第一篇:医院中央空调节能改造项目实施与分析
中央空调系统是医院能耗较大的设备,如何提高效率、降低运行成本是增强医院竞争力的关键。对于老医院来说,既要进行系统的节能改造,又要考虑合理利用已有资源,才可达到理想的节能效果。文章通过中央空调项目改造的具体实例,重点对设备的功能和技术经济指标进行了分析比较,探讨了实施节能改造的方式和方法。
关键词
中央空调 节能 改造
abstract
the central air conditioning system is major energy consumers in hospitals.it is one of the keys to enhance hospital competitiveness that how to improve efficiency and reduce operation costs.as an aged hospital building,the system energy saving transformation and reasonable utilization of existing resources is necessary to achieve the ideal effect in energy saving.in this paper, the function and technical and economic indexes of the central air conditioning were compared before and after retrofitting through concrete examples,and the methods and manners that how to carry out energy saving transformation were discussed.keywords
central air conditioning system energy-saving?transformation
随着医院服务能力的不断提高,能源消耗已成为医院成本压力的主要来源。一般来说,医院系统的主要能耗通常是由空调、冷热水和照明及医疗设备用电三部分组成,其中空调系统的能耗最大。过去,传统的节能方法是采取“随手关灯”、“空调温度设定在26℃”、杜绝“跑冒滴漏”等一系列管理措施,这在现在看来显然已经远远不足。在科学技术发展日新月异的今天,降低能耗成本的根本途径已经发生转变,从注重管理转变为注重技术,即用先进的技术更新传统能耗运行系统,不断升级和优化医院耗能系统的结构,提升整体节能水平。下面将以医院中央空调和热水供应系统的节能改造为例,探讨实施节能改造的方式和方法。
一、项目概况
南方医院内科楼项目总建筑面积约30000m2,设置床位600张,于1996年建成并投入使用。中央空调系统使用两台远大溴化锂直燃式冷水机组,制冷量150万大卡。配备冷冻水泵(110kw/台),冷却水泵(75kw/台),均为两用一备。机组已使用了12年,机组效率有所下降,辅助设备也需要不断进行维修和更换,近年来燃油价格不断上涨,造成了运行成本的大幅度增加。
根据2008年全年机组运行记录,空调机组用于制冷、供暖和生产热水的时间及油耗如图1所示:空调机组制冷运行时间只占总运行时间的50%,运行油耗却占到了全部油耗的74%,年运行费用高达209万元。
按照美国空调制冷协会的机房效率评估标准,空调系统效率超出1.0kw/ton的机房是不合理并在系统设计和操作规程上都有待改进的。经过测算,内科楼空调机房平均效率为1.82kw/ton,系统效率较差,改造势在必行。
二、节能改造方法选择
目前,市场上中央空调的种类很多,按冷凝方式有风冷和水冷两大类,其中风冷机组的主机工作形式又分涡旋式、螺杆式、活塞式等;水冷机组的主机工作形式又分螺杆式、吸收式、活塞式和离心式等。其区别在于水冷式空调的冷凝器采用冷却水来冷却,而风冷式直接用风来冷却室外机的冷凝器,不需要冷却水塔。冷(热)源载体一般分为冷媒系统和水系统两大类,常见的中央空调型式对比特点见表1。
