性质和判定方法,了解它们之间的联系,会进行相关计算。
第十九章一次函数:结合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想,了解函数的三种表示方法(列表法、解析式法和图象法),能利用图象数形结合的分析简单的函数关系.理解正比例函数和一次函数的概念,会画它们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决简单实际问题.通过讨论一次函数与方程(组)及不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程(组)及不等式内容的认识,构建和发展相互联系的知识体系.
第二十章数据的分析:理解平均数、中位数和众数的概念,会计算加权平
均数、方差。
二.说教材.(一)编排特点:
本书编写特点有以下五个方面:
1、知识的横向联系
如二次根式的运算以整式的运算为基础,在 进行二次根式的有关运算时,所使用的运算法则与整式、分式的相关法则类似;
2、知识的纵向联系
勾股定理已知两边求第三边运用了解方程的思想,体现了数学知识间具体与抽象的内在联系和数学的内在统一性。
3、数学美的体现
在学习过程中发现规律,并能用符号表示,从而体会数学的简捷美,以及学习四边形体现了数学的图形美。
4.保基础供发展
每章每一节习题的配备都注重了基础知识基本技能的训练,同时给有能力的同学提供了更多选做题,实现了分层教学。满足了不同学生的不同数学需求
5.螺旋上升的逻辑思想
二次根式的学习为勾股定理的学习起了铺垫作用,在此基础上又学习了一元二次方程体现了知识螺旋的逻辑思想。
(二)体例安排.1.每章开始都配有反映本章主要内容的章前图和引言,可供学生预习用,也可作为教师导入新课的教材.2.正文设置了 “思考”“探究” “归纳”等栏目,栏目中以问题、留白或填空等形式为学生提供思维发展、合作交流的空间.3.正文的边空设有“小贴士”和“云朵”.“小贴士”介绍与正文相关的背景和知识,“云朵”中是一些有助于理解正文的问题.适当安排了 “实验与探究”“阅读与思考”等选学栏目并加深对相关内容的认识,扩大学生的知识面.4.章末安排课题学习,供选学。5.章后安排了“小结”,包括本章的知识结构图和对本章内容的回顾与思考。
6.每章的习题分为练习、习题、复习题三类。练习供上课使用;习题供课内或课外作业时选用;复习题供复习全章时选用。其中习题、复习题按照习题的功能分为“复习巩固”“综合运用”“拓广探索”三类。
7.每章均安排了有一定综合性、实践性、开放性的“数学活动”,学生可以结合相关知识的学习或全章的复习有选择地进行活动,不同的学生可以达到不同层次的结果.(三)知识内容.本册共包括五章:
第十六章“二次根式” 主要内容包括:二次根式的概念、性质、化简和运算;重点是二次根式的化简和运算;学习难点是正确理解二次根式的性质和运算法则的合理性,学习本章的关键是理解二次根式的概念和性质。考点二次根式有无意义的条件、二次根式的性质、化简计算
第十七章“勾股定理” 主要内容是勾股定理及其逆定理。首先让学生通过观察得出直角三角形两条直角边的平方和等于斜边的平方的结论并加以证明,从而得到勾股定理,然后运用勾股定理解决问题。在此基础上,引入勾股定理的逆定理,并结合此项内容介绍逆命题、逆定理的概念。重点是勾股定理及其逆定理。考点:
1、利用勾股定理在已知直角三角形的两边时求第三边;
2、利用勾股定理的逆定理判定一个三角形是直角三角形。易错点:已知直角三角形两边求第三边时未指明直角,易忽视讨论环节。
第十八章 “平行四边形”本章重点是平行四边形的定义、性质和判定。矩形、菱形、正方形都是特殊的平行四边形,它们的性质和判定都是在平行四边形的基础上扩充的。平行四边形与各种特殊平行四边形之间的联系与区别,则是本章的教学难点。学好本章的关键是掌握平行四边形的概念、性质和判定,并能应用这些知识解决问题。
考点:利用平行四边形的判定定理和性质定理解决有关的证明和计算问题; 易错点:错用判定定理判定平行四边形
第十九章“一次函数” 本章学生第一次接触函数,是初中函数部分的起始章,是后续学习反比例函数和二次函数的基础.主要内容是由具体实例引出变量与常量的概念、函数概念、自变量与函数;.理解正比例函数和一次函数的概念,会画它们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决简单实际问题函数知识在中学数学教学中占有极为重要的地位,既是教学的重点,也是教学的难点.考点:函数的定义、图象、性质运用。
第二十章 “数据的分析” 本章主要研究平均数(主要是加权平均数)、中位数、众数以及方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。根据《标准》的要求,本章着重研究了加权平均数。考点:①考查一组数据平均数的计算(填空题或选择题);②考查样本平均数去估计总体平均数(解答题)③求一组数据的众数和中位数;方差的计算。三.说建议.(一)教学建议.(1)让学生经历数学知识形成与应用过程。(2)用好教材中的例题和习题。
(3)鼓励学生自主探索与合作交流。
(4)尊重学生个体差异,满足多样化的学习需求。(5)关注证明的必要性、基本过程和基本方法。
(二)评价建议.1.关注学生的学习过程,注重过程性评价.
本册教科书呈现了大量由具体问题抽象出数量关系的实例,目的是让学生经历观察、归纳、类比、猜想等思维过程.所以,评价应关注学生在这些具体活动中的投人程度——能否积极主动地参与各种活动。
2.关注学生对各章知识内容的实质性认识,体现数学知识的形成与应用过程关注学生用多种方法解决实际问题的能力.
3.关注学生 对知识的理解和应用,适当评价学生说理和推理的水平给学生提供探索与交流的空间,内容设计要有一定的弹性延迟评价学生运算的熟练程度.
4.关注综合应用能力,培养良好的思维能力。
(三)课程资源开发与利用
主要以学生为本,抓住开发利用课程资源的关键点。善于挖掘教材,把握开发利用课程资源的基本点。总之,只要我们多开动脑筋,多想想办法,积极努力,就一定能获得丰硕的果实。
我的说课到此结束,谢谢大家。
八仙筒镇中学 田芳
2014年2月28日
第三篇:八年级下册数学(人教版)说课稿全集
八年级下册数学(人教版)说课稿全集
今天我说课的内容是《分式的基本性质》。
下面我将从:教材分析、教学目标、教法分析、教学过程分析、教学设计说明等几个方面对我的教学设计进行说明。
一、教材分析
1、教材的地位及作用
“分式的基本性质(第1课时)”是人教版八年级数学下册第十六章第一节“分式” 的重点内容之一,是在小学学习了分数的基本性质的基础上进行的,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,使学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键,对后续学习有重要影响。
2、学生情况分析
学习的过程是自我生成的过程,其基础是学生原有的知识。在学习本节课之前,学生原有的知识市分数的基本性质的运用。八年级学生一方面可能会对原有知识有所遗忘,从心理上愿意去验证,愿意去猜想,从而激活原有知识;另一方面,八年级学生已经具备了一定的归纳总结能力,那么如何让学生灵活运用分式的基本性质进行化简就是本节内容要突破的难点。
3、教学重难点分析
根据以上学习任务和学情分析,确定本节课教学重难点如下:
教学重点:理解并掌握分式的基本性质,对分式基本性质的理解及其初步运用。
教学难点:灵活运用分式的基本性质,进行分式化简、变形。
二、教学目标
教学目标应该从知识与技能、过程与方法、情感态度与价值观三个方面体现,而在教学过程中,这三个方面应该是相互融合的,相互补充的,因此我确定本课教学目标是:
1、了解分式的基本性质。灵活运用“性质”进行分式的变形。
2、通过类比、探索分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法,积累数学活动经验。
3、通过研究解决问题的过程,体验合作的快乐和成功,培养与他人交流的能力,增强合作交流的的意识。
三、教法分析
1、教学方法
基于本节课的特点:课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。
根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地理解分式的基本性质,并通过应用此性质进行不同的练习,让学生得到更深刻的体会,实现教学目标。
2、学法指导
本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。要达到学生主动的学习,本节课采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究-主动总结-主动提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索-发现-实践-总结的能力。
因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。
四、教学准备 多媒体课件,小黑板
五、教学过程
活动1:复习分数的基本性质
在教学过程中,为了达到激活学生原有的知识,同时通过对已有知识的回顾引入新课,我设计了以下的情景导入:
1、下列分数是否相等?可以进行变形的依据是什么?
2、分数的基本性质是什么?怎样用式子表示?
老师演示课件,学生独立思考并举手发言,最后老师总结,演示分数的基本性质。
设计意图:通过复习分数的通分、约分总结出分数的基本性质,激活学生原有的知识,为学习分式的基本性质做好铺垫。这里我通过问题情境的创设,引发学生的兴趣,由复习分数的基本性质自然过度到新知识的引入,为后面的学习埋下伏笔,为同学自主学习提供了知识基础。活动2:类比得出分式的基本性质
因为有了导入问题引发的思考,我借着学生们刚进入良好的学习、思考状态,马上提出问题:
1、类比分数的基本性质,你能猜想出分式有什么性质吗?
2、你能用语言来描述分式的基本性质吗?
3、类比分数的基本性质,在理解分式基本性质时应注意那几方面?
老师逐一演示问题,学生分组讨论并派代表发言,老师从中加以引导,再由师生共同总结出分式的基本性质。设计意图:让学生自己运用类比的方法发现分式的基本性质,并通过合作交流,更好地总结出分式的基本性质,从而实现了学生主动参与、探究新知识的目的。
同时,我组织学生进行全班讨论、交流,通过互相补充以及教师适时的引导,学生们总结出:
1、分式与分数有相同的形式,只是分式的分子和分母都是整式;
2、分式其实就是用字母代替数得到的,即分式中的字母本身就代表某个数,因此分数的基本性质也应该适用于分式。在此基础上,我们进一步总结得到:
1、分式的基本性质:
分式的分子与分母同乘以(或除以)不为零的整式,分式的值不变。
2、分式的基本性质中应该注意:
(1)充分理解“同时”这个词的含义,它包含两层意义:分子、分母同时乘以或除以,同一个整式;
(2)注意括号内的限制条件:M、N是不为零的整式,若M、N=0,则分式就没有意义了;
(3)此性质的隐含条件是:分式 中,B≠0。
设计意图:一方面检查学生对“性质”的认识程度,另一方面通过学生的思考与归纳,进一步加深对“性质”理解。我在这里的设计,主要原因是:
1、运用类比思想让学生通过知识迁移学习新知,比教师讲授更能加深学生的理解。
2、体验“类比”思想和方法,有利于学生学习能力的提高;
3、学生的理解层次尚浅,需要教师适时的点拨与归纳,因此,提出问题时应引起学生的关注,强化对性质的理解。3:初步应用分式的基本性质
课件展示例题,学生独立思考问题,然后小组讨论,老师巡堂给予指导,最后由学生总结出解题经验。
六、教学设计说明
这节课,我通过五个活动的教学设计,既遵循了概念教学的规律,又符合初中生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生由感性认识上升为理性认识。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。
16、2分式的运算 16、2、2分式的加减说课稿
尊敬的老师、各位同学,下午好!今天我说课的课题是《分式的加减》,下面我将从教材、教学目标、教学方法、教学过程这几个方面具体阐述我对这节课的理解和设计。首先,我对本节教材进行简要分析。
一、说教材 本节内容是人民教育教育出版社的义务教育数学课程标准实验教科书《数学》八年级下册第16章第二节第二课时《分式的加减法》,属于数与代数领域的知识。它是代数运算的基础,分两课时完成,我所设计的是第一课时的教学,主要内容是同分母的分式相加减及简单的异分母的分式相加减。在此之前,学生已经学习了分数的加减法运算,同时也学习过分式的基本性质,这为本节课的学习打下了基础。而掌握好本节课的知识,将为《分式的加减法》第二课时以及《分式方程》的学习做好必备的知识储备。因此,在分式的学习中,占据重要的地位。
本节课中掌握分式的加减运算法则是重点,运用法则计算分式的加减是难点,掌握计算的一般解题步骤是解决问题是关键。
基于以上对教材的认识,考虑到学生已有的认识和结构与心理特征,我制定如下的教学目标。
二、说目标
根据学生已有的认识基础及本课教材的地位和作用,依据新课程标准制定如下:
知识与技能:会进行简单的分式加减运算,具有一定解决问题计算的能力;过程与方法:使学生经历探索分式加减运算法则的过程,理解其算理;情感态度与价值观:培养学生大胆猜想,积极探究的学习态度,发展学生有条理思考及代数表达能力,体会其价值。
为突出重点,突破难点,抓住关键使学生能达到本节设定的教学目标,我载从教法和学法上谈谈设计思路。
三、说教学方法
教法选择与手段:本课我主要以“复习旧知,导入新知,例题讲解,拓展延伸”为主线,启发和引导贯穿教学始终,通过师生共同研究探讨,体现以教为主导、学为主体、练为主线的教学过程。
学法指导:根据学生的认知水平,我设计了“观察思考、猜想归纳、例题学习和巩固提高”四个层次的学法。最后,我来具体谈一谈本节课的教学过程。
四、说教学过程 在分析教材、确定教学目标、合理选择教法与学法的基础上,我预设的教学过程是:观察导入、例题示范、习题巩固、归纳小结和作业布置。第五环节:分层作业
各位老师,以上所说只是我预设的一种方案,但课堂是千变万化的,会随着学生和教师的灵活发挥而随机生成的,预设效果如何,最终还有待于课堂教学实践的检验。
本说课一定存在诸多不足,恳请各位老师提出宝贵意见。谢谢!
16、3分式方程说课稿
各位领导、各位老师:大家好!
非常高兴能有机会和大家来交流说课活动,谨此向在座的老师们学习。
今天我说课的内容是人教版数学八年级下第十六章《分式》第三节——分式方程。下面我将从以下五个方面对第一课时进行分析说明。
一、说教材
1、教材的地位和作用
分式方程是“数与代数”中重要的一部分,是在学习了用字母代表数、一元一次方程、二元一次方程(组)、一次函数后学习的另外一种方程模型,解决问题过程中需用到建模方法、分式的基本性质、等式的基本性质等基础知识,使原有知识在解决问题过程中得以升华,同时列分式方程这一建模过程为初三学习较难的一元二次方程、二次函数的列、解提供了练兵的机会,知识体系上呈现螺旋式的上升,分式方程在其中具有承上启下的作用。
分式方程中所涉及的问题情境全部来源于实际生产、生活中,为学生的数学建模能力搭建了一个平台,提高了学生的应用意识,随时间的推移与知识的积攒学生会更加体会到数学知识来源于生活,服务于生活,提高学生学习的主动性。在分式方程的建模过程中,学生从中学到的不仅仅是知识、方法,在探究过程中,他们在语言表达、面对困难的勇气,对未知事物的好奇心、互相帮助、互相交流及学习方式的选择等方面都会有所收获。本节教材内容对学生的非智力因素的影响程度也是很大的。
2、教学目标: 根据教材的地位、作用,考虑到学生已有的认知结构心理特征,本着学习知识,培养能力,进行教育,养成好的学习习惯的原则,我确定了如下教学目标:(1)让学生理解分式方程的意义.(2)掌握可化为一元一次方程的分式方程的一般解法.
(3)了解解分式方程时可能产生增根的原因,并掌握解分式方程的验根方法.
(4)在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.(5)通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想。
3、教学重点、教学难点
基于以上目标,我认为本节课的教学重点是:探索、了解分式方程的概念及分式方程的解法。难点是如何列分式方程,解分式方程过程中产生增根的原因及如何验根。突破难点的关键是恰当设未知数,寻找等量关系。
二、学情分析
学生是在前面学习分式的意义、分式的混合运算和熟练解一元一次方程的基础上学习本节内容的,同时八年级学生具有丰富的想象力、好奇心和好胜心理。容易开发他们的主观能动性。但对于解分式方程过程中会出现增根,部分同学理解起来较为困难,因此在教学过程中应重点强调如何把分式方程转化为整式方程和解分式方程过程中产生增根的原因及如何验根。
三、教学策略
1、说教法
常言道:教必有法,教无定法。本节内容从实际问题出发引了出分式方程的概念,介绍分式方程的求解方法。再加上数学学科的特点,所以本节课充分利用“教学案”、采用了启发式、引导式教学方法。特别注重“精讲多练 ”,真正体现以学生为主体。上新课时采用了启发、引导式的同时,针对学生的回答所出现的一些问题给出及时的纠正,在上课做练习时,除了让尽可能多的学生板演以外,自己还在下面及时的发现学生所出现的问题,比较典型的则全班讲评,个别小问题,个别解决。为促进学生自主学习,增大课堂容量,提高效率,本节课我采用多媒体演示教学并结合教科书、教案、黑板、粉笔等传统媒体。
2、说学法
“授人以鱼,不如授人以渔”。本节课里我主要指导学生采用了自主探索、合作交流、自我反思的学习方法,使学生积极主动得参与到教学过程,通过合作交流,激发学生的学习兴趣,体现探索的快乐,使学生的主体地位得到充分的发挥。
四、说教学过程
1、调动情绪、创设情境、导入新课 出示引言中的问题 师生活动:教师提出问题,学生依照第26页的分析,完成填空,根据“两次航行所用时间相等”这一等量关系列出方程。设计意图:先通过本章引言中的一个行程问题,引导学生从分析入手,列出含未知数的式子表示有关的量,并进一步根据相等关系列出方程,为探索分式方程及分式方程的解法作准备。
2、小组合作、探究新知
(1)方程与以前所学的方程有何不同?
师生活动:教师提出问题,学生思考、议论后在全班交流。学生归纳出:该方程的特征是分母中含有未知数。
设计意图:通过观察、比较,培养学生的观察问题和语言表达能力。
(2)什么叫分式方程?如何解分式方程?
师生活动:鼓励学生寻求解决问题的办法,引导学生将分式方程转化为整式方程,学生自然会想到“去分母”来实现这种转变,求出方程的解,并要求学生验根。
设计意图:怎样解分式方程,这是本节的核心问题,也是本节课的重点,本次活动中用“转化”思想,把函待解决的问题,通过转化,化归到已经解决或比较容易的问题中去,最终使问题得到解决。从而突破本节课的重点。(3)问题:
①解分式方程
②上面两个方程中,为什么第一个分式方程去分母后所得整式方程的解就是它的解,而第二个不是呢?
③解分式方程时,去分母后所得整式方程的解是原分式方程的解,也可能不是,这是为什么呢?如何进行检验呢? 师生活动:学生独立解决问题,然后提出自己的看法在小组讨论,在学生讨论期间,教师应参与到学生的数学活动中,鼓励学生勇于探索、实践,解释产生这一现象的原因,并懂得在解分式方程时一定要进行验根。
设计意图:通过引导学生进行比较、探究,并进行充分的讨论,最后统一认识,用分式的意义及分式的基本性质解释分式方程可能无解的原因,学生在数学活动中,通过积极参与和有效参与,达到知识和能力、过程和方法、情感态度和价值观三维目标的全面落实,从而突破本节课的难点。(4)精析例题
3、练习巩固、深化提高
4、总结反思、纳入系统(1)通过本节课的学习,同学们学到了些什么?(2)对本节课所学习的问题,同学们还有什么不清楚的地方吗?请提出来我们议一议。师生活动:学生个体小结,小组归纳,集体补充。设计意图:
①让学生以反思的形式回忆本节的学习内容与方法,更有利于学生加深对所学知识的印象,有利于培养学生养成良好的数学学习习惯。
②注重学生间的相互合作,培养学生的合作意识、竞争意识,养成“爱提问、敢质疑、富联想、善应变”的好习惯。
5、作业布置
设计意图:考虑学生的个别差异,分层次布置作业,让基础差的学生能够吃饱,基础好的学生吃好,使每位学生都感到学有所获。
五、评价分析
数学课程标准指出:学生的数学学习内容应当是现实的、有意义的、富有挑战性的,而动手实践、自主探究与合作交流是学生学习数学的重要方式。本着这一理念,在本课的教学过程中,我严格遵循由感性到理性,将数学知识始终与现实生活中学生熟悉的实际问题相结合,不断提高他们应用数学方法分析问题、解决问题的能力。在重视课本基础知识的基础上,适当进行拓展延伸,培养学生的创新意识,同时根据新课程标准的评价理念,在教学过程中,不仅注重学生的参与意识,而且注重学生对待学习的态度是否积极。课堂中也尽量给学生更多的空间、更多展示自我的机会,让学生在和谐的氛围中认识自我、找到自信、体验成功的乐趣。使学生的主体地位得到充分的体现,使教学过程成为一个在发现在创造的认知过程。
第四篇:八年级数学说课稿
北师大版八年级下册《测量旗杆高度》说课稿
各位老师,大家好!我今天的说课内容是北师大版的数学八年级下册第四章第七节测量旗杆高度。1.1 教材分析
《测量旗杆高度》这一节,利用我们学习过的三角形相似来解决实际问题的。即就是我们经常说的数学来源生活,反过来服务于生活。如果我们学好了相似三角形,并且把它用于实际中来解决问题,那就可以帮助你到达胜利的彼岸 1.2 教学目标
根据教学大纲要求,结合该课的特点以及所教班级的实际情况,我制定了如下教学目标: 思想教育目标:让学生知道到数学来源于生活,学习的目的是学以致用。
(2)基础知识目标:相似三角形的判断
1、有两个角相等的三角形相似
2、有三条边对应成比例的两个三角形成比例
3、有两边对应成比例他们的夹角相等的两个三角形相似,以及运用相似三角形的性质综合完成实际问题
(3)基本能力目标:培养学生的观察能力、综合分析能力、应用已经学习过的知识解决实际问题的能力,积累数学活动经验和成功的体验,增强学习数学的信心。1.3教学重点和难点
教材重点:需要测量那些线段。
想办法构造三角形相似
教学难点:想办法构造三角形相似。简洁测量需要的线段说教法
根据该课的教学目标、教材特点和学生的年龄及心理特征,我采用以下方法及教具进行教学:我采用的方法是结合新课改的要求,精心备课,把教学内容以导学稿的形式呈现。并且把每一节课的内容分为很多相对独立的部分有,学生主动地去逐一完成。学生以小组为主,自主探究互助合作,共同完成教学内容。体现小组共同学习进步为主,教师退出课堂的主角。教师只是组织引导点评、并对小组进行。
说教学效果:经过实际上课后,有以下不足之处
1、在教学过程成中学生不积极主动,课堂气氛不活跃,小组探讨的不够活跃小组作用,发挥的不好。
2、在教学进行过程中,由于停电,所以所以临时做了一下调整,教学没有达到预期的效果 3,由于时间看错了一分钟所以结束的时候不理想,故只有把练习改为作业
结束语,今天我上的课有很多不足的地方,希望各位老师给予批评提出我真诚的感谢各位同仁。
《勾股定理》说课稿
2012年山东省优质课比赛一等奖
声明:此说课稿是为参加2012年山东省初中数学优质课比赛而准备的,总用时约14分钟,同时伴有课件演示。此说课稿是第一手珍贵资源,供广大教师参考,请勿机械模仿。
尊敬的各位评委、老师,您们好,我是临沂市苍山县实验中学的宋宁。今天我说课的内容是人教版《数学》八年级下册第十八章第一节《勾股定理》第一课时,我将从教材、教法与学法、教学过程、教学评价以及设计说明五个方面来阐述对本节课的理解与设计。
一、教材分析:
(一)教材的地位与作用
从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁; 勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。
(二)重点与难点
为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。
二、教学与学法分析
教学方法 叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导 为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
三、教学过程
我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。首先,情境导入 古韵今风
给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。(请看视频)让学生观察并思考三个正方形面积之间的关系?它们围成了什么三角形?反映在三边上,又蕴含着什么数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。第二步 追溯历史 解密真相
勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。从上面低起点的问题入手,有利于学生参与探索。学生很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用“数格子”的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此教师应引导学生利用“割”和“补”的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。
突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了“从特殊到一般”的认知规律。教师给出边长单位长度分别为3、4、5的直角三角形,避免了学生因作图不准确而产生的错误,也为下面 “勾三股四弦五”的提出埋下伏笔。有了上一环节的铺垫,有效地分散了难点。在求正方形C的面积时,学生将展示“割”的方法,“补”的方法,有的学生可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。使用几何画板动态演示,使几何与代数之间的关系可视化。当为直角三角形时,改变三边长度三边关系不变,当∠α为锐角或钝角时,三边关系就改变了,进而强调了命题成立的前提条件必须是直角三角形。加深学生对勾股定理理解的同时也拓展了学生的视野。
以上三个环节层层深入步步引导,学生归纳得到命题1,从而培养学生的合情推理能力以及语言表达能力。感性认识未必是正确的,推理验证证实我们的猜想。第三步 推陈出新 借古鼎新
教材中直接给出“赵爽弦图”的证法对学生的思维是一种禁锢,教师创新使用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,教师应给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。教师深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。从而体现出“学生是学习的主体,教师是组织者、引导者与合作者”这一教学理念。学生会发现两种证明方案。
方案1为赵爽弦图,学生讲解论证过程,再现古代数学家的探索方法。方案2为学生自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让学生经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比“古”、“今”两种证法,让学生体会“吹尽黄沙始到金”的喜悦,感受到“青出于蓝而胜于蓝”的自豪感。板书勾股定理,进而给出字母表示,培养学生的符号意识。
教师对“勾、股、弦”的含义以及古今中外对勾股定理的研究做一个介绍,使学生感受数学文化,培养民族自豪感和爱国主义精神。利用勾股树动态演示,让学生欣赏数学的精巧、优美。第四步 取其精华 古为今用
我按照“理解—掌握—运用”的梯度设计了如下三组习题。(1)对应难点,巩固所学;(2)考查重点,深化新知;(3)解决问题,感受应用 第五步 温故反思 任务后延
在课堂接近尾声时,我鼓励学生从“四基”的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。
然后布置作业,分层作业体现了教育面向全体学生的理念。
四、教学评价
在探究活动中,教师评价、学生自评与互评相结合,从而体现评价主体多元化和评价方式的多样化。
五、设计说明
本节课探究体验贯穿始终,展示交流贯穿始终,习惯养成贯穿始终,情感教育贯穿始终,文化育人贯穿始终。采用 “七巧板”代替教材中“毕达哥拉斯地板砖”利用我国传统文化引入课题,赵爽弦图证明定理,符合本节课以我国数学文化为主线这一设计理念,展现了我国古代数学璀璨的历史,激发学生再创数学辉煌的愿望。
以上就是我对《勾股定理》这一课的设计说明,有不足之处请评委老师们指正,谢谢大家。
《菱形》说课稿-
一、教材分析
1、教材的地位和作用
《菱形》是《四边形》这一章继《矩形》之后研究的第二种特殊的平行四边形,是学生在学习了平行四边形的性质与判定的基础上,对平行四边形知识的延续和深入,同时也是后面学习正方形等知识的基础,起着承前启后的作用。
2、教学重、难点
重点:菱形的概念、性质及其应用
难点:经历“操作——观察——思考——归纳——总结”得出菱形的性质。
3、教学目标
根据新课程标准和本节内容的特点,我从以下三个方面制定了本节课的教学目标。
a、知识与技能:能理解菱形的定义及其性质,并会初步运用菱形的性质进行简单的计算和推理论证。
b、过程与方法:在探索菱形性质的过程中,让学生经历“观察——思考——归纳——总结”的数学思想,进一步增强学生的自主探究意识。
c、情感态度与价值观:通过学生自己动手操作,观察分析,得出结论,激发学生的学习兴趣,提高学生的审美情趣。
二、教法分析与学法指导
本节课我准备采用“激趣——探究——运用——归纳”为主线的教学模式,观察分析讨论相结合的方法。运用启发式教学,讲练结合法,以课件为载体,引导学生合作交流,自主探究,经历观察、思考、探究、合作获得知识,形成技能,从而使教学目标得以直观、完美的体现。课程改革的目标之一是“倡导学生主动参与,乐于探究,勤于动手,培养学生搜集和处理信息的能力,获取知识的能力,分析和解决问题的能力以及交流与合作的能力”。在本节课的教学中,我将以构建主义理论为指导,注重创设思维情境,帮助学生学会运用操作、观察、分析、归纳等方法,使知识的传授和能力的培养融为一体,让学生不仅学到科学的探究方法,而且体验到探究的乐趣。
三、教学程序及设想
(一)激发兴趣,得出概念(时间5分钟)
菱形被广泛地应用在实际生产、生活中,首先我将让学生观察事先准备好的衣帽架模型,不难发现不管衣帽架如何伸缩变化,其四根木条围成的四边形总是平行四边形,让学生再次感受四边形的不稳定性,然后让学生任取一个平行四边形量其四条边的长度,并交流所得数据,会发现图中所有平行四边形的四条边都相等,从而通过学生的动手实践得出菱形的定义,即“四条边都相等的四边形是菱形”或“一组邻边相等的平行四边形是菱形”,这样一方面让学生回顾了上节平行四边形的相关内容,另一方面又为本节课新知识的引入创设了情境。实物教具的应用,生动形象地使知识得以体现,也进一步激发了学生的求知欲望。
接下来,我让学生欣赏一组生活中的菱形图片,让学生充分感受菱形的图形美,提高学生的审美情趣,可谓“生活中处处有数学”。
(二)动手操作,寻找性质(时间5分钟)
菱形的性质可由菱形的对称性探究得出,这是本节课的一个亮点也是本节课的难点,在这一环节,我把课本上的直接探究巧妙地加以转化,我设计了这样一个问题:“给你一张矩形纸片,你如何快速地剪出一个菱形?”问题给出后,我让学生通过观察思考与分析,同学之间相互交流,分小组大胆尝试,教师在巡视中进行个别辅导,鼓励学生寻找多种解决问题的方法完成任务,同时还可以开展组与组的评比,树立他们的竞争意识,然后每小组由一名学生代表发言,让学生的个性得到充分的展示,最后由多媒体演示,即将一个矩形纸片对折两次,沿图中虚线剪下,就可以得到一个菱形(动画演示),从而教师与学生一起归纳得出菱形的性质。在归纳过程中,菱形的对角线性质的得出是难点也是重点,我将动态演示,鼓励学生大胆猜想,根据学生的认知特点,菱形对角线互相垂直这一性质便可水到渠成,这时,我会让学生尝试说点儿理,引导学生把四边形问题转化为三角形的问题,根据菱形的特殊性,引导学生发现菱形的一条对角线可把菱形分为两个特殊三角形,即等腰三角形,再结合平行四边形对角线互相平分这一特点,结合等腰三角形三线合一的性质,肯定学生猜测的正确性,得出菱形的性质结论。
在肯定多种解决方法的同时,我还补充了这样一个环节——由菱形的对称性看菱形的面积,引导学生观察:菱形的一条对角线把菱形分成两个全等的等腰三角形,菱形的面积表示:S=a.h,菱形的两条对角线把菱形分成四个全等的直角三角形,面积表示为S=1/2mn,这一设计使本节课的重点得以突出,难点也巧妙。直观地得以突破,学生的积极参与,主动学习点缀其间,从接受概念到探究性质,从个人学习到合作交流,教学活动不仅真正焕发出课堂教学的活力,而且学生获取知识,提高技能的过程也自然而然地渗透在其中。
(三)知识运用,巩固新知(时间10分钟)
这一环节,我将出示P98页例2,即当菱形中较小的内角为60°时,已知菱形的边长求菱形的对角线长及面积,对于这类问题,我先启发学生把实际问题转化为数学问题,然后老师适当点拔:结合60°的等腰三角形或勾股定理的运用解决问题,本题也可以引导学生利用不同的方法来计算菱形的面积,最后由学生回答,教师板书,师生共同完成。
做完本题,教师也可引导学生归纳得出:如果菱形中有一个角是60°,则较短的对角线把菱形分成两个全等的等边三角形,这一环节以实际问题引入,利用菱形的性质解决问题,不仅达成了“学习致用”的目的,同时还体现了数学服务于生活这一道理。
(四)课堂练习,学以致用(时间10分钟)
“想一想”环节中,我安排了两道习题,这两道题仍以“再探衣帽架中的奥秘”为题,是两道趣味性,实用性较强的习题,我将采用学生独立思考,讲练结合的方法达到灵活运用,巩固新知的目的。习题的安排,首尾呼应,寓教于乐。
(五)交流体会,分层作业(时间15分钟)
在这一部分,我将给学生充分的时间回顾,归纳本节内容,并鼓励学生归纳出菱形的性质安排了一个“说一说”的环节。在此基础上,让学生对平行四边形、矩形、菱形以填表格的形式从对称性、边、角、对角线四个方面进行类比,以加深学生对特殊平行四边形的理解和认识。
针对学生基础不一的情况,考虑到学生能力的差异,我将采取分层作业的布置,安排了“练一练”的环节,力争使每位学生都能体会到学习的快乐。
四、板书设计(略)
五、教学设计说明
本节课让学生经历了动手操作、观察、归纳、比较的过程,从而得出菱形的概念,在折纸的过程中也使学生非常直观地感受到菱形是轴对称图形,体验变换思想,从而自觉地运用轴对称性发现菱形的性质,达到解决问题目的。
菱形的性质通过学生小组合作得出,让学生尽可能多地发现图形的结论,给学生提供了广阔的思维空间,培养了学生善于发现、善于归纳的良好品质;可伸缩衣帽架模型的设计贯穿整个教学过程,前后呼应,让学生不仅能体会到生活中处处有数学,而且能感受到“人人学有用的数学”的乐趣;解题方法的多样性,也大大拓展了学生的思维,为学生提供了思维发展,合作交流的空间,大大提高了学生学习数学的兴趣。
北师大版八年级下册分式说课稿
各位评委老师:
大家好!我今天说课的内容为选择北师大版八年级下册第三章第一节《分式》第一课时。我将从以下五个方面对本课加以说明:
一.结合课程标准说教材设计 二.结合教育现状说学情分析 三.结合学生情况说教学目标设计 四.结合教学情境说教法与学法设计 五.结合模式方法策略说教学过程设计 程序如下:
一.结合课程标准说教材设计1.教材的地位和作用
分式是初中数学中继整式之后学习的又一个代数基础知识,是对小学所学分数的延伸和扩展,同时,它也是今后继续学习分式的性质、运算以及解分式方程的基础和前提。因此,学好本节课,不仅能够增强学生的运算能力,提高运算速度,同时,也为今后解决更为复杂的代数问题,诸如“函数”、“方程”等,提供重要的条件,打下坚实的基础。2.教学重难点
根据以上学习任务和学情分析,确定本节课的教学重难点如下: 教学重点:分式的概念与意义
设计意图:分式概念是《分式》这一章学习的起点和基础,因此分式的概念是教学的重点。教学难点:理解和掌握分式有无意义、分式值为零时的条件
设计意图:由于分式的分母中含有待定字母,即分式的分母并不像分数的分母那样是某个确定的常数,在具体解题中,学生极易将分式无意义的情形与分式值为零的情形相混淆,因此,理解和掌握分式值为零时的条件,便成了本节课的教学难点。二.结合教育现状说学情分析
由于布局的调整,导致两极分化现象严重,梧桐树学校的学生流动量很大,班里的优等生很少,中等生和成绩差的学生居多,甚至中等生也较少,之前在分数和整式的学习中,学生对分数和整式的理解、掌握不熟练,这给本节分式的学习带来了很大的困难,其实分式是分数的“代数化”,所以其性质与运算是完全类似的,针对这种状况,要以基础知识的学习为主,复习和探究新知同步进行,在此基础上有所提高,让不同层次的学生都有收获。
三.结合学生情况说教学目标设计
随着课改的不断深入,三维目标在教学中的重要性显得更突出,知识、过程、技能、效果的重要性也由此可知。
由于学生在七年级已经学习了整式,分式与整式一样也是代数式,因此研究与学习的方法与整式相类似;另一方面,“分式”是“分数”的“代数化”,学生可以通过类比进行分式的学习。所以我依据《数学课程标准》,以教材特点和学生认知水平为出发点,确定以下3个方面为本节课的教学目标: 知识与技能目标:
1、了解分式的概念,明确分式和整式的区别;
2、体会分式的意义,进一步发展符号感。
过程与方法目标:
1、培养学生会用所学知识解决实际问题的能力和技巧;
2、让学生经历用字母表示实际问题中数量关系的过程,体会分式是表示现实世界中的一类量的数学模型.
3、培养学生观察、归纳、类比的思维,让学生学会自主探索,合作交流.
情感与态度目标:通过丰富的数学活动,获得成功的经验,体验数学活动充满 着探索和创造,体会分式的模型思想。
四.结合教学情境说教法与学法设计
1、教学方法
基于以上教材特点和学生情况的分析,我在本节课主要采用“引导—发现教学法”,以实现概念教学的类比迁移这一思想方法的渗透。借助于课件,通过“问题情境—建立模型—解释、应用与拓展”的模式展开教学。以加强分式与现实生活的联系,发展数学的应用意识,突出分式的模型概念。
2、学法指导
根据教材和新课标对学生知识及能力层面的要求,以及充分考虑到学生的认知水平和实际接受能力,在本节课的学法指导中,我将采用学生小组合作,讨论交流,观察发现,师生互动的学习方式。学生通过小组合作学会主动探究-主动总结-主动提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索-发现-实践-总结的能力。
因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。五.结合模式方法策略说教学过程设计
本节课以分式概念为起点,学生在创设问题情境的前提下,带着问题去思考归纳,极大程度的调动学生学习的主动性,激发学生学习的热情,激活学生的思维。结合本节的教学内容及重难点,我将本节课的教学过程设计如下:创设情境引入课题—分析概念落实双基—举例应用分层教学—及时反馈归纳小结
设计的意图:在上述流程中通过问题的探究,使知识的发生发展与学生的思维贴近,这样实现了主体参与,主体发展的同步进行。1.创设情境,引入课题(活动1)
创设一个“代数式庄园”的情景,复习整式的概念,并能判断哪些式子是整式,为学习分式做准备. 问题:什么是整式?下列式子中那些是整式?
设计意图: 让学生通过复习整式的概念,明确单项式和多项式统称为整式,这样就较容易找出哪些是整式。因为分式概念的学习是学生通过观察,比较分式与整式的区别从而获得分式的概念,所以必须熟练掌握整式的概念.
注意事项:学生能够比较准确的找出哪些是整式,但有些学生会简单的认为“分数”形式的代数式不是整式,其实这不是判别的关键,而是看分母中是不是含有字母,所以有些学生会漏掉 s/300.(活动2)
以一个“土地沙化”的问题情景引入,让学生思考讨论,用式分式表达题目中的数量关系: 问题情景(1):面对目前严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前4个月完成原计划任务,原计划每月固沙造林多少公顷?这一问题中有哪些等量关系? 如果设原计划每月固沙造林x公顷,那么原计划完成一期工程需要 个月,实际完成一期工程用了(x+30)个月。
根据题意,可得方程()问题(2):正n边形的每个内角为()度。问题(3):新华书店库存一批图书,其中一种图书的原价是每册a元,现降价x元销售,当这种图书的库存全部售出时,其销售额为b元.降价销售开始时,新华书店这种图书的库存量是多少?
设计意图:通过以上三个问题列出了几个与整式不同的代数式,形成对比,自然过渡到分式的探索和学习分式的必要性。让学生进一步经历探索实际问题中的数量关系的过程;通过问题情景,让学生初步感受分式是解决问题的一种模型;体会分式的意义,发展符号感.
注意事项:要给学生一定的思考时间,让学生积极投身于问题情景中,冷静的思考,激烈的讨论,对于问题(1)大多数学生能找出2个或2个以上等量关系式,根据学生的情况教师可以给予适当的提示和引导,有了这个基础第2问第3问就不难了.
2.分析概念,落实双基
以小组的形式对前面出现的分式进行讨论后得出分式的概念,体会分式的意义.
讨论内容:对前面出现的代数式如下,它们有什么共同特征?它们与整式有什么不同?
分式的概念:整式A除以整式B,可以表示成的形式.如果除式B中含有字母,那么称为分式,其中A称为分式的分子,B称为分式的分母.对于任意一个分式的分母都不能为零.设计意图:让学生通过观察、归纳、总结出整式与分式的异同,从而得出分式的概念.再得出分式概念后,老师要特别强调分式的分母必须含有字母,且分母不能为零,引起学生的注意。
注意事项:学生通过观察、类比,及小组激烈的讨论,基本能得出分式的定义,对于分式的分母不能为0,有的 小组考虑了,有的没有考虑到,就这一点可以让学生类比分数的分母不能为0加以理解,还可理解为字母是可以表示任何数的。这样获得的知识,理解的更加透彻,掌握的更加牢固,运用起来会更灵活. 3.举例应用分层教学
学生讨论分式什么时候有意义?什么时候无意义?什么时候分式的值为零? 例题(1)当 a=1,2时,分别求分式的值;
(2)当 a取何值时,分式
有意义?(3)当 a取何值时,分式
无意义?
(4)当a取何值时,分式的值为0? 其中(1)(2)(3)问由学生在自主完成的基础上同桌交流,然后师生评述,使全体学生特别是学有困难的学生都能达到基本的学习目标,获得成功感。在此基础上我补充了第(4)问让学生进一步探索出分式为零的条件
设计意图:通过分式有无意义的条件探究活动,让学生亲历发现事物特征、规律的过程,激发学生的学习兴趣,增强自信心,引发主动学习的内在动机。
讨论、解答结束后,教师再一次总结分式有无意义的条件及分式的值为零的条件并板书加深对知识的理解。分式有无意义的条件
1、有意义 B≠0.2、无意义 B=0.分式值为零的条件 A=0 且 B≠0.4.及时反馈归纳小结
1、反馈训练,巩固概念(1)、下列各式中,哪些是整式?哪些是分式?(1)(2)2a-b(3)(4)2xy-y 设计意图:考察学生对分式、整式概念的理解.
(2)、x取什么值时,下列分式无意义?
(1)(2)
设计意图:让学生体会分式的意义,知道如果a的取值使的分母的值为零,则分式没有意义,反之有意义.(3)、把甲、乙两种饮料按质量比x:y混合在一起,可以调制成一种混合饮料.调制1千克这种混合饮料需多少甲种饮料?
设计意图:体会分式可以表示现实情景中的数量关系,分式是表示现实世界中的一类量的数学模型.
注意事项:学生通过类比分数的分母不能为零,基本能理解分式的分母也不能为零。在学习中,有些学生错误的理解为只是分式的分母中的字母不为零,应该及时纠正,是整个分母不为零。分母可能是单项式,也可能是多项式。
2.小结归纳,分层作业 a.小结:
(1)通过本节课的学习,你学会了哪些知识?(2)通过本节课的学习,你最大的收获是什么?
(3)通过本节课的学习,你获得了哪些学习数学的方法?
设计意图:让学生畅所欲言,大胆谈自己的收获和感想,充分发挥学生的主体地位,从学习知识、方法、和延伸三方面进行归纳。b.作业布置:
针对不同层次的学生,更好的体现因材施教的原则,我将本节课的作业分为必做题和选做题两部分。必做题是教材67页1、2、3题
选做题是教材68页4题及编一题用分式表示数量关系的实际问题
设计意图:根据学生的个体差异,设计分层作业,使不同层次的学生都能通过作业有所收获。
《反比例函数的图像和性质》说课稿
各位老师:
下午好!今天我说课的内容是人教版八年级数学下册第十七章反比例函数的图象和性质第一课时,下面我从教材分析、教学目标、教学重点、教法与学法分析、教学过程几个方面进行阐述。
一、教材分析
反比例函数的图象和性质是反比例函数的教学重点,学生需要在理解的基础上熟练运用。本节课是全章的核心,学习的主要内容是画反比例函数的图象,让学生结合实例,通过列表、描点、连线等手段经历画图、观察、猜想、思考、归纳等数学活动,并初步认识反比例函数的图象的特征,逐步明确反比例函数的直观形象,为学生探索反比例函数的图象的性质提供思维活动的空间。也为以后二次函数以及其他函数的学习奠定坚实的基础。
二、教学目标
结合我对这节课的理解和分析,制定教学目标如下:
1、通过学生在动手操作,学会在平面直角坐标系中用描点法画出反比例函数的图象;
2、通过观察反比例函数图像,引导学生观察、分析、归纳反比例函数的性质,3、在学生自主探究反比例函数图像和性质的过程中,让学生体验到数学活动中充满了探索和创造,增强他们对数学学习的好奇心与求知欲。
三、教学重点难点
重点:用描点法作反比例函数的图像,并利用图像探究反比例函数的性质 难点:如何抓住特点准确画出反比例函数的图像。
四、教法与学法分析
现代教育理论中要求“要把学生学习知识当作认识事物的过程来进行教学”。针对八年级学生的认知结构和心理特征,我选择“引导探索法”。由浅到深,由特殊到一般地提出问题。引导学生自主探索、合作交流。让学生始终处于一种积极的思维、主动探索的学习状态。
根据新课标要求“培养可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生,并参与到学习活动中,鼓励学生采用自主探索、合作交流的研讨学习方式,培养学生“动手”、“动脑”、“动口”的习惯和能力,使学生真正成为学习的主人。
三、教学过程
(一)创设情境,引入新课
1、问题一:正比例函数的图像是什么形状的?我们是通过几个步骤画出来的呢?
2、问题二:反比例函数的图像又是什么形状呢?大家想知道么?