目前来看,电能是最为理想的能源,用电作动力的有离心式、螺杆、风源热泵几种型式,其中离心式的水冷冷水机与螺杆式的水冷冷水机效率都很高,而尤以三级压缩离心机为最高。我院内科楼病房的制冷量需求不是很大,采用螺杆机是首选。同时考虑可以利用现有的空调机房,不需要大量的设备场地,另外螺杆机的制冷效率也高。
卫生热水方面,原来的旧系统存在很多问题。比如:系统补水无法控制,用水量大时,系统水压不足、缺水,有时还往里吸气,造成时冷时热,患者经常投诉;用水量小时大量的热水从天面水箱溢出造成了浪费。同时原卫生热水系统的末端很难进行改造,所以在节能设计时把加压系统改为变频器控制,用压力控制水泵的转速(流量),设定一个系统承受的安全范围的压力,保证系统的水压。经过市场调查,我们最终选用了美国某品牌快速热水器,该热水器采用蒸气作加热源,能快速、恒温地产生卫生热水,满足了系统恒温恒压的要求。虽然市面上还有热泵型卫生热水设备,费用比蒸汽还低,但使用该设备需要增加较大的蓄水池,考虑天面已增加了血液科、儿科层流的净化制冷设备,无法解决承重和安装设备的场地的问题,所以最终利用蒸汽来加热卫生热水。
因我院地处广州,冬天低温时间较短,供暖不是主要能耗,所以冬季供暖系统采用了独立的蒸汽快速加热系统。
三、经济情况分析比较
主要从以下三个方面进行经济和能耗分析比较:第一,空调主机的经济与能耗分析(表2);第二,冷却水系统经济与能耗分析(表3);第三,卫生热水系统经济与能耗分析。
卫生热水系统经济与能耗分析:内科大楼日供热水量按120t,经计算,每天卫生热水加热量为7002kw,每天用油消耗费用为3784.85元,每吨卫生热水燃油消耗的费用为31.5元。采用蒸汽加热卫生热水费用为2846.1元/天,每吨卫生热水用蒸汽消耗的费用为23.71元,内科楼2008年27195.8t热水可节省费用约21万元。
通过上述内科楼采用的某主机燃油系统年耗与采用电制冷主机年耗的综合比较,主机系统节省143万元,冷却泵系统节省12万元,卫生热水系统节省了21万元,预计全年共可节省费用176万元。
四、投入成本与使用效果
本项目空调节能改造的投入成本包括两个方面,一是设备材料和施工安装价格,约为人民币400万元,二是辅助材料与安装价格,例如新购买电缆价格,约80万元,机房配套改造和管沟约60万,两项总计540万元。依据以上内科楼某燃油系统与某螺杆电制冷系统经济与能源分析结果,全年预计可节约运行成本176万元,最多4年可收回投资成本。项目改造完成后,我们对实际使用消耗进行了计量,并与改造前的数据进行了经济对比,见表4所示。在开机时间上,2010年比2008年供冷时间多500小时,供热水时间多1200小时,但实际节省费用基本符合预期效果。同时改造后的设备自动化程度高,操作程序简化,更加便于管理。
五、结束语
总之,中央空调制冷系统改造的方案选择,应根据医院规模大小、等级高低、冷热负荷大小、能源提供方式、运行管理和维修保养的便利程度、各医院的实际情况综合考虑。工程中还要因地制宜,既要考虑冷冻站、热力站的初投资、运行费等经济性能,又要考虑冷冻站、热力站的环保节能、运行、操作、维护管理等技术性能,以及与周围环境的协调。医院节能改造需以满足医疗服务需求和保证医患健康为基本前提,只有将设备的技术指标与医院实际科学合理的融合,才能达到节约成本的目的。
第二篇:中央空调系统节能改造方案
中央空调系统水泵变频节能改造方案
一、概述
中央空调系统在现代企业及生活环境改善方面极为普遍,而且某此生活环境或生产工序中是属必须的,即所谓人造环境,不仅是温度的要求,还有湿度、洁净度等。至所以要中央空调系统,目的是提高产品质量,提高人的舒适度,集中供冷供热效率高,便管理,节省投资等原因,为此几乎企业、高层商厦、商务大楼、会场、剧场、办公室、图书馆、宾馆、商场、超市、酒店、娱乐场、体育馆等中大型建筑上都采用中央空调的,它是现代大型建筑物不可缺少的配套设施之一,电能的消耗非常之大,是用电大户,几乎占了用电量50%以上,日常开支费用很大。