通过问题一帮助学生回忆用描点法画函数图象的方法,并认识到任何函数的图象都可以用描点法画,激活学生原有的知识,为探究反比例函数图象的画法奠定基础。问题二的提出,给学生一个想象空间,激发学生参与课堂学习的热情。
(二)类比联想,探究交流---反比例函数图像的画法
1、问题一:根据已经学过的正比例函数图象的画法,怎样画出反比例函数y= 和y=--的图象?
先根据学生的回答和补充,得出画反比例函数图象的基本步骤:列表——描点——连线。再让学生分组尝试画两函数的图象。在教学过程中可以引导学生仿照正比例函数图象的的画法。
学生是首次接触到双曲线这种比较特殊函数图象,学生可能会在下面几个环节中出错:(1)在“列表”这一环节
在取点时学生可能会取零,在这里可以引导学生结合代数的方法得出x不能为零。也可能由于在取点时的不恰当,导致函数图象的不完整、不对称。在这里指导学生在列表时,自变量x的取值可以选取绝对值相等而符号相反的数,相应的就得到绝对值相等而符号相反的对应的函数值,这样可以简化计算的手续,又便于在坐标平面内找到点。
(2)在“连线”这一环节
学生画的点与点之间连线可能会有端点,未能用平滑的线条连接,或者把两个象限内的点连起来。因而在这里要特别要强调在将所选取的点连结时,应该是“平滑曲线”,还可以引导学生通过代数的方法进一步分析反比例函数的解析式y=﹙k≠0﹚,由分母不能为零,得x不能为零。由k≠0,得y必不为零,从而验证了反比例函数的图象。当两个分支无限延伸时,可以无限地逼近x轴、y轴,但永远不会与两轴相交。从而引导学生画出正确的函数图象。为后面学习函数的性质打下基础。并给出双曲线的概念。
2、问题二:比较函 y = 和y =--的图象有什么共同特征它们之见有什么关系?
引导学生观察、对比、小组讨论,用自己的语言描述,由感性认识上升到理性认识,提高学生抽象概括能力。
3、巩固训练:画函数y = 和y =--的图象
让学生自己动手分组完成,使学生进一步了解画反比例函数图象的基本方法,也为后面观察分析归纳出反比例函数图象的性质增加感性认识。
(三)、探索比较,发现规律----函数图象性质 问题一:观察函数y = 和y =--的图象
(1)找出反比例函数y=(k≠0)图象有哪些共同点?有哪些不同点?(2)每个函数图象分别位于哪几个象限?由什么因素决定?(3)在每一象限内y随x的变化如何变化?
引导学生通过对反比例函数图象进行观察、分析,对函数图象的位置与k值符号关系的探讨,以及反比例函数的两个分支在相应象限内,y值随x值的增大(或减小)而增大(或减小)的探讨,有利于加深学生对性质的理解和掌握;学生根据对图象的观察,由得到的图象特征总结反比例函数的性质。性质:(1)反比例函数y=(k为常数,k≠0)的图象是双曲线.
(2)当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内,y的值随x值的增大而减小.(3)当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内,y的值随x值的增大而增大.
(四)、归纳总结,问题一:本节课学习了哪些知识?
问题二:反比例函数与正比例函数在图象分布与性质上有什么异同点?
通过列表的形式,引导学生小结反比例函数的性质并与正比例函数的图象与性质纵向对比,加深认识。通过学生自由讨论、总结、概括本章所学内容,使学生进一步理解反比例函数图象及其性质,让学生体验到学习数学的快乐,在交流中与全班同学分享。
(五)布置作业
这一环节主要是让学生加深对所学知识的理解和应用,并时刻了解学生的掌握程度。
八年级数学下册《数据的分析》《平均数》说课稿
尊敬的各位评委,大家好。我是外国语学校的老师于瑞晶。今天,我说课的课题是人教版数学八年级下册《数据的分析》——《平均数》第一课时。我将从教材、教法、学法、过程、反思等几个方面进行分析。
平均数在初中阶段主要涉及算术平均数和加权平均数。算术平均数在小学我们就已经学习过,不是重点,本节课着重研究加权平均数。我确定了如下教学目标。知识与技能:理解“权”及“加权平均数”的意义,掌握加权平均数的计算公式,并能利用其解决不同情境下的实际问题。过程与方法:经历情境探求过程,感悟提出“加权平均数”的概念的必要性及“加权平均数”与“算术平均数”的联系与区别;经历解决问题的过程,深化对“权”的各种形式的认识及对“加权平均数”的本质认识。情感态度价值观:认识“各个数据的重要程度有所不同”的客观事实,体会“根据不同数据的权来计算其平均数”的合理性。教学重点是权及加权平均数的概念的理解,计算公式及应用。难点是加权平均数概念的形成。
根据课标的要求,在教法方面,教师是教学的组织者、引导者、合作者,因此,我从情境创设、自主探究、巩固新知、感悟新知等环节进行引导,用问题串来驱动教学,让学生在解决问题的过程中获得感悟,深化认识,形成知识技能。
而学生是学习的主体,尽管学生已初步了解了平均数的意义,并会计算权数相等情况下的算术平均数,但对加权平均数的意义以及权的作用的理解仍将非常困难。在学法方面,我设计了谈一谈,想一想,说一说,解一解等环节逐层深入教学。
为了体现学生是学习活动的主体,我以学生的学为立足点,设计了如下教学过程:
第一,情境创设——我先让学生观看 5月2日我校承办的市中学生运动会的照片,提出运动会需要志愿者,而志愿者并不是谁都可以做的,创设情境“招募启示”,这样设计,从学生们熟悉、关心的现实情境,寻找数学题材导入新课,不但可提高学生学习数学的兴趣,而且可使所要学习的数学问题简单化、形象化,使学生觉得数学问题是那么的直观、贴近实际,为学习较复杂和陌生的加权平均数奠定基础。情境提出最终有甲、乙两位同学进入了我们的视野。由于甲、乙同学两项成绩的算术平均分一样,让学生思考谁会被录用?这一环节仁者见仁,学生有的认为对于讲解员而言,普通话水平应更重要一些,选择乙;有的认为形象分更重要的,选择甲;甚至有的认为无法做出选择。同学们各抒己见的过程也是同学们思考感悟的过程。这样的设计让学生产生认知冲突,认识到学习新知的必要性,进一步激发学生学习积极性。于是,我把问题交还组委会,组委会认为招募讲解员,普通话水平应该比形象更重要些。根据两项得分的“重要程度”,将普通话和形象得分按6:4的比例计算两项成绩的平均得分,请同学们算出甲乙两人的平均得分。这里即统一了认识,又比较自然的引出“权”,使学生认识到“各个数据的重要程度有所不同”的客观事实。解决情境创设的问题,不需要老师多言,学生根据已有的知识储备,自己能够比较容易的算出,需要请一位同学说出他列的算式及结果并解释,我在黑板上板书,顺理成章的呈现新知:在实际生活中,如果一组数据中各个数据的重要程度不相同,那么我们在计算这组数据的平均数时,可以根据其重要程度,分别给每个数据一个“权”。如本例中的6:4中的6和4就分别叫普通话分和形象分的“权”,并且利用这种方式算出的结果叫“加权平均数”。同时指出,求加权平均数的方法有“法”可循,即:用各个数据与他们的权的乘积的和除以各项权的和。这里不需急于呈现加权平均数的计算公式,只是略作说明,为学生准确理解记忆公式做好铺垫。
为了让学生强化理解,体会“根据不同数据的权来计算其平均数”的合理性。我在问题导航,探索活动中设计问题(1)“外国语学校记者站又要选派一名记者去采访市运会的举办情况,小明、小亮、小丽报名参加了3项素质测试,成绩如下表:
采访写作
计算机
创意设计
小明
70分
60分
86分
小亮
90分
75分
51分
小丽
60分
84分
78分(1).将采访写作、计算机和创意设计成绩按5:2:3的比例计算3个人的素质测试平均成绩,那么谁将被选派?学生可以根据刚才情境创设中学到的方法,自主解决。我让学生自主解决后由一名同学实物投影他的解题过程并讲解的方法解决完成问题(1)的探究。
之后又设计问题(2)如果按30%、20%、50%的比例计算,那么谁会被选派呢?让学生认识和感知权的不同形式。问题(2)给出的是权的另一种表现形式,学生也是可以自己探究解决的,我同样采用让学生自主解决后,由一名同学实物投影他的解题过程并讲解的方法解决完成,只是我同时把这题的解题过程板书出来,强化权的表现形式不同,但计算方法一致。再次为学生理解记忆公式做好铺垫。由问题(1)和(2)得出的结论,让学生讨两个小题的计算结果是否相同,为什么会出现这种情况呢?让学生通过讨论感受“权”的差异对结果有一定的影响。
在问题(2)的基础上,我设计了问题(3)如果按1:1:1的比例计算,结果又会如何呢?旨在让学生们思考讨论,算术平均数与加权平均数的联系与区别,引导学生得出算术平均数实际上是加权平均数的一种权相等时的特例。这样的设计对本节课是一个总结和升华。让学生加深了对加权平均数的意义的理解,并发展了学生类比和化归思想。
在师生共同合作下明确了两个数据和三个数据的加权平均数的计算方法,水到渠成的让学生自己总结出n个数据的加权平均数的计算公式。
得出公式后,我设计趁热打铁,巩固新知这一环节让学生解决两个练习,深化对“权”的各种形式的认识及对“加权平均数”的本质认识,使学生感受加权平均数的广泛应用。之后进入回顾与反思,让学生反思及梳理本节课学到的知识。
为了让学生更加清晰的在解决问题的过程中获得感悟,形成知识技能,深化认识,我又设计了小组比拼,感悟新知这一环节,让小组长现场为自己小组打分,四组打分完毕后,让同学们设计规则,使自己所在小组成为最佳小组。学生们已经能够熟练的运用加权平均数的公式计算了,为了节约计算时间,突出“权的差异对结果的影响”,我在课件上设计了计算器,能迅速计算各项成绩的加权平均数,再次体会权的重要性。当然,现实生活中是不可能出现先有成绩后有规则的情况。最后,我送上爱因斯坦的名言作为给学生的寄语,嘱托学生们,在通往成功的路上,要带上勤奋。会扣了“权”的本质。最后布置分层作业,便于不同层次的学生发展。
本节课得到的启示是:问题是数学的心脏,问题是载体,做题是手段,提炼是目的,让学生在“做”中“学”,既解放了老师也锻炼了学生,并使学生在解决问题的过程中感受数学来源于生活,又回归生活,增强了学生学数学的兴趣,我的说课结束,谢谢。
八年级数学一次函数与二元一次方程(组)说课
一次函数与二元一次方程(组)各位评委、老师们: 大家好!
今天能有这个展示的机会,得到各位评委、老师的指导,感到非常荣幸. 本节课的内容是《一次函数与二元一次方程(组)》,选自人教版教科书八年级上册第十四章,下面我将对这节课的教学设计加以说明.
这部分内容是在学生充分认识了一元一次方程、二元一次方程(组)和一元一次不等式的基础上,对一次运算进行更深入的讨论.用一次函数将上述几个数学对象统一起来认识,发挥函数对相关内容的统领作用.之前已经用两课时学习了一次函数与一元一次方程、一元一次不等式的关系,本节课是对一次函数与二元一次方程(组)关系的探究.
基于以上对教学内容的理解,结合我所教学生的特点,我确定本节课教学目标为: 1.理解一次函数与二元一次方程(组)的关系.
2.学习利用函数解决问题的方法,感受数学知识之间的内在联系,进一步体会数形结合的数学思想. 3.通过现实化的实际问题背景,反映祖国科技和经济的发展. 一.创设情境,提出问题
本课的教学过程分为五个环节完成.首先请看“创设情境,提出问题”的教学过程.(插入录像1)设计意图:因为学生对刚学过的一次函数理解得还不够透彻,有一定的畏难情绪,并且他们对一元一次方程、二元一次方程(组)和一元一次不等式都很熟悉,因而缺乏学习这部分内容的热情,或者只是机械地背记结论,所以我从本课引入部分,就力求能马上吸引住学生。通过对一道七年级课本中曾经解决过的问题的再认识,使学生在认知上形成冲突,从而产生学习新知的需要;接着我设计了一个师生互动的游戏,使学生对老师是怎么迅速判断出方程组解的情况产生了强烈的好奇心,从而有了学习新知的强烈愿望.(插入录像2)二.循序渐进,学习新知
1.进入新知的学习,我首先通过一段视频为学生创设了一个贯穿整节课的问题情境,使学生始终在倍感新鲜的环境中进行学习.本课新知由两部分构成,一是研究一次函数与二元一次方程的关系,二是研究一次函数与二元一次方程组的关系,下面请看第一部分的教学过程.(插入录像3)设计意图:研究一次函数与二元一次方程的关系是本课的重点,如何实现从方程到函数的转化也是本课的难点.我没有仅停留在两者形式上的转化,而是从实际出发,通过设置一个个问题,引导学生直观感受变量,感受函数关系,从而自然实现了从二元一次方程,到一次函数的转化,突出了函数思想.
2.下面请看学生如何“研究一次函数与二元一次方程组的关系”.(插入录像4)设计意图:因为已经研究了一次函数与二元一次方程的关系,所以学生完全可以通过独立思考、合作探究得到一次函数与二元一次方程组的关系.我仍然坚持从特殊到一般的探究方式,启发引导学生充分讨论特殊图象交点坐标的含义,从而自然的从“数”和“形”两方面加深了对二元一次方程组的理解. 三.剖析例题,巩固新知
为了帮助学生加深对所学内容的理解,我设计了下面的例题.(插入录像5)设计意图:例题仍然坚持了本课统一的问题背景,教师鼓励学生自主探究、合作交流,课堂上学生分别运用一元一次方程、一元一次不等式、一次函数等三种方法求解了此题,并且对于各种解法的优劣、变量的取值范围和该如何画函数图象等方面都形成了讨论,接着由学生互相启发补充,予以解决.通过从不同的角度解决问题,既帮助学生巩固了对一次方程(组)、不等式和一次函数的关系的理解,又使学生获得了一些研究问题的方法和经验,发展了思维能力. 四.解决问题,加深认识
下面请看第四个环节“解决问题,加深认识”的教学过程.(插入录像6)设计意图:本环节照应了引入部分,既解决了当时提出的问题,又引导学生在课下继续思考二元一次方程组解的情况与同一平面内两条直线不同位置之间的对应关系,从而更加深了对方程组解的图形解释的理解,切身感受到了数形结合思想的应用,为将来高中解析几何的学习做一些铺垫. 五.归纳小结,布置作业
接下来我引导学生从知识与方法两个方面总结本节课的学习,并给学生布置必做作业和选做作业. 这就是我对这节课的教学设计,其中难免有很多不足之处,真诚的希望得到各位老师的批评指正,以使我在今后的教学中加以改进.谢谢!
《不等式及其基本性质》说课稿
尊敬的各位领导、各位老师: 大家好!
我今天说课的课题是《不等式的基本性质》,它是北师大版八年级下册第一章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法: 本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。
根据《新课程标准》的要求,教材的内容兼顾我校八年级学生的特点,我制定了如下教学目标: 知识与技能:
1.感受生活中存在的不等关系,了解不等式的意义。2.掌握不等式的基本性质。
过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。
情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。教学重难点:
重点:不等式概念及其基本性质 难点:不等式基本性质3 ►教法与学法:
1.教学理念: “ 人人学有用的数学”
2.教学方法:观察法、引导发现法、讨论法. 3.教学手段:多媒体应用教学
4.学法指导:尝试,猜想,归纳,总结
根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。
下面我将具体的教学过程阐述一下:
一、创设情境,导入新课
上课伊始,我将用一个公园买门票如何才划算的例子导入课题。
世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元。某班有27名团员去世纪公园进行活动。当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票。但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?(此处学生是很容易得出买30张门票需要4X30=120(元), 买27张门票需要5X27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式)紧接着进一步提问:若人数是x时,又当如何买票划算?
二、探求新知,讲授新课
引例列出了数与数之间的不等关系和含有未知量120<5x的不等关系。那么在不等式概念提出之前,先让学生回顾等式的概念,“类比”等式的概念,尝试着去总结归纳出不等式的概念。使学生从一个低起点,通过获得成功的体验和克服困难的经历,增进应用数学的自信心,为下面的学习调动了积极。
接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。(1)a是负数;(2)a是非负数;
(3)a与b的和小于5;
(4)x与2的差大于-1;
(5)x的4倍不大于7;
(6)y的一半不小于3 关键词:非负数,非正数,不大于,不小于,不超过,至少
回到引入课题时的门票问题120<5x,我们希望知道X的取植范围,则须学习不等式的性质,通过性质的学习解决X的取植
难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。
►反馈练习:用一个小练习巩固三条性质。
如果a>b,那么
(1)a-3
b-3
(2)2a
2b
(3)-3a
-3b
提出疑问,我们讨论性质2,3是好象遗忘了一个数0。►引出让学生归纳,等式与不等式的区别与联系
三、拓展训练:
根据不等式基本性质,将下列不等式化为“<”或“>”的形式(1)x-1<3
(2)6x<5x-2
(3)x/3<5
(4)-4x>3
再次回到开头的门票问题,让学生解出相应的x的取值范围
四.小结 1.新知识
一个数学概念;两种数学思想;三条基本性质 2.与旧知识的联系
等式性质与不等式性质的异同
五、作业的布置
以上是我对这节课的教学的看法,希望各位专家指正。谢谢!
“让学生主动参与数学教学的全过程,真正成为学习的主人”
八年级数学探索多边形的内角和与外角和说课稿
第四章 四边形性质探索
6.探索多边形的内角和与外角和
(一)一.学生起点分析
学生已经学完三角形的内角和,对内角和的问题有了一定的认识,加上八年级的学生好奇心、求知欲强,互相评价、互相提问的积极性高.因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,所以把这节课设计成一节探索活动课是切实可行的 二.教学任务分析
本节课是《义务教育课程标准实验教科书》北师大版八年级上册第四章第六节《探索多边形内角和与外角和》的第一课时.本节内容是七年级上册多边形相关知识的延展和升华,并且在探索学习过程中又与三角形相联系,从三角形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,联系性比较强,特别是教材中设计了现实情境,“想一想”,“议一议”等内容,体现了课改的精神.在编写意图上,编者强调使学生经历探索、猜想、归纳等过程,回归多边形的几何特征,而不是硬背公式,发展了学生的合情推理能力. 教学目标
【知识与技能】掌握多边形内角和定理,进一步了解转化的数学思想
【过程与方法】经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法.
【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造. 教学重难点
【教学重点】多边形内角和定理的探索和应用
【教学难点】多边形定义的理解;多边形内角和公式的推导;转化的数学思维方法的渗透.
三.教学过程设计 本节课分成七个环节:
第一环节:创设现实情境,提出问题,引入新课; 第二环节:概念形成; 第三环节:实验探究; 第四环节:思维升华; 第五环节:能力拓展; 第六环节:课时小结; 第七环节:布置作业。
第一环节 创设现实情境,提出问题,引入新课
1.多媒体展示蜂窝,教师结合图片让学生发现生活中无处不在的多边形. 2.工人师傅锯桌面:一个四边形的桌面,用锯子锯掉一个角,还剩几个角? 目的:
1.通过现实情境的展示,调动学生的情绪,激发起进一步学习的兴趣
2.把学生的注意力自然的引入研究方向,为课题的研究做铺垫
第二环节 概念形成
1.借助多媒体显示一多边形,学生类比三角形的有关知识对多边形定义、并表示出相应的元素.
2.教师再给出严格规范的定义,特别借助学具说明“在平面内” 的必要性.此外,说明正多边形的定义以及多边形可分为凸多边形和凹多边形. 目的:
1.对于边角这些能在图形中识别而又不要求学生掌握的描述性定义,采取学生类比三角形的表示方法来归纳,渗透类比的数学思想.
2.借助于自制的直观教具,说明多边形定义中“在平面内”这一条件,易于学生理解,化解了难点.
第三环节 实验探究
(以四人小组为单位展开探究活动)
提出问题:三角形的内角和为180°,那么多边形的内角和是多少度呢?从四边形开始研究. 活动一:利用四边形探索四边形内角和 要求:先独立思考再小组合作交流完成.)(师巡视,了解学生探索进程并适当点拨.)(生思考后交流,把不同的方案在纸上完成.)
„„(组间交流,教师课件展示几种方法)
教师帮助学生反思:在刚才的探索活动中,大家有不同的方法求四边形的内角和,这些看似不同的方法有没有相似之处?
进而引导学生得出:我们是把四边形的问题转化成三角形,再由三角形内角和为180°,求出四边形内角和为360°,从而使问题得到解决!进一步提出新的探索活动。
活动二:探索五边形内角和
(要求:独立思考,自主完成.)
注:在探究过程中,有学生是把五边形分割成四边形和一个三角形来解决问题的.四边形内角和为360°加上三角形内角和180°,就求出五边形内角和为540°,教师在肯定其做法的同时,要指出这种方法的局限性,即“必须在知道比其少一条边的多边形内角和的基础上才能求出该多边形的内角和”.
第四环节 思维升华
教学过程: 探索n边形内角和,并试着说明理由
(结合课件出示的图表从代数角度猜测公式,并从几何意义加以解读)n边形的内角和=(n—2)•180°
正n边形的一个内角= =
第五环节 能力拓展 抢答题:
1.正八边形的内角和为_______.2.已知多边形的内角和为900°,则这个多边形的边数为_______.3.一个多边形每个内角的度数是150°,则这个多边形的边数是_______.应用发散:
4.如图所示的模板,按规定,AB,CD的延长线相交成80°的角,因交点不在板上,不便测量,质检员测得∠BAE=122°,∠DCF=155°.如果你是质检员,如何知道模板是否合格?为什么?
5.小明有一个设想:2008年奥运会在北京召开,要是能设计一个内角和是2008°的多边形花坛该多有意义啊!小明的这个想法能实现吗? 目的:
其中前三道比较基本,可采用抢答的形式完成,目的是复习今天所学,了解学生学习效果
第4道题是能力拓展,培养学生应用数学知识解决实际问题的能力
第5道题让学生感受数学的趣味性,以及与实际生活的联系.
第六环节 课时小结:
教师和学生一起对本节课内容和同学们的表现做一小结,然后每位学生利用活动评价表进行自我量化考核,并于课下反馈给老师 第七环节 作业设想:(1)书上习题
(2)思考题:一个多边形去掉一个内角后形成的多边形内角和为 1800°,你能求出原多边形的边数吗?
四.教学设计反思
重点突出对自主探索与合作交流的过程及效果的评价,如:关注学生能否尝试从不同角度分析和解决问题,能否体会与他人合作解决问题的重要性,能否尝试用不同方式清楚表达解决问题的过程,能否对解决问题的过程进行反思,获得解决问题的经验.
八年级数学变化的鱼说课稿
《变化的鱼》说课稿
一、教材中的地位及作用
《变化的鱼》是北师大版八年级上册第五章的第三节。主要内容是坐标变化和图形变换之间的关系。本册第三章学习了图形变换的平移和旋转,本章第一、二两节学习了平面直角坐标系和如何在坐标系内确定一个点,本节内容就是把这二者有机结合起来,为学生提供了一个探索坐标变化和图形变换之间的关系的一个平台,在经历图形的坐标变化和图形变换的探索过程中,培养形象思维能力,体会数形结合思想。该课时内容在整个中学数学学习中是一个转折点,具有承前启后的作用。通过本节课的学习,为相似、位似、函数及其图象的学习奠定基础,而且这一节内容,将向学生明确提出数形结合这一思想,要求学生逐步掌握利用平面直角坐标系建立模型解决生活中遇到的实际问题。
二、学情分析
我所任教八年级学生大部分处于城乡结合部,形象思维能力和动手能力较强,逻辑思维能力偏弱,课堂主动性不够。对于本节,在之前学生已经学习了简单的图形变换以及直角坐标系的相关知识,为本节的学习奠定了基础,但本节内容也不是两种知识的简单叠加,由于二者的综合,加大了知识的深度,给学生的理解上带来很大的难度。因此,在教学中,应遵循学生的自身特点和本节的内容实际来进行设计。
三、教学目标
知识与技能目标: 在同一直角坐标系中,感受图形上点的坐标变化与图形的平移、拉伸、压缩之间的关系;进一步体会点与坐标一一对应的思想。
过程与方法目标:让学生经历图形坐标变化与图形的平移、伸长、压缩之间的关系的探索过程,发展学生的形象思维能力,培养学生数形结合意识。
情感、态度与价值目标: 通过培养学生对问题的观察、思考、交流、类比、归纳、动手操作等过程,发展学生的探索精神、合作意识、归纳能力。
四、重点
难点
重点:探索并掌握图形坐标变化与图形变换之间的内在关系。难点:坐标变化和图形拉伸、压缩间的关系。
五、教法与学法分析
1、“教”的本质在于引导,引导的艺术在于含而不露,指而不明,开而不达,引而不发.为了充分调动学生的学习积极性,变被动学习为主动愉快的学习,使数学课上得生动、有趣、高效,所以本节课采用的教法为:(1)情景式教学法:课堂开始通过多媒体动画,激发学生的学习动机。
(2)探究式教学法:将启发、诱导贯穿教学始终,唤起学生的求知欲望,促使他们动手、动脑、动嘴,积极参与教学全过程,在教师指导下生动活泼地、主动地、富有个性地学习,成为学习的主人。
2、教学中,学生是学习的主体,教师为学生学习的引导者、合作者、促进者,所以学法确定为:(1)探究学习法。把问题留给学生,引导他们去解决问题。
(2)合作学习法。和小组的同学一起探讨、交流,利用集体的智慧去解决问题。
六、教学过程
教学过程是教学目标的体现过程,是教法学法的实施过程,是教学理念的展现过程,是使知识与能力在现实背景中自然呈现的过程。结合本节的教学内容及重难点教学过程如下:“情景引入——新课导入——探索新知识——举一反三——触类旁通——巩固拓展”。
教学环节 师生活动过程 设计意图
情景引入 利用多媒体向学生展示一段动画,在动画和音乐声中,让学生进入课堂状态,同时,让学生对本堂课产生好奇和疑问。利用优美的音乐和动画,激发学生的探识欲望 新课导入 课件中直接演示作图过程:在坐标系中标出以下点:(0,0)(5,4)(3,0)(5,1)(5,-1)(3,0)(4,2),(0,0),并顺次连接。
问题:所作图形象什么?
通过多媒体,在坐标系中拖动一条可以随意移动的直线鱼,让学生观察,在这条鱼移动的过程中,什么发生了变化?什么没变?
让学生讨论总结出自己的结论,教师不作任何说明。
要求学生在讨论的基础上去作图:让鱼向右移动3个单位。作出图形,比较所作图形是否和所得结论吻合。
多媒体演示作图过程和前后两条鱼的变化过程。开门见山的直接作图,既复习了前面所学知识,又让学生对本节将要学习的内容有了初步的认识。问题引入。
探索新知 想一想
议一议
一、在前面问题的基础上,由学生直接说出:当向左游动2个单位时,图形的坐标发生了什么变化?向上或向下游动2个单位时,图形的坐标又发生了什么变化? 通过课件演示其变化过程,验证学生的答案。
二、针对一般情况,当坐标发生什么样的变化时,图形横向平移或纵向平移?
由前面的作图和演示,学生已经知道:要让鱼移动,必须改变图形的坐标。再次在坐标系中拖动那条可以随意移动的鱼,让学生在已有一定认知之后再来仔细观察,思考,总结更全面的规律。综合学生的结论,引导他们得出如下结论:
当纵坐标不变,横坐标增加时, 图形向右平移;纵当坐标不变,横坐标减少时,图形向左平移.横坐标增加或减少a(a>0)时,图形向右或向左平移a个单位.当横坐标不变,纵坐标增加时,图形向上平移;当横坐标不变,纵坐标减少时,图形向下平移.纵坐标增加或减少a(a>0)时, 图形向上或向下平移a个单位.把整个探索过程交给学生去做,教师只作为一个协助者,让学生通过思考、讨论、动手操作等过程得出结论,既能加深对本节内容的印象,又培养了他们学习和解决数学的能力。
教学环节 师生活动过程 设计意图 举一反三 想一想
议一议 并回答
1、对于前面的结论,反过来是否成立?
让学生仔细对照所作图形,充分思考,鼓励他们去讨论。
2、观察以下图形,蓝、黑鱼是在红鱼的基础上怎样变化而来的,坐标发生怎样的变化?(1红,2蓝,3黑)
(1)
(2)
(3)(1)第二条是第一条向左平移4单位得到,横坐标减少4;第三条是第一条向右平移6单位得到,横坐标增加6。
(2)第二条是第一条向上平移4单位得到,纵坐标增加4;第三条是第一条向下平移5个单位得到,纵坐标减少5。
(3)第二条是第一条向左平移5个单位向上平移3个单位得到,横坐标减少5纵坐标增加3;第三条是第一条向右平移3个单位向下平移4个单位得到,横坐标增加3纵坐标减少4。通过上面的学习,学生已经学到了当纵坐标或横坐标改变时,图形将纵向或横向平移,在此基础上来让学生自己得出当图形改变时点的坐标改变的规律,以达到培养学生利用扩散思维进行自我学习的能力。培养学生利用所学知识解决问题的能力 教学环节 师生活动过程 设计意图
触类旁通 大胆猜测:通过前面的学习,我们知道当鱼的横、纵坐标增加或减少时,鱼就能左右游动或是上下游动。现在,请同学们思考一个问题:当坐标扩大或缩小一定的倍数关系时,鱼会发生怎样的变化呢? 由学生猜测讨论,并和其他组的同学分享本组的结论。在学生都有自己结论的基础上,要求学生完成以下作图:
作图验证
按以下要求作图:在第一条鱼的基础上横坐标扩大为原来的2倍; 作完图形和周围同学比较是否一样;所得图形和猜测所得结论是否吻合。在这个结论的基础上依次说出以下几种情况的结论: 当(1)横坐标缩小为原来的(2)纵坐标扩大为原来的2倍(3)纵坐标缩小为原来的
讨论活动:由学生分组讨论图形平移和坐标变化之间的关系,然后组织学生进行阐述,最后集合学生结论总结规律:
规律:当横坐标扩大为原来的n倍(n>1)(或缩小为原来的)时,图形被横向拉伸为原来的n倍(或被压缩为原来的);
当纵坐标扩大为原来的n倍(或缩小为原来的)时,图形被纵向拉伸为原来的n倍(或被压缩为原来的)拓展思考:当(1)横、纵坐标扩大为原来的2倍;(2)横、纵坐标缩小为原来的。
图形又会发生什么样的变化? 这一部分的设计,还希望通过这样的方式,让学生体会解决数学问题的一般方法“大胆猜测——小心验证——合理求证”,进一步培养学生的猜想探索能力 教学环节 师生活动过程 设计意图 巩固拓展 归纳巩固:
引领学生学生复习图形平移,图形拉伸、压缩和坐标变化之间的关系 巩固本节所学知识点
课外思考
图中红、蓝色的鱼与黑色的鱼对应顶点的坐标之间有什么关系,这些鱼可以看作黑色的鱼如何变化而来的?图中红色的鱼与蓝色的鱼对应顶点的坐标之间有什么关系,你能将红色的鱼通过适当的变化得到蓝色的鱼吗?请写出具体变化过程。
课堂内外的延伸
课外拓展:
课本P165
第3题
七、评价与反思
1.这一节课的设计是建立在学生已有的知识经验基础之上,利用多媒体演示,通过猜测、分组讨论、动手作图等方式帮助学生在探索图形变换和坐标变化之间关系的过程中,获得数学知识。
2.教学过程中注重激励学生的学习热情,注重过程评价,注重发现问题与解决问题评价。鼓励学生动脑、动手、动口,积极交流讨论。
3.通过这节课的学习,学生初步掌握了探究数学问题的基本方法,了解怎样建立数学模型解决实际问题,学会从生活中去发现数学,去找到数学的美,把数学和生活紧紧联系在一起,让学生体会到数学形象生动的一面。
4.存在问题:由于学生还没有经历过图形相似的学习,对于图形的拉伸和压缩可能有一定的难度。解决办法:让学生充分交流讨论,积极动手去验证,自己得出结论,加深他们对这一知识的理解。
分式的基本性质(说课稿)
对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教学背景、教法学法、教学过程、教学设计说明四个方面具体阐述我对这节课的理解和设计。
1、教材的地位和作用
本节内容分两课时完成。我设计的是第一课时的教学,主要内容是分式概念、掌握分式有意义,值为0的条件。因为它是在学生学习了分数、整式及因式分解的基础上,又一代数学习的基本内容,是小学所学分数的延伸和扩展,而学好本节课,为今后继续学习分式、函数、方程等知识作好铺垫,特别是对“分式有无意义的讨论”为以后学习反比例函数作了铺垫。因此它起着承上启下的作用。
2、教学目标
一节课的教学目标准确与否,直接关系到这节课的整体设计,关系到学生发展的水平和教学效果的好坏,因此预设教学目标时,我力求准确。依据新课程的要求,我将本节课的教学目标确定为以下3个方面:(1)知识与技能目标:让学生经历用分式表示现实情境中数量关系的过程,从而了解分式概念,学会判别分式何时有意义,进一步培养学生代数表达能力和分析问题、解决问题的能力、以及创新能力。
(2)过程与方法目标:经历分式概念的自我建构过程及用分式描述数量关系的过程,学会与人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。
(3)情感与态度目标:通过丰富的数学活动,使学生获得成功的经验,体验数学活动充满探索和创造,体会分式的模型思想,培养学生的辩证唯物主义观点。
3、教学重难点及关键:
分式概念是《分式》这一章学习的起点和基础,因此我把理解分式的概念确定为本节课的教学重点。又由于初中学生的认知结构中存在着这样的障碍:不善于概括数学材料、缺乏对字母及其他数学符号用于运算的能力,所以判定分式有意义、分式的值为0时的条件,自然就成了本节课的教学难点。而部分学生容易忽视分式的分母值不能为0这个条件,因此我认为突破这个难点的关键是通过类比分数的意义,加强对分式分母值不能为0的理解。
一、教法学法分析
1、学情分析
由于我校八年级学生,基础比较扎实,学习能力较强。通过小学分数的学习,学生头脑中已经形成了分数的相关知识。学生可能会用学习分数的思维去认识、理解分式。但是分式的分母不再是具体的数,而是抽象的含字母的整式,会随着字母的取值的变化而变化。为了帮助学生确实掌握所学内容,我在教学过程中特别设置了巩固性练习,对于教材中的例题和习题将作适当的延伸和拓展及变式处理.2.教学方法:
针对本班学生情况,为了适合学生已有的认识水平和认知规律,更好地突出重点、化解难点,在教学过程中,我采用“引导——发现式教学法”,引导学生运用类比的思维方法进行自主探究.在实施教学的过程中注意学生分析问题、解决问题等能力的培养。让学生全面地掌握分式的意义,体会到数学不是一门枯燥的学科,对学习数学充满信心。为了提高课堂效果,适当的辅以多媒体技术, 激发学生的学习兴趣,同时也增大教学容量,提高教学效率。3.学法指导
观察、概括、总结、归纳、类比、联想是学法指导的重点。
在课堂教学中,不是老师单纯的传授知识,而是在老师指引下让学生自己学。要把教法融于学法中,在学法中体现教法。在活动过程中,我将引导学生体会用类比的方法,扩展知识的过程,培养他们学习的主动性和积极性。让学生通过对问题的讨论归纳,在与老师的交流中学习知识,从而达到 “学会”和 “会学”的目的。
二、教学过程(多媒体教学)《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”在教学过程中,我充分考虑到如何更多地向学生提供从事数学活动的机会,坚持以知识为载体,思维为主线,能力为目标的设计原则,所以我将本节课的教学过程设为以下六个环节:
第一环节是“创设情景、提出问题 ”:为了引导学生从自己熟悉的生活背景中发现、掌握和运用数学,在现实情境中进一步理解用字母表示数的意义,在这一环节里我设计一道有关四川汶川特大地震捐款的事例,并设置了6个问题。从学生熟悉的整式及其运算入手,引导学生从旧知中去发现分式,找到新知的“生长点”和学生思维的“最近发展区”,从而更好地进行分式概念的建构活动。落实教学目标。针对学生的发现,在第二个环节 “类比联想 形成概念”
我将采用“议一议”的方式引导学生继续观察新式子的特征,类比分数,合理联想。从而使学生水到渠成地概括出分式的概念及一般表示形式。第三环节“指导运用 巩固概念”
通过小组内互举例子,互说判定过程,鼓励学生积极参与活动,在活动过程中强化分式概念,并及时纠正学生可能因分数负迁移所造成的认知障碍,注意辨析 与 的本质区别和 不是分式的问题,指出判断一个代数式是不是分式,不是决定于这个式子里是否含分数线,关键要看分母中是否含有字母。最后指出“整式和分式统称为有理式”。同时还让学生明白:分数线具有(1)表示括号;(2)表示除号双重意义。
到此学生对分式的概念有了初步的认识,但并不完整。接下来如何识别分式有意义,是本节课的难点,也是探究学习的好素材。课本中分式有意义的条件是直接给出的,而我在以往的教学中发现学生往往忽视这个条件或是对分母整体不为零认识模糊,为了更好地突破难点,我在第四环节“循序渐进 再探新知”
创设了以下活动供学生自主探究分式有意义的条件: 首先是组织学生独立填写表格:
表格的设计,是为了让学生通过对分式中的字母赋值,将“代数化”了的分式还原为他们熟悉的分数。通过填表,不同层次学生的发现将会有差异,此时正是倾听与交流的好时机,通过互相说服和推广,他们最终会达成共识:分式的值与字母取值有关,分式并不都有意义。继而引导学生通过再次类比分数,将陌生问题向熟悉问题转化,自主得出“分式有意义”的条件,建立完整的分式概念,同时渗透从特殊到一般的数学思想。我抓住这一契机,给出:(2)、概括分式在什么条件下有意义(对一般表达式 里的分母B作出取值限定:B不能等于零)为了能让学生对刚获得的新知识进行最基本的应用,在这一环节我安排了例题1是一个有关分式求值及判别分式何时有意义的问题,比较简单,可以由学生在自主完成的基础上同桌交流,然后师生评述,使全体学生特别是学有困难的学生都能达到基本的学习目标,获得成功感。我又顺水推舟,再给出以下分式,让学生讨论,(实践练习1):当x取什么值时,下列分式有意义?你知道吗?(采用组内合作然后组间抢答的形式。)(1)、(2)、(3)、接下来,我又乘胜追击,问学生:(变式练习):那么以上各分式,当 取什么值时,分式无意义? 几个问题由浅入深、由易到难,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,消化知识。
(五)、变式延伸,进行重构
在掌握了如何求当未知数取什么值时,分式是有意义还是无意义以后,我将带领学生进入本节课的另一个难点,对学生来讲思维又将象每个跳动的音符一样活跃起来了。我问学生:例2:同样的,以上各分式,当 取什么值时,分式的值为零? 由于学生对新概念的理解在本质方面还是肤浅的,很多学生可能只考虑满足分子为零即可,所以我给学生几分钟的讨论时间,这时就有考虑问题较周到的学生通过(2)(3)两个题发现问题并不是那么简单,找出了症结。这样我就能及时的对症下药,指出“分式的值为零必须在分式有意义的前提下进行的。因此,分式的值为零必须满足两个条件:
(1)、分子的值为零;(2)、同时分母的值不等于零。从而进一步改善学生原有的认知结构 为了使这堂课所学到的知识与技能,顺利地纳入他们已有的知识结构中,所以在接下来的第(六)环节“ 巩固深化 分层作业”里,我将引导学生反思:我们是如何得到分式概念的?分式和我们以前学过的什么知识有联系?我们用了哪些方法进一步揭示了分式意义的本质?在以上的学习过程中你的收获有哪些?最后教师整理学生的发言,归纳小结:
A、分式是两个整式相除的商,分数线可以理解为除号,并含有括号的作用. B、分式的分子可以含有字母,也可以不含有字母,但分母必须含有字母. C、分式分母的值不能为0,否则分式无意义.
D、分式的值要为0,需满足的条件是:分子的值等于0且分母值不为0 E、有理数的分类(有理数包括整式和分式)。(2)、作业布置
(设计意图)考虑到学生的个体差异,以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。其中有一题自编涉及用分式表示数量关系的实际问题的题型。这样设计对学生是个挑战,可以激发他们的思维和兴趣,通过这样的逆向思维,可以更好地发展学生的数感、符号感,同时培养学生的创新意识。
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。
三、教学设计说明
回顾整节课的设计,我主要着力于以下三个方面:
(一)、关于教材处理:认真处理教材,目的只有一个——为我的学生尽可能多地提供参与活动的机会,在本节课中主要体现在以下几点:
1、通过创设情景、引导学生观察、类比;联想已有知识经验;分析新的问题等活动,让学生充分感受知识的产生和发展过程,让学生始终处于积极思维状态之中。
2、通过分式概念、分式有意义的条件等探究活动,让学生亲历发现事物特征、规律的过程,激发学生的学习兴趣,增强自信心,引发自行学习的内在动机。
3、在学生学习了分式的概念后,通过一组由浅入深、由易到难的题组(例题及变式训练),逐题递进,落实本节课的教学难点。在教学形式上采用学生“互举例子、组内合作、组间抢答等多种方式,激活学生的思维,营造良好的课堂氛围。
4、问题设计注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现的机会,培养其自信心,激发其学习热情。有效地开发各层次学生的潜在智能,力求使每个学生都能在原有的基础上得到发展
5、小结部分通过师生共同反思,目的是为了更好地促进新旧知识之间的联系,使新知识与学生头脑中原有的旧知识建立逻辑性的稳固联系,从而形成新的认知结构。
6、通过创设开放性问题发展学生的创造性思维能力。根据学生的个性差异,遵循因材施教的原则,设计分层作业,使不同层次的学生都能通过作业有所收获。
(二)、关于教与学方法的选择:我在设计中始终关注:如何精心组织,让学生在丰富的活动中探索、交流与创新,因此我选择了“引导—发现教学法”,具体做法如下:
(1)、应用数、式通性的思想,类比分数,引导学生独立思考、小组协作,完成对分式概念及意义的自主建构,突出数学合情推理能力的养成;(2)、加强应用性,通过再探新知、变式延伸两个环节,发展数学应用意识,突出分式的模型思想。
(三)、关于评价:学生都有表现自己的欲望,希望得到老师和其他同学的认可,要多表扬,多肯定来激励他们的学习热情.我在活动中注重运用态势、语言对学生进行即兴评价,肯定成绩,使其具有成就感,提高他们学习的兴趣和学习的积极性。
总之,在本节教学中,我始终坚持以学生为主体,教师为主导,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中,在整个教学过程中我以启发学生,挖掘学生潜力,让他们展开联想的思维,培养其能力为主旨而发展的。文章
《等边三角形》说课稿
一 教材分析
等边三角形是八年级数学上册的内容,主要内容是等边三角形的性质定理和判定定理以及判定定理的推理证明和初步应用。是学生学习了轴对称图形和等腰三角形有关知识后学习的,本课学习不仅是学生进一步认识特殊的轴对称图形——等边三角形,更是今后证明角相等、线段相等的重要工具.要求学生探索并掌握等边三角形的性质、判定方法。
能力目标:建立初步的符号感,发展抽象思维。经过观察实验、猜想证明等数学活动,发展合情推理能力。
知识目标:
(1)了解等边三角形的概念。
(2情感目标:激发学生积极参与数学学习活动的兴趣,培养学生良好的创新意识。
重点:等边三角形判定定理证明。
难点:(1)等边三角形判定定理的发现和证明。
二、教法指导
根据“获得数学知识的过程比获得知识更为重要”的理念。我确定本课的教法为:探究发现法,即学生在老师的正确引导下,积极主动参与探索发现、归纳类比等数学活动获得知识。
三、学法指导:
“教学中让学生发现一个问题比解决一个问题更重要。”因而本课的学法指导是让学生在“观察——发现——论证——归纳”的学习过程中自主参与知识的形成的过程。从而培养学生探究问题,交流合作的良好品质。
四、教学过程设计
《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”为能更多地向学生提供从事数学活动的机会,我将本节课的教学过程设为以下四个环节:
创设情景导入新课 先借助多媒体展示一组图片。让学生观察实物图片,在众多图形中认识等腰三角形,辨认特殊的等腰三角形。揭示课题
2、合作交流探究新知:从实物抽象出等腰三角形、等边三角形的几何图形,并用课件展示图形。请同学思考下列问题:
问题1 图中的等腰三角形有什么特殊之处?—— 学生回答后自然引出等边三角形的定义。
问题2 等边三角形的三个内角有什么关系?让学生根据定义画一个等边三角形,用量角器度量三角形内角的角度进一步验证这个结论。
问题3 我们从边、角两方面描述等边三角形的性质,那么我们要判定一个三角形是等边三角形,从边、角如何判定?(提出问题后,应给学生自主探索、思考的时间)然后归纳等边三角形的判定方法1:三个角都相等的三角形是等边三角形。
问题4 你认为有一个角等60度的等腰三角形是等边三角形吗?你能证明你的结论吗?请把你的证明思路和同伴交流。(提出问题后,再次让学生合作交流,归纳:等腰三角形判定方法2,有一个角是60度,等腰三角形是等边三角形。
3、应用新知巩固提高1.例题解析;课外兴趣小组
(1)由学生们分组相互探讨,共同研究此题 的已知、猜想结论部分,然后由小组派代表阐述推理过程,教师板书,在板书的过程中,请其它小组的同学提出合理化建议,使此题证明过程条理更加清晰,从而培养他们语言表达能力。
(2)、课堂练习(然后我又设计了两种不同类型的练习题
第一部分设计了两道有关等边三角形推理的练习。目的是对等边三角形性质和判定进一步理解,并考察学生掌握的情况。
第二部分是生活中实际问题,来提升学生所学的知识,并加以综合练,使他们充分认识到数学实质是来源于生活并要服务于生活。五、总结反思拓展升华
此环节我是先让学生归纳本节所学,再通过图框的形式小结等边三角形和前阶段所学三角形之间的内在联系
九年级数学船有触礁危险吗说课稿
材料之一:说课稿及设计意图 课题:船有触礁危险吗
一、教材分析
(一)内容与地位
《船有触礁危险吗》这一节课是北师大版九年级下册第一章第4节的内容。教材内容分为四个部分:一是应用实例;二是随堂练习;三是拓展阅读;四是课后习题。课程题量大,实例多,编排突出了三角函数在生活中的实用性。在前面3节学习了三角函数的有关计算后,本课着重探索三角函数在实际生活中的应用问题,同时也为以后进一步学习三角函数的有关知识打下基础,在知识体系上起着承前启后的作用。
(二)教学目标
知识目标:能够把实际问题转化为数学问题,会用三角函数的知识解决实际问题。能力目标:培养数学建模思想,提高解决问题的能力,发展创新思维。
情感目标:让学生认识到数学模型可以有效地描述自然现象和社会现象,通过体验数学活动的探索与创造过程,感受活动带来的成功喜悦。
(三)教学重点、难点
教学重点:经历探索航船是否有触礁危险的过程,学会用三角函数知识解决生活中的实际问题。教学难点:如何建立数学模型,把实际问题转化成数学问题。
(四)教材处理
为了更好地实现教学目标,突出教学重点,突破教学难点,结合教材内容多,题量大以及我的学生基础比较扎实等情况,我做出这样的教材处理:重点研究教材中“船有触礁危险吗”的应用实例,适当选用教材中的部分习题作为堂上练习和作业,选用教材中的阅读材料作为课后阅读作业,培养学生的阅读习惯,增设创新编题环节,培养学生的数学思维能力和创新精神。
二、教法学法分析
(一)教法
1、创设情境法。通过播放视频、展示生活场景图片等方式,创设教学情境,激发学生学习兴趣。
2、设疑启发法。通过设置疑问,启学生思维,引导学生分析问题。
3、观察对比法。通过归纳类比,让学生由感性认识上升到理性认识。
(二)学法
1、自主探索法。学生通过独立思考、探索分析,提高数学分析能力。
2、合作学习法。学生通过小组讨论、交流等学习过程,加强合作交流,提高学习效果。
3、实践创新法。学生根据所学知识,联系实际,创新编题,增强创新实践能力。
三、教学过程
教学内容 设计意图
(一)呈现实例
先播放船航行的视频动画,引出课题:
海中有一个小岛A,该岛四周10海里内有暗礁.今有货轮由西向东航行,开始在A岛南偏西55°的B处,往东行驶20海里后,到达该岛的南偏西25°的C处,之后,货轮继续往东航行,你认为货轮继续向东航行途中会有触礁的危险吗? 本环节教学程序如下:
1、学生自主探索(让能力强的学生独立解题)
2、教师设疑启发(引导中层学生分析问题)
3、播放视频演示(帮助能力弱的学生画图)
4、学生讨论交流,找出方法(合作学习)
5、学生表达自己的见解(解题过程)
6、教师板书示范(完整解题,加深理解)
通过情景引入,激发学生形象思维,调动学习积极性。
让学生经历思考、分析、探索、交流等过程,把实际问题转化为数学问题,用方程的思想来建立数学模型解决问题,突出教学重点,突破教学难点。
(二)思维拓展
当这两个角是特殊角的时候,有没有更简单的解法呢?让学生小组讨论,简单总结。通过分析交流,渗透“由一般到特殊”的数学思想,拓展学生思维。
(三)巩固练习A组题(基础题)
如图,小明想测量塔CD的高度.他在A处仰望塔顶,测得仰角为30°,再往塔的方向前进50m至B处,测得仰角为60°,那么该塔有多高?(小明的身高忽略不计,结果精确到1m).B组题(提高题)
海底P处有一个周围10米范围都布满网钩的捕鱼工具,附近有一条小鱼正想从A处直线游往B处找它妈妈,如果AB的距离为20米,且∠PAB=45°,∠PBA=30°,那么这条小鱼在A处游到B处的过程中有危险吗?