由于中央空调系统都是按最大负载并增加一定余量设计,而实际上在一年中,满负载下运行最多只有十多天,甚至十多个小时,几乎绝大部分时间负载都在70%以下运行。通常中央空调系统中冷冻主机的负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配的冷冻泵、冷却泵却不能自动调节负载,几乎长期在100%负载下运行,造成了能量的极大浪费,也恶化了中央空调的运行环境和运行质量。
随着变频技术的日益成熟,利用变频器、PLC、数模转换模块、温度传感器、温度模块等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量;采用变频调速技术不仅能使商场室温维持在所期望的状态,让人感到舒适满意,可使整个系统工作状态平缓稳定,更重要的是其节能效果高达30%以上,能带来很好的经济效益。
二、水泵节能改造的必要性
中央空调是大厦里的耗电大户,每年的电费中空调耗电占60% 左右,因此中央空调的节能改造显得尤为重要。
由于设计时,中央空调系统必须按天气最热、负荷最大时设计,并且留10-20% 设计余量,然而实际上绝大部分时间空调是不会运行在满负荷状态下,存在较大的富余,所以节能的潜力就较大,其中,冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应调节,存在很大的浪费。
水泵系统的流量与压差是靠阀门和旁通调节来完成,因此,不可避免地存在较大截流损失和大流量、高压力、低温差的现象,不仅大量浪费电能,而且还造成中央空调最末端达不到合理效果的情况。为了解决这些问题需使水泵随着负载的变化调节水流量并关闭旁通。
再因水泵采用的是Y-△起动方式,电机的起动电流均为其额定电流的3 ~ 4倍,一台90KW的电动机其起动电流将达到500A,在如此大的电流冲击下,接触器、电机的使用寿命大大下降,同时,起动时的机械冲击和停泵时水垂现象,容易对机械散件、轴承、阀门、管道等造成破坏,从而增加维修工作量和备品、备件费用。
采用变频器控制能根据冷冻水泵和冷却水泵负载变化随之调整水泵电机的转速,在满足中央空调系统正常工作的情况下使冷冻水泵和冷却水泵作出相应调节,以达到节能目的。水泵电机转速下降,电机从电网吸收的电能就会大大减少。
其减少的功耗 △ P=P0 〔 1-(N1/N0)3 〕(1)式
减少的流量 △ Q=Q0 〔 1-(N1/N0)〕(2)式
其中N1为改变后的转速,N0为电机原来的转速,P0为原电机转速下的电机消耗功率,Q0为原电机转速下所产生的水泵流量。由上式可以看出流量的减少与转速减少的一次方成正比,但功耗的减少却与转速减少的三次方成正比。如:假设原流量为100个单位,耗能也为100个单位,如果转速降低10个单位,由(2)式△ Q=Q0 〔 1-(N1/N0)〕 =100 *〔 1-(90/100)〕 =10可得出流量改变了10个单位,但功耗由(1)式△ P=P0[1-(N1/N0)3]=100 *〔 1-(90/100)3 〕 =27.1可以得出,功率将减少27.1个单位,即比原来减少27.1%。
再因变频器是软启动方式,采用变频器控制电机后,电机在起动时及运转过程中均无冲击电流,而冲击电流是影响接触器、电机使用寿命最主要、最直接的因素,同时采用变频器控制电机后还可避免水垂现象,因此可大大延长电机、接触器及机械散件、轴承、阀门、管道的使用寿命。
三、中央空调系统构成及工作原理 图一所示:
1、冷冻机组:通往各个房间的循环水由冷冻机组进行“内部热交换”作用,使冷冻水降温为5~7℃。并通过循环水系统向各个空调点提供外部热交换源。内部热交换产生的热量,通过冷却水系统在冷却塔中向空气中排放。内部热交换系统是中央空调的“制冷源”。
2、冷冻水塔:用于为冷冻机组提供“冷却水”。