让学生思考与小结:A、B组题有那些异同?
两个直角三角形位于公共直角边的同侧
两个直角三角形位于公共直角边的异侧
设计A、B两组难度不同的练习题,由浅入深,达到及时巩固、强化训练、引申思维、拓宽视野的目的。通过分析比较,总结出两种情形,渗透“归纳类比”的数学思想,同时为创新编题环节打下基础。
(四)创新编题
先让学生自主探索,从生活中寻找素材,自己编题,我巡视观察,如果发现学生找不到素材,就让学生看一组图片,引发学生对生活问题的思考,然后以小组为单位进行讨论编题。
要求:根据图片提供信息,或从实际生活中寻找适当情景,设计一个可以应用三角函数知识来解决的实际问题。设计数据要合理,问题要符合生活实际。
通过观看图片,引导学生学会从生活中发现数学,创造数学,应用数学,培养创新思维和应用意识。展示作品,让学生感受成功的喜悦。
(五)归纳总结
教师提问:
1、你能总结出应用数学知识解决实际问题的思维方式吗?
2、数学应用题的解题步骤有哪些? 审题 → 建模 → 求解 →检验 →作答
教师设置两个问题让学生进行思考、总结、交流、讨论,培养学生的数学归纳能力,提炼数学思想。
(六)布置作业
1、课本P24练习第1题,P26习题第2题、第4题。
2、课后阅读P25《读一读》,并预习下一课《测量物体的高度》。
3、设计测量学校旗杆高度的方案(小组合作、一周内完成)。设置书面、阅读和实践操作三类作业,达到巩固知识、培养阅读习惯和提高实践能力的目的。
四、板书设计
板书注重简洁明了,规范书写,突出本课重点,加强学法指导。
五、教学评价
学生填写评价表,对自己的学习过程进行全方位的自我评价,达到自我激励自我发展的目的(附:三水中学附属初中数学学习评价表)。教师撰写教学后记,总结教学效果,归纳好的做法,分析存在问题,寻找对策,在下阶段的教学中及时查缺补漏,不断改进教学方法,提高教学水平。
《算术平方根》说课稿
一、教材分析:
1、说课内容:人教版义务教育课程标准实验教材数学八年级上册第十三章《实数》第一节《平方根》第一课时:算术平方根。
2、教材的地位与作用
本课教材所处位置是本章的第一节,学生对数的认识要由有理数范围扩大到实数范围,而本课是学习无理数的前提,是学习实数的衔接与过渡,并且是以后学习实数运算的基础,对以后学习物理、化学等知识及实际问题的解决起着举足轻重的作用。
3、教学重点、难点
教学的重点:算术平方根概念的引入
教学的难点:根据算术平方根的概念正确求出非负数的算术平方根,解决实际问题,二、教学目标设计:
知识与技能:
1、说出正数a的算数平方根的定义,记住零的算术平方根;
2、会表示一个非负数的算术平方根;
3、知道非负数的算术平方根是非负数;
数学思考:通过学习算术平方根,建立初步的数感和符号感,发展抽象思维;
解决问题:通过学生的活动,体验解决问题方法的多样性,发展形象思维;在探究活动中,学会与人合作并能与他人交流思维的过程和探究的结果。
情感态度:通过学习算术平方根,认识数学与人类生活的密切联系;通过探究活动,锻炼克服困难的意志,建立自信心,提高学习热情。
三、教学分析:
1、学情分析:学生已掌握一些完全平方数,能说出一些完全平方数是哪些有理数的平方,同时对乘方运算也有一定的认识。
2.相应的教法:从一些完全平方数入手,引入概念,设置疑问,动手操作,再根据实践需要,教师从方法上指导师生合作探究、小组合作学习。
3.具体措施:精讲多练,教师担任设计活动、调节气氛、整理归纳的导演作用,学生是表现者、活动者、实践者。运用多媒体提高课堂容量,增加形象感与趣味性。通过声像并茂、动静皆宜的表现形式,生动、形象地展示教学内容,扩大学生视野,有效促进课堂教学的大容量、多信息和高效率,有利于学生开发智能、培养能力和提高素质,将教学引入了一个新的境界。
四、教学过程设计:
1、创设情境
引入新课
结合通过“神州七号载人飞船发射成功”引入新课,从而激发兴趣,增强学生的学习热情。
2、师生互动,学习新知
以已知正方形的面积,求边长。通过分析问题,引导学生归纳算术平方根的概念。在此基础上师通过“想一想”“试一试”“练一练加深学生对基础知识的理解,突出本课的重点,从而归纳出:负数没有算术平方根,算术平方根具有双重非负性。
3、动手操作 学以致用
从生活中提炼数学问题,引导学生在日常生活中,勤于实践,活学活用,善于用所求的知识解决一些身边的实际问题,体会数学的应用价值,通过拼大正方形的活动体验解决问题方法的多样性,发展形象思维,在探究活动中,学会与人合作,并能与他人交流思维的过程和探究的结果。
4、随堂检测 反思教学
通过小测试,及时检测学生对本课知识的掌握情况,提高学生的竞争意识,同时反思教学,查漏补缺.
5、提出疑问
留下伏笔
培养学生总结归纳知识的能力,反思教学,发现问题及时弥补.师设悬念,激发学习的动力。
说课综述:本节课的教学设计,力求为学生创造一种宽松、和谐、适合学生发展的学习环境,创设一种有利于思考、讨论、探索的学习氛围。本节教学充分发挥远教资源的便利,在例题的设计上、在思考题、拓展练习的编排上,在教学重难点的突破上,合理而有效的使用了远教资源,使数学教学与远教资源的运用形成新的整合模式。整个教学环节层层推进、步步深入,融基础性、灵活性、实践性、开放性于一体,注重调动学生思维的积极性,把知识的形成过程转化为学生质疑、猜想和验证的过程,坚持以学生为中心以操作为重要手段,以感悟为学习的目的,以发现为宗旨,重视学生的自主探索、亲身实践、合作交流学生在活动中理解掌握基本知识、技能和方法,使学生在获得知识的同时提高兴趣、增强信心、提高能力。
《单项式乘法》说课稿
各位评委,老师:
大家好!我说课的内容是华师版数学教材八年级上册第十三章第二节第一课单项式的乘法,下面我从教材分析、教学目标的确定、教学方法的选择、教学过程的设计等几个方面对本节课进行分析说明。
一、教材分析
本节课主要讲解的是单项式乘以单项式,是在前面学习了幂的运算性质的的基础上学习的,学生学习单项式的乘法并熟练地进行单项式的乘法运算是以后学习多项式乘法的关键,单项式的乘法综合用到了有理数的乘法、幂的运算性质,而后续的多项式乘以单项式、多项式乘以多项式都要转化为单项式的乘法,因此单项式的乘法将起到承前启后的作用,在整式乘法中占有独特的地位。
二、教学目标
1、使学生理解单项式乘法法则,会进行单项式的乘法运算。
2、通过单项式乘法法则的推导,发展学生的逻辑思维能力。
3、通过探索发现数学法则,提高学习数学的兴趣,树立学好数学的信心。
教学目标的第一条的确定是考虑到学生对单项式的概念,有理数乘法,幂的运算都较为熟练的基础再导出单项式乘法学生能达到理解的要求,同时由于单项式乘法的所有内容都包含在这一节课中,学生能按照一定的步骤完成单项式的乘法运算,据此确定了教学目标的第一条,而单项式乘法法则的导出过程是发展学生逻辑思维能力的极好素材,据此确定了教学目标的第二条。“兴趣是最好的老师。”只有学生对学习的内容感兴趣,才会产生强烈的求知欲望,自动地调动全部感官,积极主动地参与教与学的全过程。为此,设计教学目标的第三条。
三、教学重点、难点:
重点:掌握单项式乘法法则(要熟练的进行单项式的乘法运算,就要掌握和深刻理解单项式乘法的法则,对运算法则理解得越深,运算才能做得越好)难点:多种运算法则的综合运用
(这是因为单项式的乘法最终将转化为有理数的乘法、同底数幂相乘、幂的乘方、积的乘方等运算,对初学者来说,由于难于正确的区别各种运算及辨别运算所使用的法则,易于将各种法则混淆,造成运算结果错误。)
四、教学方法
本课在教学过程的不同阶段采用不同的教学方法,以适应学生学习的需要
1、在新课学习阶段:单项式乘法法则的推导过程中,采用了引导发现法,通过设计的问题,引导学生将需要解决的问题转化为用已有知识可以解决的问题,让学生既掌握了新的知识,又培养了学生探索问题的能力,充分体现了教师的主导作用和学生的主体地位,使学生始终处在观察思考之中。引导发现法的使用对实现教学目标的第二条、第三条都起了很重要的作用,突出了本节课的重点。
2、在新课学习的例题讲解阶段,采用了讲练结合法。对例题的学习,围绕问题进行,通过教师引导、学生观察、思考,寻求解决问题的方法,在解题的过程中展开思维。于此同时还进行多次有针对性的练习,分散难点,对学生分层训练,化解难点,并注意及时较正,改正学生在前面出现的错误,不至于影响后面的解题,为后面的学习扫清了障碍,通过例题的学习我给出了解题规范,注重对学生良好学习习惯的培养。
3、在归纳小结这个阶段师生共同总结,旨在训练学习方法的归纳,并形成相应的知识系统,进一步防范学生在运算中出现错误。
4、本节课的教学内容丰富,训练量大,利用投影仪,增大课堂容量,提高教学效率。
五、教学过程
本节课的教学过程主要包括以下五个环节:
1、创设问题情境
2、新课的学习
3、反馈练习4小结5作业布置。(1)创设问题情境
本节课通过一实际问题,引入课题,这样的目的是通过问题情境的创设,激发学生求知的欲望,通过问题
1、问题2的设置进而明确本节课的学习内容。
(2)新课学习
新课学习包括单项式乘法法则的推导和例题讲解。① 单项式乘法法则的推导
由于我的学生还不具备完全独立获取知识的能力,单项式乘法法则的推导必须在的指导下完成,为此我设计了两个引例。引例1中的两个问题就是引导学生进行观察、分析两个单项式如何相乘,使学生能运用乘法交换律、结合律和同底数幂的运算性质等知识探索单项式乘以单项式的运算法则。引例2让学生动手尝试,在尝试成功的基础上再提出问题3,由问题3引导学生进行归纳,最后得出单项式乘以单项式的法则。从而实现理解单项式乘法法则的这一教学目的。同时在上述过程中,让学生感受到在研究问题中所体现的“将未知转化为已知”的数学思想,通过尝试活动,使学生体会到从“特殊到一般”的认识规律,从而启迪了学生的思维,使学生亲身感受到数学知识的产生和发展过程,发展了学生的逻辑思维能力,较好地实现了教学目标,掌握了教学中的重点内容。
在此基础上,我又设计了一组简单的练习,由学生口答,强化对单项式的乘法法则的理解和运用,发现问题及时纠正。② 例题讲解
本着循序渐进的原则,对例题按照逐步增加运算种类进行了编排,使之由浅入深,由易到难,由单一到综合。我总共设计了三道例题。
例1是单项式乘以单项式的计算,在讲解此题时关键是让学生按照单项式乘法的法则进行运算。例2是单项式的乘方与乘法的混合运算,在例2后我又设计了一问题,此问题的设计主要是引导学生观察,根据题目特征,辩认出它们是哪种运算,应选用什么样的法则进行计算,使学生逐渐分清运算类型,正确运用法则,以实现难点的分散和突破,并提高学生运算的熟练程度。例3是单项式的乘法在实际生活中的应用,通过例3使学生认识到数学在日常生活和生产中应用的广泛性,从而逐步培养学生应用数学的意识。
在例题的教学过程中除学生口算计算过程,教师要给出规范的解题过程,并要求学生按规范的格式进行练习和作业。
在每道题完成以后,都配有与例题相近的巩固练习,由学生板演和分组练习,发现问题及时纠正,以实现“会进行单项式的乘法计算”这一教学目的。(3)反馈练习
根据本节课的教学目的我又是设计了反馈练习,以了解学生对本节课所学的内容的掌握情况,并再一次对出现的问题进行矫正,使学生加强了对单项式的乘法运算的熟练程度。(4)小结
本节课的小结由师生共同完成,先提问,学生回答,然后通过我的归纳形成知识系统。通过小结,使学生明确单项式的乘法最终将将转化为有理数的乘法、同底数幂相乘、幂的乘方、积的乘方等运算,引起学生对单项式乘法中系数与指数运算易混淆等问题的重视。(5)布置作业
数量不多的作业,既能让学生能对本节知识掌握得更加牢固,又能有充裕的时间拓展自己的视野。
六、教学评价、反馈措施
本节课采用了不同的反馈手段和较多的反馈练习。
1、设计分段练习。例如练习一„„练习四每次练习主要解决一重点问题,同时使教师及时了解学生对数学知识的掌握情况,发现问题及时矫正,扫清后续学习障碍。
2、采用不同的练习方法。如口答、笔答、板演、快速抢答等,以增加反馈层面。通过练习使大多数学生的学习情况都能及时反馈给教师,使教师对教学情况心中有数。
3、及时矫正。对每次练习情况进行讲评,对正确的解答及时给予肯定,发现问题及时讲评。这就是我对本节课总的设计过程,具体过程体现在我的课堂教学之中,谢谢大家!
如果两直线平行》说课稿
各位评委老师大家下午好,我是来自北大附中成都实验学校的宋威,今天我要说课的内容是《如果两直线平行》。接下来我将从教材分析、教学目标分析、教学重难点分析、教学方法、学法指导、教学过程、教学评价设计等七个方面进行阐述。
一、教材分析
1、教材的地位和作用
《如果两直线平行》是北师大版八年级数学下册第六章第4小节的内容,是在学生学习了两直线平行的判定定理以后,对两直线平行的性质定理的一个认知,是对以后进行复杂的几何证明题提供必要的知识准备。本节课不仅有着广泛的应用,而且起着承前启后的作用。2学情分析
从心理特征来说,初中阶段的学生逻辑思维能力及空间想象能力从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性。
从认知状况来说,学生在此之前已经学习了两直线平行的判定,对两直线平行已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于证明的过程的理解,(由于其逻辑思维能力要求较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
二、教学目标分析
1、知识与技能目标
会根据“两直线平行,同位角相等”证明“两直线平行,内错角相等”和“两直线平行,同旁内角互补”,并能简单地应用这些结论。能理解并掌握证明的一般步骤.2能力目标
经历探索平行线的性质定理的证明.培养学生的观察、分析和进行简单的逻辑推理能力.结合图形用符号语言来表示平行线的三条性质的条件和结论.并能总结归纳出证明的一般步骤.3情感态度目标
通过师生的共同活动,培养学生的逻辑思维能力,熟悉综合法证明的格式.进而激发学生学习的积极主动性.三、教学重难点分析 教学重点:
因为学生刚开始接触严谨的数学证明,并且以后会大量运用证明的方法与格式,所以我确定本节课的教学重点为证明的步骤和格式.教学难点:
在以往的经验中知道,学生在接触文字语言表述的证明题的时候,对命题的条件、结论都比较模糊,不能准确确定已经条件及求证,因此我觉得本节课的难点是让学生理解命题、分清其条件和结论.正确对照命题画出图形.写出已知、求证.四、教学方法
鉴于教材特点及初二学生的年龄特点、心理特征及认知水平,本节课设想使用启发式问题教学法和类比教学法。用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有的知识联系,减少学生对新知识的接受困难,给学生充分的自主探究实践。通过教师引导,启发调动学生学习的积极性,让学生课堂上多活动,多观察,主动参与到整个教学中来。组织学生参与“探究——讨论——交流——总结”的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,草组哦,观察,思考,联系等师生共同活动启发学生,让每个学生动手动口动眼动脑,培养学生直觉思维能力。
五、学法指导
本课堂立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、类比、归纳的思想方法。在类比和讨论中让学生在“做中学”,提高学生利用已知知识去主动获取新知识的能力。因此在课堂上采用积极引导学生主动参与,合作交流的方法组织教学,是学生真正陈我给教学的主体,土灰参与的乐趣,成功的喜悦。感知数学的奇妙。
六、教学过程设计
1、巧设现实情境,引入新课 引入:上节课我们通过推理得证了平行线的判定定理,知道它们的条件是角的大小关系.其结论是两直线平行.要证明两直线平行,有哪些方法?如果我们把平行线的判定定理的条件和结论互换之后得到的命题是真命题吗?
设计意图:一方面通过回顾,巩固上节课的教学内容,并为本节课做好知识方面的准备。另一方面也为引出本节课的课题。同时也是为了培养学生发现问题,提出问题的能力,激发学生运用旧知探求新知的欲望。
2、讲授新课
在前一节课中,我们知道:“两条平行线被第三条直线所截,同位角相等”这个真命题是公理,这一公理可以简单说成:
两直线平行,同位角相等.下面大家分组讨论议一议:利用这个公理,你能证明那些熟悉的结论? 引导学生对两直线平行的性质定理进行证明。设计意图:(1)培养学生运用已有知识解决新问题的能力;(2)培养学生自主探究问题的习惯;(3)让学生体验探究如何运用该公理对性质定理进行证明,以及体会证明的一般步骤。
3、探究发现
引导学生通过对以上两个命题的证明,小结:通过证明证实了这个命题是真命题,我们可以把它称为定理.即平行线的性质定理.这样就可以把它作为今后证明的依据.注意:
(1)在课本中曾指出:随堂练习和习题中用黑体字给出的结论也可以作为今后证明的依据.所以像“对顶角相等”就可以直接应用.(2)这个性质定理的条件是:直线平行.结论是:角的关系.在应用时一定要注意.设计意图:通过引导小结,是学生明确我们数学中的定理,以及解决本节课的教学难点,分清命题的条件和结论。
4、总结规律
证明的一般步骤:
第一步:根据题意,画出图形.第二步:根据条件、结论,结合图形,写出已知、求证.第三步,经过分析,找出由已知推出求证的途径,写出证明过程.实际意图:培养学生观察发现,归纳总结的能力。
5、补充练习
设计意图:使学生通过补充练习,巩固已学知识。通过补充练习2,使学生能够发现一个数学题可以有几种不同的解法。培养其实际运用能力。
6、课时小结
7、这节课我们主要研究了平行线的性质定理的证明,总结归纳了证明的一般步骤.1.平行线的性质:
公理:两直线平行,同位角相等 定理:两直线平行,内错角相等 定理:两直线平行,同旁内角互补 2.证明的一般步骤
(1)根据题意,画出图形.(2)根据条件、结论,结合图形,写出已知、求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程.设计意图:对本节课知识的一个系统回顾,使学生进一步理解记忆平行线的性质及证明的一般步骤。
七、教学评价设计:
课标指出:相对于结果,过程更能反映每个学生的发展变化,体现出学生成长的历程。因此,数学学习的评价既要重视结果,也要重视过程。结合“课标”对数学学习的评价建议,对本节课的教学我主要通过以下几种方式进行:
1、通过学生的自主探究、合作交流、以及与学生的问答交流,发现其思维过程,在鼓励的基础上,纠正偏差,并对其进行定性的评价。
2、在学生讨论、交流、合作时,教师通过观察,就个别或整体参与活动的态度和表现做出评价,以此来调动学生参与活动的积极性。
3、通过应用来检验学生学习的效果,并在讲评中,肯定优点,指出不足。
4、通过作业,反馈信息,再次对本节课做出评价,以便查漏补缺。
以上是我对本节课的一些说明,不妥之处,敬请各位评委老师批评指正。谢谢﹗
初中数学说课稿模版
各位评委:早上好
今天我说课的题目是
,这节课所选用的教材为北师大版义务教育课程标准八年级
教科书。
一、教材分析
1、教材的地位和作用
本节教材是初中数学____
年级
册的内容,是初中数学的重要内容之一。一方面,这是在学习了____ 的基础上,对____的进一步深入和拓展;另一方面,又为学习____ 等
知识奠定了基础,是进一步研究____的工具性内容。因此本节课在教材中具有承上启下的作用。
2、学情分析
学生在此之前已经学习了____,对____已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于____的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
3、教学重难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为: 难点确定为:
二、教学目标分析
根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标: 1.知识与技能目标: 2.过程与方法目标:
3.情感态度与价值目标:
三、教学方法分析
本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
四、教学过程分析
为有序、有效地进行教学,本节课我主要安排以下教学环节:(1)复习就知,温故知新
设计意图:建构主义主张教学应从学生已有的知识体系出发,____是本节课深入研究____的认知基础,这样设计有利于引导学生顺利地进入学习情境。(2)创设情境,提出问题
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。
通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———(3)发现问题,探求新知
设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过
观察分析、独立思考、小组交流
等活动,引导学生归纳。(4)分析思考,加深理解
设计意图:数学教学论指出,数学概念(定理等)
要明确其 内涵和外延(条件、结论、应用范围等),通过对
定义的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第____环节。(5)强化训练,巩固双基
设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1„„例2„„,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。(6)小结归纳,拓展深化
小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体地位,让学生畅谈本节课的收获.(7)当堂检测
对比反馈(8)布置作业,提高升华
以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。以上是我对本节课的见解,不足之处敬请各位评委谅解!
谢谢.全等三角形说课稿 尊敬的各位评委老师,大家好!
今天我说课的题目是人教版数学八年级上册第十一章第1节《全等三角形》.下面,我将从教材分析,教学方法,教学过程等几个方面对本课的设计进行说明
一、说教材
全等三角形是八年级上册人教版数学教材第十一章第一节的教学内容。本节课是“全等三角形”的开篇,是全等三角形全等的条件的基础,也是进一步学习其它图形的基础之一。本章是在学过了线段、角、相交线、平行线以及三角形的有关知识以及在七年级教材中的一些简单的说理内容之后来学习,为学习全等三角形奠定了基础。通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。二.教学的目标和要求:
本节教材在编排上意在通过全等图案引入新课教学,在新课教学中又由直观演示图形的平移、翻折、旋转过渡,学生容易接受。根据课程标准,确定本节课的目标。1.知识目标:(1)理解全等三角形的概念。
(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;(3)能熟练找出两个全等三角形的对应角,对应边.2.能力目标:(1)通过全等三角形有关概念的学习,提高学生数学概念的辨析能力;(2)通过找出全等三角形的对应元素,培养学生的识图能力.3.情感目标:(1)通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神;(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.三.教学重点:
探究全等三角形的性质。四.教学难点:
正确判断两个全等三角形的对应边,对应角。
五、说教法
教学生观察、归纳的方法
为了适应学生的认识思维发展水平,有序的引导学生观察、分析,得出结论,让学生通过观察——认识——实践——再认识,完成认识上的飞跃。
六、说学法
学生在学习过程中可能难于理解全等三角形的对应顶点、对应边、对应角。教师要做到教法与指导学习的学法有机统一。学生用学具操作体会,最终完成学习过程,达到教学目标。
1、看听结合,形成表象。看教师演示,听教师讲解,形成表象。
2、手脑结合,自主探究,学生为主体,充分使用学具,动手操作体会全等三角形。
六、教学用具: 剪刀,直尺,三角板
七、教学过程:
首先,展示教材上的图案以及制作的一些图案,引导学生读图,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。直观感知全等形的概念。再让学生思考发现生活中有哪些全等形。
然后,教师安排学生自己动手在一张白纸上任意画上一个三角形,再把两张纸小心的重叠在一起,并固定,然后小心地用剪刀剪出两个三角形,让学生通过动手实践合作交流,直观感知全等三角形的概念,并给出全等三角形的表示方法。
然后,教师随即演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的概念。从实践中感知:一个图形经过平移,翻折,旋转,位置变化了,但形状,大小都没有变。,即平移,翻折,旋转前后的图形全等。
然后,让学生给刚才剪出的两个三角形标上字母,并任意放置,与同桌交流,其一:任何时候两个三角形能够完全重合在一起吗?其二:此时它们的顶点,边,角,有什么特点?学生通过操作交流,从而更深刻理解对应角,对应边,对应点的概念以及关系。
再次,通过学生对全等三角形纸板的观察,小组讨论,合作交流,观察对应边、对应角有何关系,从而得出全等三角形的性质。
其次,对学生进行随堂练习,深化知识。练习内容为两个全等三角形,任意摆放,找出它的对应边,对应角,对应顶点。并用符与表示出两个全等三角形。
最后,教师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质解决一些简单的实际问题。
八、作业布置
关注三角形的外角》说课稿
一、设计理念
利用课本例题进行一题多变、一题多解,在教学过程中,启发学生根据习题间的联系进行分组讨论,引导学生进行思考,由浅到深,由易到难,让学生在已有的知识水平上经历探究、思索的过程,诱导他们正确解题、运用多种方法解题,拓展他们的思维,提高想象能力。
为了完成这个设计理念,在本节课的教学方法上采用启发、诱导法。正所谓“授人以鱼,不如授人以渔”,学生在已有经验的基础上,要在自己的思考过程中得到进步,加深对知识的理解,就必须在教师的引导下,通过同学间的互相探讨、启发,把课堂上所学的内容完全转化为他们自己的知识。
二、教学内容与教材分析
本节课位于《义务教育课程标准实验教科书²数学》(北师大版)八年级(下)第六章第六节。其教学内容为三角形内角和定理的推论,即:三角形的一个外角等于和它不相邻的两个内角的和,三角形的一个外角大于任何一个和它不相邻的内角。它是对图形进一步认识的重要内容之一,也是九年级数学《证明
(二)》《证明
(三)》中用以研究角相等的重要方法之一。作为八年级下最后一节新课的内容,本节课起着承上启下的作用。
三、教学重点和难点
教学重点:三角形内角和定理的推论。
教学难点:三角形的外角、三角形内角和定理的推论的应用。
四、教学目标
1、知识技能目标:
三角形的外角的概念及三角形内角和定理的两个推论。
2、情感体验目标:
通过探索三角形内角和定理的推论的活动,培养学生的论证能力,拓宽他们的解题思路,从而使他们灵活应用所学知识。
3、创新性目标:
在体验一题多变、一题多解的过程中发散思维,提高空间想象能力。
五、学情分析与学法选择
1、学情分析:
我班的学生大部分为郊区的孩子,作为八年级的学生,他们的学习能力有限,家庭的学习氛围更有限,我要做到的就是让他们在短暂的课堂45分钟内掌握本节课的内容,并学会融汇贯通。到了讲述本节课内容的时候,也已临近期末,他们此时不仅要掌握基础知识,更重要的是学习解题的方式方法,注意归纳总结,以点带面,不断的充实和完善自己的知识水平。这样做不仅能使学生掌握新课的内容,更能使他们在学习新知识的同时复习旧的知识,保持知识的连贯性。
2、学法选择:
(1)合作学习法:让学生分组讨论,研究问题,合作交流,使他们在学习中学会取长补短,共同进步,不断拓展和完善自我认知。
(2)归纳总结法:引导学生从解题过程中总结经验,寻找规律、联系点,从而达到灵活应用。
六、教学过程设计 教学过程设计
设计意图
(一)复习并引入新课(7分钟)
1、复习三角形内角和定理。
2、向学生介绍三角形的外角,并由图形中的∠1与∠2让学生识别它们的不同点与相同点,并判断哪个角是三角形的外角。此时进一步问:
(1)为讲述三角形外角的概念铺平道路。(2)引导学生进行观察,通过对比,使学生
教学过程设计
设计意图
三角形的外角与内角有几种关系?(相邻、不相邻)
3、课本例题P212 及改造
(1)∠ACD是△ABC的一个外角,它与图中的其它角有什么关系?能证明你的结论吗?(2)∠ACD大于∠ACB吗?为什么?
(3)∠ACD=∠B+∠ACB吗?为什么?
进一步理解三角形的外角与内角的两种关系:与相邻的内角互补,与不相邻的内角满足三角形内角和定理的两个推论。
推论一:三角形的一个外角等于和它不相邻的两个内角的和。推论二:三角形的一个外角大于任何一个和它不相邻的内角。
(3)在讲述外角知识时层层递进,为学生学习三角形内角和定理的两个推论扫清障碍。
(二)一题多变、一题多解(33分钟)
1、已知:∠B=50°,∠CFD=80°,∠D=20°
求:∠A的度数。(8分钟)
(1)利用上一题的图形,添加一条线段DE,即:过点D作线段DE与AB、AC分别交于E、F。
(2)本题考查了三角形内角和定理的应用及推论1。
(3)本题可采用一题多解。在学生分组讨论的情况下,利用△ABC、教学过程设计
设计意图
△ BDE、△CDF各内角与外角的关系进行多种方法求解,满足学生的求知欲望,提高学生的思维能力。
2、观察图形,回答问题:(10分钟)(1)∠AED是的外角
∠ACD是的外角(2)∠AED =
+
∠ACD =
+
(3)∠AED >
∠ACD >
(4)∠AFD是
的外角(5)∠AFD =
+
(6)∠AFD >
(7)∠AFD =
+
+
(1)利用上一题的图形,连结AD。
(2)在本题中抛出一连串的小问题,请学生轮流回答,让学生有表现的机会,提问面广。
(3)题目设计由易到难,由简单到复杂,相当于提供两种方法引导学生得出第(7)题的结论,此结论又为下一题作铺垫。
(4)反复用到三角形内角和定理的两个推论,强化学生对推论的记忆与应用。
A
F
B
D
教学过程设计
(1)为了使学生将要回落的学习热情得以提高,去掉上一题图形中的线段EF、FC,使之成为课本P215的习题3。设计意图
3、回答下列问题:(与上一题作对比,聪明的你有什么发现?)(15分钟)(1)求证:∠AFD=∠B+∠BAF+∠BDF。
(2)若∠B=65°,AF平分∠BAD,DF平分∠BDA,求∠AFD的大小。(3)若∠B=n°,其他条件与(2)相同,求∠AFD的大小。
(2)在第(2)题的条件中给出两条角平分线AF与DF,启发学生与上一题进行比较思考,也可利用辅助线解题。
(3)第(3)题是对第(2)题的拓展,在完成这道题的过程中,让学生任意设定一个∠B的值,由教师快速回答,激发学生的求知欲望,调动学生的课堂情绪,活跃课堂气氛,让学生在探索的活动过程中,体会由特殊到一般的过程,培养他们分析和综合归纳的能力。
(三)课后思考题:课本P215试一试
(2分钟)
A
F
B
D
如图,求证:
(1)∠AFD>∠B(2)∠AFD=∠B+∠BAF+∠BDF。
(3)如果点F在线段AD的另一侧,结论会怎样? 教学过程设计
(1)把上一题图形中的线段AD去掉,演变为课本中的试一试。(2)作为课后作业让学生进行思考,第(1)(2)题可对本节课的内容起到复习的作用,第(3)题考查到四边形内角和,起到对知识的延伸作用。设计意图
(四)课堂总结(3分钟)
1、本节课主要研究了三角形内角和定理的推论。
2、这两个推论在什么情况下可以得到应用? 再次复习三角形内角和定理的两个推论,引导学生自己作总结,学会把握课堂的重难点,达到对知识的综合整理和灵活应用。
逆命题与逆定理(3角平分线)说课稿
下面我从教材分析、教法学法、教学过程、板书设计说明几个方面谈谈对本节课的理解。
一、教材分析
1、教材的地位和作用
角平分线的概念在第一册的教材中已介绍过,它的性质很重要,在几何里证 明线段或角相等时常常用到它们,同时在作图中也运用广泛,刚学过的运用HL 定理来证明直角三角形全等的方法为证明角平分线的性质定理和逆定理创造了条件。性质定理和它的逆定理为证线段相等、角相等,开辟了新的途径,简化了证明过程。
2、重点与难点分析
本节内容的重点是角平分线的性质定理,逆定理及它们的应用。
本节内容的难点是:a、角平分线定理和逆定理的应用;b、这两个定理的区
别;c、学生对证明两个三角形全等的问题已经很熟悉了,所以证题时,不习惯直接应用定理,仍然去找全等三角形,结果相当于重新证明了一次定理。
3、教学目标
(一)知识目标:
(1)掌握角平分线的性质定理和逆定理;
(2)能够运用性质定理和逆定理证明两个角相等或两条线段相等;
(二)能力目标:
(1)通过定理的推导,培养学生的归纳能力
(2)通过定理的初步应用,培养学生的逻辑推理能力及创新的能力.(三)情感目标:
(1)通过学生的主动探索让学生体验获取数学知识的成就感;
(2)通过对角平分线的进一步认识,渗透运用不同的观点,从不同的侧面认识事物的辩证思维方法。
二、教法学法
学生是学习的主体,只的学生真正融入到课堂教学中,学生才会深切地感受到数学带给他们的乐趣。这节课,我主要采用学生自己动手实践,观察,组织讨论等方法,多媒体引导,以学生为主,给学生提供足够的活动时间,充分发挥他们的个性,让学生在实践中感受知识的力量,通过观察,让学生在观察中发现,在发现中探索,在探索中创新。充分发挥他们的主观能动性,最大限度的发挥他们的创造力。让学生成为课堂的主人。教师只是在学生的思维受阻的情况下进行适时的引导。
三、教学过程
1、通过生活中的实例,创设情境
通过实例1的思考与探索,让学生复习了点到直线的距离这一概念。通过实例2,给学生对角平分线有了一个初步的认识。
这一阶段的学习起到承上启下的作用,这两个例题的结合,为学生探索发现角平分线打下基础。
2、试一试
(1)作一个具体画图的练习:已知角画出它的角平分线。
这样做让学生在动手画图的过程中对角平分线有一个很直观的认识(2)折纸练习。
让学生在动手实践的过程中发现规律,体验获取知识的成就感。
3、观察
这一环节特别要注意的是,学生观察得出结论并不难,但要用准确的文字叙述出来比较难。教师一定要引导学生自己探索得出结论,要让每一个学生都能参与进来,都有收获。教师在讲解这一节知识时,一定要向学生渗透互逆的思想。
强调说明:角平分线的性质定理是用来证线段的相等,逆定理是用来证角相等即角平分线的。
4、例题
进行例题的讲解,引导学生分析,让学生熟悉定理的运用,在此过程中,要注意的是一定要严格要求学生的做证明题的书写格式。
5、阶梯性的练习
要注意引导学生分析问题、解决问题的思考方法,要让他们习惯于直接运用定理解决问题,而不是又回到运用全等来解决问题。
6、小结
教师引导学生对本节课的知识进行回顾,可以让学生站在一个新的高度来体会性质和判定的作用。
四、板书设计
角
平
分
线
角平分线的性质定理
例题
练习逆定理
以上是我对本节课的理解,不足之处请各位老师多多指教
探索相似三角形的条件
(一)》说课稿
尊敬的各位老师: 大家好!
今天我说课的题目是义务教育数学课程标准实验教材八年级下册第四章第六节的《探索相似三角形的条件
(一)》这一课内容。下面我分五部分来汇报我这节课的教学设计,这就是“教材分析“、“教学”、“学法”、“教学过程”、“教学评价”。
一、教材分析:
(一)教材的地位和作用:
“探索相似三角形的条件”是在学习了相似图形及相似三角形的概念等知识后,单独研究如何探索相似三角形的条件的一课,本课是判定三角形相似的起始课,是本章的重点之一。既是前面知识的延伸和全等三角形性质的拓展,也是今后证明线段成比例,求几何图形和研究相似多边形性质的重要工具,它在工农业生 产、土木建筑、测量绘图和日常生活中有着广泛的应用。比如我们在测量水塔、高楼大厦的高度时,都要利用相似三角形的判定来解决有关问题。在本课中,学生学习的主要内容是三角形相似的判定定理1及其初步应用,这就为下节课学习相似三角形的判定条件
(二)(三)打下好的基础。通过本节课的学习,还可培养学生猜想、实验、证明、探索等能力,对掌握观察、比较、类比、转化等思想有重要作用。因此,这节课在本章中有着举足轻重的地位。
(二)教学目标:
根据《新课程标准纲要》对这部分内容的要求及本课的特点,结合学生的实情,我本节课的教学目标确定为: l
知识目标:①掌握三角形相似的判定方法
(一)。②会用相似三角形的判定方法
(一)来判断及计算。
l
能力目标:①通过亲身体会得出相似三角形的判定方法
(一),培养学
生的动手操作能力。
②利用相似三角形的判定方法
(一)进行有关判断及计算,训练学生的灵活运用能力。l
情感目标:通过实物演示和电化教学手段,把抽象问题直观化,从而发
展学生的合情推理能力,进一步培养逻辑推理能力。
(三)教学重点与难点
这节课的重点是三角形相似的判定定理1及应用。难点是三角形相似的判定方法1的运用。
突破重难点的方法是充分运用多媒体教学手段,设置问题、探究讨论、例题讲解、课后小结直至布置作业,突出主线,层层深入,逐一突破重难点。
二、教学方法的选择与应用
根据本节课的教学目标、教材内容以及学生的认知特点,教学上采用以引导发现法为主,并以讨论法、演示法相结合,设计“实验——观察——讨论”的 教学方法,意在帮助学生通过直观情景观察和自己动手实验,从自己的实践中获取知识,并通过讨论来深化对知识的理解。本节课采用了多媒体辅助教学,一方面能够直观、生动地反映图形,增加课堂的容量,同时有利于突出重点、分散难点,增强教学条理性,形象性,更好地提高课堂效率。
三、学法
《数学新课程标准纲要》指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。为了充分体现 《数学新课程标准纲要》的要求,培养学生的动手实践能力,逻辑推理能力,积累丰富的数学活动经验,这节课主要采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程,在教学过程展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等数学思想方法。
四、教学设计:
根据《数学课程标准》中“要引导学生投入到探索与交流的学习活动中”的教学要求,本节课教学过程我是这样设计的。
(一)、点燃思维火花(趣味题目引入,配以动画演示)
1、为了测量一个大峡谷的宽度,地质勘探人员在对面的岩石上观察到一个特别明显的标志点O,再在他们所在的这一侧选点A、B、D,使得 AB┷AO,DB┷AB,然后确定DO和AB的交点C,测得AC=120m,CB=60m,BD=50m,你能帮助他们算出峡谷的宽度AO吗?
(设计意图:以趣味性题目引入,从而引起悬念,激发学生的学习兴趣。)假如利用相似三角形原理可不可以解决这个问题呢?那么如何判定这两个三角形相似呢?这就是我们这节课要学习的内容。(引出课题)
(二)、动手实验探索(分小组研究讨论)
还记得全等三角形的判定方法吗?那么判定相似三角形要不要这么多条件呢?假如当条件只有角这个元素时,能不能判定两个三角形相似呢?
1、若有一个角对应相等,能否判定两个三角形相似?(投示)(1)每人画一个△ABC,使∠BAC=60°,与同伴交流,两个三角形是否相似。结论:只有一个角对应相等,不能判定两个三角形相似。
2、若有两个角对应相等,能否判定两个三角形相似?
(2)一人画△ABC,另一人画△A′B′C′,使∠A与∠A′都等于60°,∠B与∠B′都等于45°,比较∠C和∠C′是否相等,测量三边长度,探求是否相等。改变角的度数再试一次。(用三个小组测量结果)在此过程中,给学生充分的时间画图、观察、比较、交流,最后通过活动让学生用语言概括总结。引出判定条件1:(学生总结,教师纠正)
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似. 可简单说成:两角对应相等,两三角形相似.
组织学生进行讨论,在此基础上教师引导学生从对应边和对应角入手进行观察。教师在多媒体几何画板上直观地演示。在教学中,通过以趣味性题目引入,从而引起悬念,引起学生的注意,激发他们的求知欲,让每个学生都积极参与。
通过学生自己探索、讨论,由学生自己得出结论:如果两个三角形中有两对角对应相等,那么这两个三角形相似。即两角对应相等的两个三角形相似。这样,从学生自己动力手操作、实验所得出的判定条件,让学生产生自豪感及满足感,培养学生的自信心及逻辑推理能力。
(三)、例题讲解:
例:如图,D、E分别是△ABC这AB、BC上的点,DE∥BC,(1)
图中有哪些相等的角?