3、“外部热交换”系统:由两个循环水系统组成: ⑴、冷冻水循环系统由冷冻泵及冷冻管道组成。从冷冻机组流出的冷冻水由冷冻泵加压送入冷冻水管道,在各个房间内进行热交换,带走房间内的热量,使房间内的温度下降。⑵、冷却水循环系统由冷却泵、冷却水管道及冷却塔组成。冷冻机组进行热交换,使水温冷却的同时,必将释放大量的热量,该热量被冷却水吸收,使冷却水温度升高,冷却泵将升了温的冷却水压入水塔,使之在冷却塔中与大气进行热交换,然后再将降了温的冷却水,送回到冷冻机组,如此不断循环,带走冷冻机组成释放的热量。
4、冷却风机
⑴、室内风机:安装于所有需要降温的房间内,用于将由冷冻水冷却了的冷空气吹入房间,加速房间内的热交换; ⑵、冷却塔风机用于降低冷却塔中的水温,加速将“回水”带回的热量散发到大气中去。
中央空调系统的四个部分都可以实施节电改造。但冷冻水机组和冷却水机组的改造改造后节电效果最为理想,文章中我们将重点阐述对冷冻机组和冷却机组的变频调速技术改造。
四、中央空调变频系统改造方案
现将内蒙古某饭店的中央空调系统的变频节能改造方案做一具体介绍。1.中央空调原系统简介:
1.1该集饭店中央空调系统改造前的主要设备和控制方式:450冷吨冷气主机2台,型号为特灵二极式离心机,两台并联运行;冷冻水泵2台,扬程28米配有功率45KW,冷却水泵有2台,扬程35米,配用功率75KW。均采用两用一备的方式运行。冷却塔2台,风扇电机11KW,并联运行。室内风机4台,5.5KW,并联运行。
1.2原系统的运行及存在问题:该饭店是一家五星饭店,为了给客入营造一个良好的居住环境,饭店大部空间采用全封密的,且饭店大部分空间自然通风效果不好,所以对夏季冷气质量的要求较高。由于中央空调系统设计时必须按天气最热、负荷最大时设计,且留有10%-20%左右的设计余量。其中冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应的调节。这样,冷冻水、冷却水系统几乎长期在大流量、小温差的状态下运行,造成了能量的极大浪费。而且冷冻、冷却水泵采用的均是Y—△起动方式,电机的起动电流均为其额定电流的3—4倍,在如此大的电流冲击下,接触器的使用寿命大大下降;同时,启动时的机械冲击和停泵时的水锤现象,容易对机械器件、轴承、阀门和管道等造成破坏,从而增加维修工作量、维修费用、设备也容易老化。另外由于冷冻泵轴输送的冷量不能跟随系统实际负荷的变化,其热力工况的平衡只能由人工调整冷冻主机出水温度,以及大流量小温差来掩盖。这样,不仅浪费能量,也恶化了系统的运行环境、运行质量。特别是在环境温度偏低、某些末端设备温控稍有失灵或灵敏度不高时,将会导致大面积空调室温偏冷,感觉不适,严重干扰中央空调系统的运行质量。因为空调偏冷的问题经常接到客人的投诉,处理这些投诉造成不少人力资源的浪费。
根据实际情况,我们向该饭店负责人提出:利用变频器、人机界面、PLC、数模转换模块、温度模块、温度传感器等构成的温差闭环自动调速系统。对冷冻、冷却水泵进行改造,以节约电能、稳定系统、延长设备寿命。2.中央空调系统节能改造的具体方案
中央空调系统通常分为冷冻(媒)水和冷却水两个系统(如下图,左半部分为冷冻(媒)水系统,右半部分为冷却水系统)。根据国内外最新资料介绍,并多处通过对在中央空调水泵系统进行闭环控制改造的成功范例进行考察,现在水泵系统节能改造的方案大都采用变频器来实现。
2.1、冷冻(媒)水泵系统的闭环控制
制冷模式下冷冻水泵系统的闭环控制
该方案在保证最末端设备冷冻水流量供给的情况下,确定一个冷冻泵变频器工作的最小工作频率,将其设定为下限频率并锁定,变频冷冻水泵的频率调节是通过安装在冷冻水系统回水主管上的温度传感器检测冷冻水回水温度,再经由温度控制器设定的温度来控制变频器的频率增减,控制方式是:冷冻回水温度大于设定温度时频率无极上调。
该模式是在中中央空调中热泵运行(即制热)时冷冻水泵系统的控制方案。同制冷模式控制方案一样,在保证最末端设备冷冻水流量供给的情况下,确定一个冷冻泵变频器工作的最小工作频率,将其设定为下限频率并锁定,变频冷冻水泵的频率调节是通过安装在冷冻水系统回水主管上的温度传感器检测冷冻水回水温度,再经由温度控制器设定的温度来控制变频器的频率增减。不同的是:冷冻回水温度小于设定温度时频率无极上调,当温度传感检测到的冷冻水回水温越高,变频器的输出频率越低。