(2)
找出图中的相似三角形,并说明理由。
(3)
写出三组成比例的线段。
分析: 本例意在渗透平行与相似的内在联系,同时,本例有意识地渗透了简单逻辑推理的思想,承前启后。解:(1)
DE//BC
∠ADE 与∠ABC是同位角
∠ADE =∠ABC,∠AED = ∠ACB
∠AED与∠ACB是同位角
(2)△ADE∽△ABC 理由是:
∠ADE =∠ABC
∠AED = ∠ACB
△ADE∽△ABC(3)△ADE∽△ABC
= =
想一想:在上面的例题的条件下,= 吗? = 吗?(学生画图,交流,老师用多媒体演示出来。)解:由DE//BC得,= 根据比例基本性质得: = 即 =
两边同时减去1,得 —1= —1 即 =
课后思考:若DE与BC不平行,它们还可能相似吗?说明理由。
(设计意图:分三个问题显示,由易到难,新旧知识相结合,分散难点,让学生明白判定方法
(一)在实际问题中的应用,最后设置一道课后思考与讨论,使题目进一步延伸与拓展,培养学生的发散思维。)
(三)随堂练习: 判断题:(让学生判断,老师用几何画板演示)
(1)
有一个锐角对应相等的两个直角三角形相似。
()(2)
所有的直角三角形都相似。
()(3)
有一个角相等的两个等腰三角形相似。
()(4)
顶角相等的两个等腰三角形相似。
()(5)
所有的等边三角形都相似。
()解:(1)对。有一个锐角对应相等的两个直角三角形相似。
因为是两个直角三角形,所以有一对直角相等,再加上一对锐角相等,根据判定方法1,得,这两个三角形相似。(2)错。
(3)错。有一个角相等的两个等腰三角形不相似。
例:一个顶角为30°的等腰三角形与一个底角等于30°的等腰三角形就不相似.(4)对。顶角相等的两个等腰三角形相似。
因为两个等腰三角形的顶角相等,所以它们的四个底角都相等,因此有三对角对应相等,所以这两个三角形相似。
(5)对。因为等边三角形的三个角都是60°。
(设计意图:使学生加深对判定方法
(一)的理解。)
(四)补充练习:
(1)已知:△ABC和△A′B′C′中,∠B=∠B′=75°,∠C=50°,∠A′=55°,问:这两个三角形相似吗?为什么? 解:(1)在△ABC中,∵∠B=75°,∠C=50°
∴∠A=55°
∴∠B=∠B′,∠A=∠A′
∴△ABC∽△A′B′C′
(2)已知△ABC和△A′B′C′中,∠B=∠B′=75°,∠A=50°,∠A′=55°,问:这两个三角形相似吗?为什么? 解:(1)在△ABC中,∵∠B=75°,∠A=50°
∴∠C=55°
而在△A′B′C′中,∵∠B′=75°,∠A′=55°
∴∠C′=50°
∴根据判定方法
(一),△ABC和△A′B′C′不相似。
(设计意图:通过让学生比较这两道题中条件的异同,进一步让学生理解判定方法
(一)的运用)
现再请学生回头看看引入那道题,利用判定方法
(一)让学生自己去发现两个三角形相似,然后再运用相似三角形的对应边成比例来解这道题,这样一来可以加深对判定方法
(一)的理解,二来可以增强学生的自信心,培养学生分析问题、解决问题的能力。
通过系列问题的设置和解决,旨在降低难度,使难度点予以突破,同时使学生在获得新知的情况下,体验成功,从而增加对数学的兴趣。(五)、总结提高: 提问:“通过这节课的学习有什么收获?”
(同桌对讲,畅谈自己的感受和体会,学生发言,老师总结与归纳)
(设计意图:让学生自己小结,活跃了课堂气氛,做到全员参与,理清了知识脉络,强化了重点,培养了学生口头表达能力。)
(六)、分层作业:(必做题):P119的习题4.7的1、2(选做题):
如图,已知D是△ABC的边AB上任一点,DF∥AC交BC于E.AF交BC于M,且∠B=∠F,△AMC∽△BDE吗?请说明理由。
(设计意图:让学生巩固所学内容并进行自我检验与评价,既面向全体学生,又因材施教,照顾到学有余力的学生。)
l
新的探索:(提高题)
(4)如图梯形ABCD中,AD∥BC,∠ABC=90°,对角线BD⊥DC,求证:△ABD∽△DCB.
分析:由已知条件不可能推出有关比例式时,只能找相等的角.用定理“两角对应相等,两三角形相似”时,要注意图形中的公共角、对顶角、直角、两直线平行时的同位角、内错角或等角的余角、补角等等.
(设计意图:旨在体现因材施教、分层教学的原则。同时上述问题的进一步伸展,给学生展示了一个思维发散的平台。而且这也为下节课学习证明作了必要的铺垫。)
四、教学评价: 为了实现教学目标,优化教学过程,提高课堂效率,在教学上组织学生参与“创设问题——实验——观察——讨论——总结”这符合现代教学理论的观点,把素质教育落到实处。另一方面对学生暴露思维过程,拓展性和开放性题目的设计编排,培养了学生的直觉思维能力和发散思维能力。五分钟小测:
1、C 如图,AB,CD相交于E,ΔAEC∽ΔDEB,∠A与∠D是对应角,则其余的对应角为______,对应边的比例式为_________
A E B D
2、A
如图: ∠BAC = ∠ADB,图中有相似三角形吗?
为什么?
D C B
3、已知ΔABC,P是AB上一点,连接CP,满足什么条件时,ΔACP与ΔABC相似.
《三角形内角和定理的证明》说课稿
一、说教材
北师版八年级下册第六章《证明一》,是在前面对几何结论已经有了一定的直观认识的基础上编排的,而前几册对有关几何结论都曾进行过简单的说理,本章内容则严格给出这些结论的证明,并要求学生掌握证明的一般步骤及书写表达格式。《三角形内角和定理的证明》则是对前几节证明的自然延续。此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础。
二、说目标
1.知识目标:掌握“三角形内角和定理的证明”及其简单的应用。
2.能力目标培养学生的数学语言表达、逻辑推理、问题思考、组内及组间交流、动手实践等能力。3.情感、态度、价值观:
在良好的师生关系下,建立轻松的学习氛围,使学生体会获得知识的成就感及与他人合作的乐趣,以增强其数学学习的自信心。4.教学重点、难点
重点:三角形的内角和定理的证明及其简单应用。难点:三角形的内角和定理的证明方法的讨论。
三、说学校及学生现实情况
我校是蓝田县一所普通初中,四面非山即岭,距蓝田县城四十里之遥。但由于国家对西部教育的大力支持,学校有远程多媒体网络教室,为师生提供了良好的学习硬件环境。我校学生几乎全部来自本镇农村,而我所教授的八年级四班学生,大多家庭贫苦,所以学习认真踏实,有强烈的求知欲;此外,善于钻研是他们的特点,并且,有较强的合作交流意识。
四、说教法
根据本节课教学内容特点,我采用启发、引导、探索相结合的教学方法,使学生充分发挥学习主动性、创造性。
五、说教学设计 〈一〉、创设情景,直入主题
一堂新课的引入是教师与学生活动的开始,而一个成功的引入,可使学生破除畏难心理,对知识在短时间内产生浓厚的兴趣,接下来的教学活动就变得顺理成章。我的具体做法是:简单回忆旧知识,“证明的一般步骤是什么?”学生轻松做答,我肯定之后紧接着说:“本节课就是用证明的方法学习一个熟悉的结论!是什么呢?请看大屏幕!”。尽量使问题简单化,这样更利于学生投入新课。〈二〉、交流对话,引导探索 1 巧妙提问,合理引导
证明思想的引入时,问:同学们,七年级时如何得到此结论?(留一定时间让他们讨论、交流、达成共识)学生回答后,我及时肯定并鼓励后抛出问题:他们的共同之处是什么?学生容易回答:凑成一平角。我说:很好!那你们用这样的思想能证明这个命题是个真命题吗?赶快试试吧!这样,既引导了证明的方向,又激发了学生的学习兴趣。接下来学生做题,我巡视。同时让一学生板演。
2、恰当示范,培养学生正确的书写能力
在学生做完之后,我与他们一道分析板演同学证明是否合理,并利用多媒体给出正确书写方法。
3、一题多解,放手让学生走进自主学习空间
正因为学生的预习,所以他们证明的方法有所局限,这时,我抛出问题:再想想,还有其他方法吗?将课堂时间又交还他们,将其思维推向高潮。学生思考,继而热烈讨论,此时,我又走到学生中去,对有困难的学生多加关注和指导,不放弃任何一个,同时,借此机会增进教师与学困生之间的情谊,为继续学习奠定基础。最后,请有新方法的同学叙述其思想方法,我用大屏幕展示不同做法的合情推理过程。
4、展示归纳,合理演绎
利用多媒体展示三角形内角和定理的几种表达形式,以促其学以致用。
5、反馈练习
用随堂练习来巩固学生所学新知,另一方面进一步提高学生的书写能力。同时,在他们作完之后,多媒体展示正确写法,加强教学效果。〈三〉、课堂小结 采用让学生感性的谈认识,谈收获。设计问题: 2(1)、本节课我们学了什么知识?(2)、你有什么收获?
目的是发挥学生主体意识,培养其语言概括能力。
六、说教学反思
本节课主要是以严谨的逻辑证明方法,验证三角形内角和等于180度。让学生充分体会有理有据的推理才是可靠的。而证明思想、书写的培养,是本节课的重点。自主学习、合作交流是新课程理念,也是我本节课的设计意图。从学生课堂表现可以看出,教学效果良好。而学生的一些出乎意料的做法让我倍感惊喜!把学生还给课堂,把课堂还给学生,也是我一贯的做法。
图形的位似》说课稿
各位老师,下午好,今天我说课的课题是《图形的位似》。图形的位似是苏科版教材八年级下册第十章《图形的相似》第六节内容。《图形的相似》是属于数学课程标准第三学段“空间与图形”的重要内容之一。这一单元是整个图形与变换板块的基础,在结构上起着承上启下的作用。而图形的位似是图形的相似的延伸和深化,是在学生已经掌握了相似图形相关知识和具备一定图形研究法的基础上,再来研究图形的位似,进一步对相似强化理解,更为相似三角形的应用作了一定的铺垫。
本节课的重点是:充分了解位似图形及其有关概念,并用作位似图形的方法,将一个图形放大或缩小。从学生的认知过程角度来看,概念学习是接受一个新事物的起始阶段,也是后期应用的基础阶段,特别是对于图形的概念学习,尤其要注重概念的生成过程和基本含义。而利用作位似图形的方法,将一个图形放大或者缩小,本质上时位似图形性质的应用,它是一个集动手与动脑一体的活动,也是本课的技能目标,因此,确立本课重点为以上两项。
本节课的难点在于能根据位似图形的性质,利用作位似图形的方法,将任意一个几何图形放大或者缩小。理由是在实践教学中,由于学生认知水平的不同,往往不能很好的抓住图形的性质特征,从而实际应用位似图形的性质将图形放大或者缩小的时候,就会遇到拦路虎。基于上述两点的分析,我确立了本课的教学目标为: 1.理解位似图形的概念,掌握位似图形的性质。
2.经历位似图形概念和性质的探索过程,进一步发展学生探究和交流合作的能力。
3.利用位似图形的性质,掌握作位似图形的方法,并学会对图形放大或者缩小,进一步培养学生数学应用意识和动手操作的良好习惯。下面说说我的设计思路:(1)设计理念
本节课的主要设计理念是“导”和“动”,主要采用启发式教学法。整个教学过程力求从位似图形概念的得出,到位似图形性质的探索和应用,一方面做到放手让学生围绕所提出的问题进行观察,讨论,交流,另一方面又时刻给予必要指导,从而真正体现数学教学是数学活动的教学,是教师,学生间合作和互动的过程。(2)设计三个清晰的教学板块
第一个板块 创设情境,初步感知生活中的位似图形。本板块中主要提供视频短片让学生从动态影像中感知位似图形,并让学生参与到位似图形的创造中。
第二个板块 位似图形的概念和性质的探究。本版块是本节课重点之一,在设计中,主要体现在通过学生分组动手操作,板演和投影动态展示的学生活动形式,对位似图形定义中的两大特征及性质进行探索。
第三个板块 根据位似图形的性质,利用作位似图的方法,将图形放大或者缩小。本板块中涉及到本节课的一个重要技能目标,位似图的作法和原理,同时也是难点所在,学生的手脑配合完成探索活动的能力就体现的尤为突出。另一方面,在这个板块中,也让学生感体会分类思想的运用。下面,我说下教学过程。
(1)第一板块 创设情境,初步感知生活中的相似图形。
通过多媒体课件展示学生较感兴趣的手影戏问题作为载体,播放手影戏表演短片并利用液晶投影的灯光进行模仿表演。这样设计的意图,主要是激发兴趣为主,学生参与到情境的创设中,印象肯定十分深刻。同时,在玻璃片上画一个三角形,利用投影灯光将三角形投影在幕布上,改变玻璃片与墙的距离,引导学生观察图形的变化情况。用学生熟悉的、喜闻乐见的实验活动,引入图形放大或缩小的新方法,并为进步研究位似形做好铺垫,同时让学生感受到这种图形变换与同学们已掌握的翻拆平移、旋转的不同.并能很好的激发学生参与的热情。
(2)
第二板块 位似图形的定义及性质的探索。
这个板块可以分成两个层次,第一个层次,探索位似图形的定义。第二个层次,探索位似图形的性质。第一个层次是本课教学重点之一,因此在设计上主要采用这样的方法进行教学:通过对课本“实践”活动后的图形,进行两方面观察,一是观察△ABC与△A’B’C’是否相似,二是观察对应顶点的连线的特殊位置。学生从直观上很快就能判断出两个三角形相似,却不能说出相似的理由。在这里为了帮助学生透彻的理解两个三角形相似的理由,可以借助作图过程引导学生发现两个三角形中对应线段成比例的特点,教学中尽可能采用板书形式给出相似的说理过程。最后要求学生结合观察的两点说出相似图形的定义,并定义出位似中心和位似比。
这个层次中,主要是教师引导为主,讲授为辅,对于引导过程中,始终把重点目光放在位似图形的两大特征:(1)必须是两个相似的几何图形(2)对应顶点的连线相交于一点,同时又着眼于位似图形和相似图形的区别与联系,运用类比的方法,让学生对概念的学习和掌握变得深刻和准确。在评价方式上,对于学生自行概括的位似图形的定义要充分予以肯定,并且可以邀请学生多次更改已达到精炼和准确的定义。而在根据要求画图中,学生有可能出现对画图要求理解的错误而导致所作图形与原图形在位似中心异侧,在概念揭示后,可展示学生中间的此类情况进行辨析,从而能感悟到位似图形可以在位似中心的同侧和异侧。若学生中不存在此类情况,可教师进行点播。
第二个层次,对位似图形的性质进行探究。这个内容主要由学生活动探究为主。具体是引导学生回顾已有对图形性质探究的方法,即一般在定义的描述过程中,就包含了两个性质:(1)位似图形一定相似(2)各对对应顶点所在直线都经过同一点,而对于第三个性质各对对应顶点到位似中心的距离比等于相似比,在充分理解了位似图形的定义后,引导学生回顾作图过程中 这一要求,学生很快就能发现对应顶点到位似中心得比和相似比是一致的。在这个层次中,学生获得信息的过程是轻松和迅速的,在给出探究方向后,让学生在观察、思考、计算中交流自己的发现,学生可以从不同的角度各抒己见,在碰撞交融中,位似图形的性质自然浮出水面。(2)根据位似图形的性质,利用作位似图的方法,将图形放大或
者缩小。
在学习作位似图的方法,是技巧性的知识,但也是位似图形的性质的应用。作为本课的难点,在突破上需要作以下两点设计:
一是对位似中心与图形的位置关系的分类,二是对作图方法模仿,归纳和总结。所以在设计的时候,可以采用开放式的探讨方式,首先给出一组问题交给学生交流讨论:①在实践活动中,如果位似中心点 O是一动点,则,点O与△ABC有几种位置关系,画出示意图。②分别以O为位似中心,按照2:1将△ABC放大。这个环节中,问题一得反馈方式可以借助实物投影仪,让学生经历猜想,实验,总结的过程,将成果展示给所有人,这样宏观调控后的自主创业法,对学生掌握图形分类思想方法和自我反思归纳的思维方式有很大的帮助。
对于第二个问题,在教学时候必须在示范点O在△ABC外部时候的作图方法,并强调三步骤:一连接位似中心与三角形三个顶点,二根据位似比截取对应点,三连接对应点的图形,生成一定的方法后可由学生自由完成,这样的模仿对象一树立,学生在作图技巧的难处也迎刃而解了。教师在这一过程中的角色是辅导员,边扶边放,有的放矢,这样的方式学生更乐意接受,通过做中学,学的好,记得牢。(3)巩固与提高
在巩固与提高环节,可以采用以下两组练习:
①
选取适当的比例,将课本图10--26①中的图形放大.选取适当的比例,将课本图10--26②中的图形缩小.本题的目的在于通过动手操作,实践作图的技能,并培养学生的空间想象能力,教者要帮助学生理清选择适当的位似中心和分清各点的联系.②如图,在直角坐标系中,作出四边形ABCDE 的位似图
形,使得新图形A’B’C’D’E’与原图形对应线段的比为2∶1,位似中心是坐标原点O,并表示出A’B’C’D’E’的坐标。
这是一个拓展性练习,目的是培养学生将坐标系中所学知识与位似图形的作图相结合,有利于学生思维方式的拓展和对新旧知识的熟练驾驭能力,从而达到举一反三的效果。在提高方面,可在学生解决了
正方形性质的探索说课稿
一、说教材。
《正方形性质的探索》是北师大版教材八年级数学上册第四章第四节第二课时内容,教材前几节探索平行四边形、菱形、矩形,再过渡到正方形,是探索活动的自然延伸和必要发展。教材这样安排,由一般的平行四边形到特殊的平行四边形,突出探究的层次性。通过探究活动,培养学生的自主探究意识和合作学习习惯,提高学生的创新能力,让学生体会数学在生活中的应用美。
二、说教学目标。
1、让学生掌握正方形的性质和判别条件,以及特殊平行四边形之间的关系。
2、通过经历探索过程,在简单操作活动和说理过程中,培养主动探究习惯。
3、通过正方形有关知识的学习,培养学生的创新、合作意识,感受正方形图形美和语言美。
三、说教学重、难点。
重点是正方形的定义;难点是正方形性质的应用。
四、说教法与学法。
指导探索法;讨论法、比较法、归纳法。
五、说教学过程。
(一)复习导入新课(3分钟)
通过复习前面学习的平行四边形、菱形、矩形的性质以及判别方法,很自然的引入新课,由平行四边形性质和判定的复习,过渡到矩形和菱形,再由一组邻边相等的矩形和一个角是直角的菱形,从而得出正方形既是特殊的矩形,又是特殊的菱形。最后给正方形一个定义:一组邻边相等的矩形叫做正方形。边复习教师边板书一些重要的性质。
(在复习导入新课的过程中教师引导,学生集体和个别回答相结合,体现了合作学习的重要性和必要性,强调教师合作参与引导,学生主动参与的新型学习方式。)
(二)讲授新课(1)、讨论正方形的性质(13分钟)
让学生分组讨论正方形的性质,教师引导学生从正方形的边、角、对角线三个方面归纳和总结正方形的性质。总结后教师提问并板书正方形的性质:正方形对边平行,四条边都相等;正方形的四个角都是直角;正方形对角线垂直平分且相等;正方形每条对角线平分一组对角。教师要强调“正方形对角线垂直平分且相等”这一性质。
(通过学生自主探究,归纳表达,教师纠正总结,使学生逐步掌握说理的基本方法。)
(2)、想一想(3分钟)
正方形有几条对称轴?让学生用纸剪一个正方形,通过动手折出正方形的对称轴的条数。并要求学生要用规范的几何语言描述正方形的对称轴。正方形有四条对称轴,即两条对角线所在直线,两组对边的中垂线。(这样能提高学生的学习兴趣,让学生用自己的双手实践,用自己的大脑思考,全身心的投入到探索过程中。)
(3)、例题讲解(8分钟)
例题是对正方形性质的应用。正方形的性质很多,本题用到了正方形对角线的性质,先让学生自己看课本例题,学生看的同时,教师板书例题.然后学生分组讨论解题方法和过程,教师引导点拨。最后让一名学生到黑板上板书解题过程,其他的学生在练习本上完成。教师巡视指导,并给予积极性评价。(这样的讲授方法能培养学生主动探究意识,发展学生的合情推理能力。)(4)做一做(5分钟)
将一张长方形的纸对折两次,然后剪下一个角,打开。怎样剪才能剪出一个正方形?让学生动手折叠、自己想并剪切,然后四人一组讨论,并回答讨论结果。只要保证剪口线与折痕成45度角即可。(这样能培养学生的合作意识, 提高学生的自主探究能力,让学生体验到成功的喜悦。)(5)议一议(7分钟)
正方形、矩形、菱形以及平行四边形四者之间有什么关系?让学生四人一组讨论,要求学生画出知识结构图说明四者之间的什么关系,学生画图时教师巡视指导,并归纳学生画的关系图.最后,教师在黑板上画出两种关系图。
(通过小组合作学习,积极完成共同承担的任务,在集体学习中形成团队意识,树立 “人人为我,我为人人”的学习理念。)
(6)随堂练习(4分钟)
两道题都是对正方形的一些性质的应用,让两名学生在黑板上板演,其余的学生在练习本上做,教师巡视指导。
(7)课时小结及布置作业(2分钟)
《平行四边形性质》说课稿
各位老师,评委大家好:
我叫王建英,来自夏庄镇袁庄中学.很高兴有机会参加这次教学研讨活动并得到您们的指导。
我说课的内容是冀教版版八年级下册第二十二章第一节《平行四边形的性质》下面我从教学背景分析;教学目标设计;教学重点难点;教法学法分析;教学过程;教学评价六个方面对本课的设计进行说明。一.教学背景分析
(一)教材的地位和作用
1平行四边形的性质是学习和掌握了《图形的平移与旋转》、《中心对称和中心对称图形》的基础上编排的.平行四边形作为中心对称图形的一个典型范例,对它性质的研究有利于加深对中心对称图形的认识.而用中心对称作为工具,借助图形的旋转变化来研究平行四边形性质,有助于培养学生以动态观点处理静止图形的意识和能力,为以后论证几何的学习打好基础.且为下节学习习近平行四边形的识别提供了良好的认知基础.2教学内容的选择和处理
本节课所选教学内容是教材中四条性质及例题.为了遵循学生认知规律的循序渐进性,探究问题的完整性,培养学生的学习能力,发展智力.我采取把平行四边形所有性质集中在一课时中一起研究。
(二)学情分析 学生在小学阶段已对平行四边形有了初步、直观的认识,为平行四边形性质的研究提供了一定的认知基础.八年级学生正处在试验几何向论证几何的过渡阶段,对于严密的推理论证,从知识结构和知识能力上都有所欠缺.而利用动手操作来实现探究活动,对学生较适宜,而且有一定吸引力,可进一步调动学生强烈的求知欲.二 教学目标 1知识与技能
使学生掌握平行四边形的四条性质,并能运用这些性质进行简单计算.2过程与方法
让学生体会通过操作,观察,猜想,验证获得数学知识的方法.注意发展学生的分析,归纳能力,提升数学思维品质.3情感态度与价值观
注意学生独立探究及合作交流的结合,促进自主学习和合作精神.三 重点,难点
1重点:理解并掌握平行四边形的性质.2难点:通过探究得到平行四边形的性质.四 教学方法和教学手段 1教学方法
采用引导发现和直观演示相结合的方法,并运用多媒体辅助开展教学.2教学手段
教学中鼓励学生自主地进行观察、试验、猜测、推理的数学活动,体验平行四边形是中心对称图形,并得出平行四边形性质,使学生在整个过程中形成对数学知识的理解和有效的学习策略.五 教学过程
(一)温故知新,导入新课
以录像和照片形式展现平行四边形在生活中的应用,伸缩晾衣架,活动铁门等,引导学生回忆起平行四边形相关知识,明确平行四边形的定义,对边,对角,对角线的概念.教师提出问题:平行四边形具有什么性质呢并板书课题.(教师直接提出问题,提供给学生较大的探究空间,为发现法学习创建情景.)(二)自主探究,发现性质
组织学生以小组为单位,充分利用手中的工具,通过观察,测量等方法进行大胆猜测,尽可能多的寻找,发现平行四边形的有关性质.几分钟后,揭示研究结果:平行四边形对边相等;平行四边形对角相等;平行四边形邻角互补等.对于学生的结论,不论正确与否,鼓励学生对猜想进行探讨,加以证明,并对错误结论进行调整,得出 性质一:平行四边形对边相等.性质二:平行四边形对角相等.此时,教师提问;除了测量方法,还可以用怎样的图形变换?学生在尝试翻折,旋转后,发现图形旋转180度以后重合,于是又有新发现: 性质三:平行四边形对角线互相平分.质四:平行四边形是中心对称图形,两条对角线交点是对称中心.(让学生自己独立或以小组形式合作学习探究平行四边形性质后,使学生在亲身体验中获得知识,使学生对知识的发生发展过程有了一个清晰的了解.)(三)归纳交流,形成概念
以小组为单位,请学生交流平行四边形性质,并用规范语言描述.请学生总结整个探究的过程:提出问题——试验操作——猜想——验证——归纳总结.若验证后发现不合理,则重新探索,不断往复,形成新知.(四)性质应用,形成技能
问题一:平行四边形ABCD中,∠A比∠B大40度,AB=8,周长等于24.从这些信息中你能得到哪些结论
(通过此题,提供了开放的情景,可让 学生充分运用已有的性质1,2,加强了对新知识的应用意识.)问题而:将问题一中“周长等于24”改为“对角线AC,BD交于O,△AOB的周长为24”,求AC与BD的和是多少
(此题为课本例题的变形,进一步加强了对平行四边形性质的运用.)(五)归纳小结,巩固提高
让学生谈谈本节课的收获及在知识获得过程中的体验和感受.(六)分层作业,发展深化
1.必做题:课本P62练习1,2,习题1,2,3 2.选做题:在直角坐标平面内,平行四边形ABCD有三个顶点的坐标分别为(0,0),(5,0),(2,2).求第四个顶点的坐标.教学评价
1.本节课贯彻了以教师为主导,以学生为主体的原则.以学生动手操作,独立思考,合作交流贯穿始终.2.从问题的提出,引导学生观察,动手操作,猜想,验证,归纳,整个过程让学生充分感受到知识的产生和发展过程,促使学生积极思维,主动探索,勇于发现.3.平行四边形性质的表述不是由教师直接给出,而是在教师指导下由学生归纳,交流,最后达成共识,形成规范的语言描述四条性质,有助于提高学生的概括表达能力.4.根据学生的个体差异,遵循因材施教的原则,设计分层作业,分必做题和选做题,使不同层次的学生都能通过作业有所收获.《平方根》说课稿
一、教材分析:
1、教材的地位和作用
“平方根”是省编教材初中数学第三册第十章“实数”的第一节内容。由于实际计算中需要引入无理数,使数的范围从有理数扩充到了实数,完成了初中阶段数的扩展。运算方面,在乘方的基础上以引入了开方运算,使代数运算得以完善。因此,本节课是今后学习根式运算、方程、函数等知识的重要基础。
2、教学目标:(依据教材和大纲确定)
⑴、使学生理解平方根的概念,了解平方与开平方的关系。⑵、学会平方根的表示法和求非负数的平方根。
⑶、通过上述知识的教学,培养学生的“实践第一”的观点;体验数学来源于实践,又服务于实践的思想。⑷、对学生进行爱国主义的思想教育。
3、教学重点、难点与关键: 重点:平方根的概念。
难点:平方根的概念和表示。
关键:求平方根(即开平方)运算要靠它的逆运算平方来进行。
二、教学方法和手段:
根据教材内容结合初二学生的认知特点,采用边启发、边分析、层层设疑、讲练结合的教学方式。同时,利用媒体形象直观地展示引例、例题及练习。帮助学生理解概念,活跃课堂气氛,增大教学密度,提高教学效率。
三、学法指导:
学生通过动手、动口、动脑等活动;主动探索,发现问题;互动合作、解决问题;归纳概括、形成能力。增强数学应用意识、协作学习意识,养成及时归纳总结的良好学习习惯,使学生的主体地位得以体现。
四、教学程序:
教学环节 教学程序 设计意图
教师活动 学生活动
创设情境 引入新课
1、出示引例1:(投影片显示)一艘轮船由A码头出发,朝正东方向行驶3千米至C处,然后朝正北方向行驶2千米至B处,问A、B相距多少千米?
2、提出问题:⑴已知一个数要求这个数的平方,该如何求? ⑵已知一个数的平方,要求这个数,又该如何求?
⑶符合这样条件的数有几个?该如何表示?
(依据己有的知识经验估计学生会回答------正方形的面积是边长的平方。)
思考,探索问题解决的途径。复习己学知识
复习乘方运算法则。培养学生逆向思维能力。诱发学生寻找解题途径。交流对话
探索新知 引例2:(投影片显示)
已知一个正方形的面积等于4cm2,求它的边长。引导学生观察分析、思考。
强调指出应根据实际情况确定边长的值。总结:
已知某数的平方要求这个数,用式子来表示就应是:已知x2=a,求x的值。这和我们一开始提出的问题,求一个已知数的平方正好相反。要解决这样一个问题,就须在数学上引进一个新的概念――平方根。引导学生举例。
简要介绍数的产生与发展。思考、发现:
逆用乘方运算。深入探究,如设一边长为xcm,依题意有x2=4,∵22=4,(-2)2=4 ∴满足x2=4的x的值可以是2,也可以是-2,但正方形的边长不能是负数,∴x=2即这个正方形的边长是2cm。
归纳总结得出平方根的概念:如果一个数的平方等于a,那么这个数叫做a的平方根(也叫二次方根)。理解并会表示平方根 举例。
了解 培养学生用逆向思维的观点去分析问题,发现问题中蕴涵着的一些相互联系的量(面积与边长),再通过设未知数,从而将实际问题转化为方程与乘方运算问题,体验问题解决的思想方法。使学生养成及时归纳总结的良好学习习惯 巩固平方根概念 突出教学重点
向学生渗透“实践第一”的辨证唯物主义观点。课堂练习比较探究
归纳总结 教材第87页练习,个别口答。
通过练习,引导学生比较探究,寻找规律,得出法则(用投影片显示)。
强调正数有两个平方根,决不能丢掉任何一个。若丢掉了一个,都是错误的。平方根的表示法。(强调,特别注意的是 ≠±,其中a是非负数。)开平方的定义。
求一个数的平方根就是开平方运算,要靠它的逆运算平方运算来进行。独立思考完成。共同校对,矫正。
得出法则:一个正数有正、负两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。共同校对,矫正,使语言精练准确。
理解,掌握。使学生及时巩固用平方根的概念来解决问题的方法,培养学生的类比能力;提高学生的解题能力和归纳总结能力。
让学生明确平方与开平方是互为逆运算关系。例题分析 反馈调控
形成能力 出示例一:下列各数有没有平方根?若有,求出它的平方根;若没有,请说明理由。⑴36 ⑵ 0.16 ⑶(-4)2 ⑷-32 ⑸ 0 ⑹
⑺-|a|-4 ⑻ 2
引导学生分析比较:⑴、要判断一个数有没有平方根,就要看它是不是负数,若是负数就没有平方根,不是负数就有平方根。⑵求平方根时,要注意利用平方根的定义来求。板书解题过程:„„
指出:在解具体问题时,要灵活运用法则;带分数开平方时,要先把带分数化成假分数 结合平方根的概念与法则,探索思路方法,口述解题思路。
掌握解题过程的书写格式。
培养分析比较能力。领会解决问题的思路。
渗透比较思想,让学生体验数学来源于实践,又服务于实践的思想。梳理概括
形成结构 师生一起讨论得出(投影片显示):
1、一个正数有正、负两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
2、正数a的平方根的表示方法为±。
3、带分数开平方时,要先把带分数化成假分数。
师生一起讨论得出
突破教学难点。
培养学生的归纳总结能力。应用新知
体验成功 出示练习(投影片显示):
1、判断正误,并且改错:(用投影片显示题目)⑴100的平方根是10 ⑵非负数一定有平方根
⑶9 的平方根是±3
⑷2的平方根是±
2、教材第89页练习2、3、4 巡视、小组辅导
选取小组代表回答,给予积极的评价,并强调注意点:正数有两个平方根,决不能丢掉任何一个。若丢掉了一个,都是错误的。②正确表示平方根。③根据实际情况来确定适用的方法。
小组讨论,互相质疑,校对,矫正。共同完成。书写练习4的解题过程。
培养学生的合作精神。
使学生及时巩固用平方根的定义和法则解决问题的方法,规范解题格式。同时使学生注意解题的关键。变式练习扩展新知 深入探究
问题迁移 出示练习(投影片显示)
1、什么数的平方根是它的本身?
2、求下列各式中x的值: ⑴ x2=25 ⑵ 2x2-32=0 ⑶ 4(x+2)2-81=0(这里估计学生会联想到引例2解决过类问题)巡视、小组辅导。投影有代表性的学生的解答过程,给予积极的评价。阅读题目 先独立思考后分小组讨论,发现,质疑,达成共识。书写解题过程。
使学生再深入探索平方根的定义与法则,培养学生的转化思想、发散思维和合作精神。规范书写解题过程。
知识整理 形成系统 提问:
① 这节课学习了用什么知识解决哪类问题?②解决问题的一般步骤是什么?应注意哪些问题? ③并学到了哪些思考问题的方法?④介绍开方最早见于我国的《九章算术》,比国外早一千多年。出示“想一想”:
()2 = ?(-)2 =?(从知识、能力等方面)对所学内容加以概括,相互讨论,回答,补充,共同整理。加深学生对知识的理解,形成知识系统,为今后继续学习实数性质的应用打下基础。爱国主义教育。
加深学生对平方根概念及其表示法的理解。布置作业
巩固提高 ⑴完成作业本上的题目。
⑵兴趣题:已知某数的平方根是x+2和3x-14,求这个数。课后结合自身水平独立完成相应的习题: ⑴基础一般的学生完成作业本。
⑵基础稍好的学生完成作业本和兴趣题。让学生巩固所学内容并进行自我评价,但考虑学生基础的差异性,故进行分层次要求。
五、板书设计 10.1平方根 投影学生练习„„ 例一: 解:(板演详细解题过程)„„平方根概念:„„开平方概念:„„ 法则:„„
六、设计说明: ㈠、指导思想:
依据学生已有的基础及教材所处的地位和作用,遵循现代教学思想和学生的认知规律;在教学中让学生在学习知识技能的同时,注意数学思想方法和良好学习习惯的养成;对学生进行爱国主义的思想教育,培养学生良好的个人品质;使学生体验数学的“实践第一”和数学来源于实践,又服务于实践的思想。㈡、教学目标的确定:
根据《教学大纲》的要求(使学生理解平方根的概念,了解平方与开平方的关系;理解并学会平方根的概念和表示。),结合教材内容及学生实际,从知识、能力、情感等方面确定了这节课的教学目标。㈢、关于教法和学法
采用启发式教学法及情感教学,创设问题情境,引导学生主动思考,用实例和生活语言激发学生学习兴趣,调节学习情绪,让学生在乘方运算及其逆运算及平方根性质法则的比较中主动发现问题;应用数学思想方法分析讨论,解决问题;在练习训练中提高解题能力,培养良好学习习惯。同时,采用媒体辅助教学,增大教学密度,更好地揭示了问题的本质,突破教学难点,提高教学效率。㈣、关于教学程序的设计
在教学程序设计上,充分体现教师为主导,学生为主体的教学原则,突出以下几个注重: ①注重目标控制,面向全体学生,启发式与探究式教学。
②注重学生参与知识的形成过程,增强学习数学的信心,体验应用数学知识解决问题的乐趣。③注重师生间、同学间的互动协作,共同提高。
④注重知能统一,让学生在获取知识的同时,掌握方法,灵活运用。
一次函数与一元一次不等式说课稿
一、教材分析
1、地位和作用
这一节内容是初中数学新教材八年级上册第十一章第三节的内容。它是在学生学习了前面一节一次函数后,回过头重新认识已经学习过的一些其他数学概念,即通过讨论一次函数与一元一次不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的不等式的认识,构建和发展相互联系的知识体系。它不是简单的回顾复习,而是居高临下的进行动态分析。
2、活动目标
①理解一次函数与一元一次不等式的关系。会根据一次函数图像解决一元一次不等式解决问题。②学习用函数的观点看待不等式的方法,初步形成用全面的观点处理局部问题。③经历不等式与函数问题的探讨过程,学习用联系的观点看待数学问题的辨证思想。
④增强学生学数学,用数学,探索数学奥妙的愿望,体验成功的感觉,品尝成功的喜悦。
总的来讲,希望达到张孝达对我们教育工作者的要求:给我们所有的学生,一双能用数学视角观察世界的眼睛,一个能用数学思维思考世界的大脑。
二、学情分析
八年级学生的思维已逐步从直观的形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。
三、学法分析
1、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。
2、学生在小组合作学习中体验学习的快乐。合作交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。
四、教法分析
由于任何一个一元一次不等式都能写成ax+b>0(或<0)的形式,而此式的左边与一次函数y=ax+b的右边一致,所以从变化与对应的观点考虑问题,解一元一次不等式也可以归结为两种认识:
⑴从函数值的角度看,就是寻求使一次函数y=ax+b的值大于(或小于0)的自变量x的取值范围。
⑵从函数图像的角度看,就是确定直线y=ax+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。教学过程中,主要从以上两个角度探讨一元一次不等式与一次函数的关系。
1、“动”―――学生动口说,动脑想,动手做,亲身经历知识发生发展的过程。
2、“探”―――引导学生动手画图,合作讨论。通过探究学习激发强烈的探索欲望。
3、“乐”―――本节课的设计力求做到与学生的生活实际联系紧一点,直观多一点,动手多一点,使学生兴趣高一点,自信心强一点,使学生乐于学习,乐于思考。
4、“渗”―――在整个教学过程中,渗透用联系的观点看待数学问题的辨证思想。
五、教学过程设计
一、复习回顾
1.一次函数的定义。2.一次函数的图象。
3.直线y=kx+b与方程的联系。
那么一元一次不等式与一次函数是怎样的关系呢?本节课研究一元一次不等式与一次函数的关系。教师活动:引导学生回顾一次函数相关概念以及一次函数与方程的关系。设计意图:回顾所学知识作好新知识的衔接。
二、导探激励
问题1:作出函数y=2x-5的图象,观察图象回答下列问题:(1)
x取何值时,2x-5=0?(2)
x取哪些值时, 2x-5>0?(3)
x取哪些值时, 2x-5<0?(4)
x取哪些值时, 2x-5>3?
教师活动:展示问题1,适当时间后请学生解答并说明理由,教师借助课件作结论性评判。
设计意图:问题1可以直接解不等式(或方程)求解,但这里意图是让学生通过直接图象得到。引导学生体会既可以运用函数图象解不等式,也可以运用解不等式帮助研究函数问题,二者互相渗透,互相作用。学生可以用不同方法解答,教师意图是尽量用图象求解。
问题2:用画函数图象的方法解不等式: -2x+3<3x-7.分析:
由一次函数与一元一次不等式的关系可先将其化为一般形式,再画图求解;也可以将-2x+3与3x-7看作是两个
关于x的一次函数,即y1=-2x+3,y2=3x-7。
于是不等式的解集即对应着y1 原不等式化为5x-10>0,画出直线y=5x-10如图所示,可以看出x>2时这条直线上的点在x轴上方,即这时y=5x-10>0,所以不等式的解集为x>2.解法2: 将原不等式的两边分别看作是两个一次函数,画出直线l1︰y=-2x+3,y2=3x-7,如图所示,可以看出它们的交点的横坐标为2,当x>2时,对于同一个x,直线y=-2x+3上的点在直线y=3x-7上相应的点的下方,这时-2x+3<3x-7,所以不等式的解集为x>2.三、达测深化 做一做: 兄弟俩赛跑,哥哥先让弟弟跑9m,然后自己才开始跑。已知弟弟每秒跑3m,哥哥每秒跑4m。列出函数关系式,作出函数图象,观察图象回答下列问题:(1)何时哥哥追上弟弟?(2)何时弟弟跑在哥哥前面?(3)何时哥哥跑在弟弟前面? (4)谁先跑过20m?谁先跑过100m?(5) 你是怎样求解的?与同伴交流。 教师活动:展示做一做,鼓励学生从多角度思考问题。请部分学生展示其解法。教师借助课件对学生解答作出评判。展示练习,在学生思考后,用课件展示图象以便学生识图。 设计意图:函数、方程、不等式都是刻画现实世界中量与量之间变化规律的重要模型,通过具体例子渗透三者之间的内在联系,帮助学生从整体上认识不等式,感受函数、方程、不等式的作用。 四、小结 通过本节课的学习,你有哪些收获? 五、作业 P19 读一读 P20 习题1.6 《14.3.1等腰三角形》第一课时说课稿 课题:“等腰三角形”(第一课时) 一、教材分析 1、教材的内容、地位、作用及处理 这节课是义务教育课程标准试验教科书人教版八年级第十四章第3节《等腰三角形》第一课时,等腰三角形是在学生学习了三角形的有关知识、掌握了全等三角形的判定及性质与轴对称的性质的基础上进行的。它不仅是对前面所学知识的综合应用,也是后面研究等边三角形等内容的预备知识,同时也是今后证明角相等、线段相等及两直线垂直的重用依据。而通过探究等腰三角形的“三线合一”的性质,可以激发学生浓厚的学习数学的兴趣,使学生体会性质定理的来龙去脉;了解、感知知识发生、发展的全过程;拓宽学生探索图形变化的视野。掌握等腰三角形及其性质在生活中的应用,更有益于学生了解数学价值,体会数学来源于实践,又反作用于实践的认识问题的一般规律。对教材进行处理:增加2个例题,目的是直接运用性质定理并认识等腰直角三角形。 2、重点:学生了解、感悟等腰三角形的性质定理,归纳总结其证明。 3、难点:等腰三角形常用辅助线的作法。 二、目标分析 学情分析:等腰三角形是在学生学习了三角形的有关知识、掌握了全等三角形的判定及性质与轴对称的性质的基础上进行的,八年级学生的思维活跃、愿意表达自己的见解,有一定的互动互助基础,但在应用数学知识解决实际问题的方面还缺乏经验。其次学生程度参差不齐,两极分化已经形成,个体差异比较明显。再次学生的思维逐渐由形象思维向抽象思维转变,但形象思维仍占主导地位,数形结合是学生掌握知识的较好方法。 14.3.2 一次函数与一元一次不等式 教学目标 1.知识与技能 理解一次函数与一元一次不等式的关系,发展学生的认知体系. 2.过程与方法 经历探索一次函数与一元一次不等式的关系的过程,掌握其应用方法. 3.情感、态度与价值观 培养良好的数学抽象思维,体会本节课知识在现实生活中的应用价值. 重、难点与关键 1.重点:一次函数与一元一次不等式的关系. 2.难点:如何应用一次函数性质解决一元一次不等式的解集问题. 3.关键:从一次函数的图象出发,直观地呈现出一元一次不等式的解的范围. 教具准备 采用“问题解决”的教学方法. 教学过程 一、回顾交流,知识迁移 问题提出:请思考下面两个问题: (1)解不等式5x+6>3x+10; (2)当自变量x为何值时,函数y=2x-4的值大于0? 【学生活动】观察屏幕,通过思考,得到(1)、(2)的答案,回答问题. 【教师活动】在学生充分探讨的基础上,引导学生思考:“一元一次不等式与一次函数之间有何内在联系?” 【思路点拨】在问题(1)中,不等式5x+6>3x+10可以转化为2x-4>0,•解这个不等式得x>2;问题(2)就是解不等式2x-4>0,得出x>2时函数y=2x-4的值大于0,•因此这两个问题实际上是同一个问题,从直线y=2x-4(如图)可以看出.当x>2时,•这条直线上的点在x轴的上方,即这时y=2x-4>0. 【问题探索】 教师叙述:由上面两个问题的关系,能进一步得到“解不等式ax+b>0”与“求自变量x在什么范围内,一次函数y=ax+b的值大于0”有什么关系? 【学生活动】小组讨论,观察上述问题的图象,联系不等式、函数知识,解决问题. 【师生共识】由于任何一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看出:当一次函数值大(小)于0时,求自变量相应的取值范围. 【教学形式】师生互动交流,生生互动. 二、范例点击,领悟新知 【例2】用画函数图象的方法解不等式5x+4<2x+10. 【教师活动】激发思考. 【学生活动】小组合作讨论,运用两种思维方法解决例2问题. 解法1:原不等式化为3x-6<0,画出直线y=3x-6(左图),可以看出,当x<2时,这条直线上的点在x轴的下方,即这时y=3x-6<0,所以不等式的解集为x<2. 解法2:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10(右图),可以看出,它们交点的横坐标为2,当x<2时,对于同一个x,直线y=5x+4上的点在直线y=2x+10上相应点的下方,这时5x+4<2x+10,所以不等式的解集为x<2. 【评析】两种解法都把解不等式转化为比较直线上点的位置的高低. 三、随堂练习,巩固深化 课本P216练习. 四、课堂总结,发展潜能 用一次函数图象来解一元一次方程或一元一次不等式未必简单,但是从函数角度看问题,能发现一次函数、一元一次方程与一元一次不等式之间的关系,能直观地看到怎样用图形来表示方程的解与不等式的解,这种用函数观点认识问题的方法,对于继续学习数学是重要的. 五、布置作业,专题突破 课本P129习题14.3第3,4,7,8,10题. 板书设计 14.3.2 一次函数与一元一次不等式例: l、用函数观点解决一元一次不等式的问题 练习:第五篇:八年级数学说课稿