2.2、冷却水系统的闭环控制
目前,在冷却水系统进行改造的方案最为常见,节电效果也较为显著。该方案同样在保证冷却塔有一定的冷却水流出的情况下,通过控制变频器的输出频率来调节冷却水流量,当中中央空调冷却水出水温度低时,减少冷却水流量;当中中央空调冷却水出水温度高时,加大冷却水流量,从而达到在保证中中央空调机组正常工作的前提下达到节能增效的目的。
现有的控制方式大都先确定一个冷却泵变频器工作的最小工作频率,将其设定为:
下限频率并锁定,变频冷却水泵的频率是取冷却管进、出水温度差和出水温度信号来调节,当进、出水温差大于设定值时,频率无极上调,当进、出水温差小于设定值时,频率无极下调,同时当冷却水出水温度高于设定值时,频率优先无极上调,当冷却水出水温度低于设定值时,按温差变化来调节频率,进、出水温差越大,变频器的输出频率越高;进、出水温差越小,变频器的输出频率越低。
2.3该中央空调节能系统具体装机清单如表二:
机组名称 机型 品牌 数量
冷冻水泵 45KW变频柜 ABB ACS800 两套
冷却水泵 75KW变频柜 ABB ACS800 两套
风机组 11KW变频柜 ABB ACS800 两套
室内风机 5.5KW变频柜 ABB ACS800 四套
配件 PLC 西门子S7300 一台
人机界面 西门子 一台
温度传感器 丹佛斯 两个
温度模块 欧姆龙 两个
数字转换模块 欧姆龙 两个
2.4介绍变频节电原理:
变频节能原理:由流体传输设备(水泵、风机)的工作原理可知:水泵、风机的流量(风量)与其转速成正比;水泵、风机的压力(扬程)与其转速的平方成正比,而水泵、风机的轴功率等于流量与压力的乘积,故水泵、风机的轴功率与其转速的三次方成正比(即与电源频率的三次方成正比)。变频器节能的效果是十分显著的,这种节能回报是看到见的。特别是调节范围大、启动电流大的系统及设备,通过图三可以直观的看出在流量变化时只要对转速(频率)稍作改变就会使水泵轴功率有更大程度上的改变,就因此特点使得变频调速装置成为一种趋势,而且不断深入并应用于各行各业的调速领域。
根据上述原理可知:改变水泵、风机的转速就可改变水泵、风机的输出功率。
图中阴影部分为同一台水泵的工频运行状态与变频运行状态在随着流量变化所耗功率差。
2.5介绍系统电路设计和控制方式
根据中央空调系统冷却水系统的一般装机,建议在冷却水系统和冷冻水系统各装两套ABB ACS800一体化变频调速控制柜,其中冷却变频调速控制柜供两台冷却水泵切换(循环)使用,冷冻变频调速控制柜供两台冷冻水泵切换(循环)使用。变频节能调速系统是在保留原工频系统的基础上加装改装的,变频节能系统的联动控制功能与原工频系统的联动控制功能相同,变频节能系统与原工频系统之间设置了联锁保护,以确保系统工作安全。利用变频器、人机界面、PLC、数模转换模块、温度传感器、温度模块等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量,为了达到节能目的提供了可靠的技术条件。如图四所示:
2.6系统主电路的控制设计
根据具体情况,同时考虑到成本控制,原有的电器设备尽可能的利用。冷冻水泵及冷却水泵均采用一用一备的方式运行,因备用泵转换时间与空调主机转换时间一致,均为一个月转换一次,切换频率不高,决定将冷冻水泵和冷却水泵电机的主备切换控制利用原有电器设备,通过接触器、启停按钮、转换开关进行电气和机械互锁。确保每台水泵只能由一台变频器拖动,避免两台变频器同时拖动同一台水泵造成交流短路事故;并且每台变频器任何时间只能拖动一台水泵,以免一台变频器同时拖动两台水泵而过载。
2.7系统功能控制方式
上位机监控系统主要通过人机界面完成对工艺参数的检测、各机组的协调控制以及数据的处理、分析等任务,下位机PLC主要完成数据采集,现场设备的控制及连锁等功能。具体工作流程:开机:开启冷水及冷却水泵,由PLC控制冷水及冷却水泵的启停,由冷水及冷却水泵的接触器向制冷机发出联锁信号,开启制冷机,由变频器、温度传感器、温度模块组成的温差闭环控制电路对水泵进行调速以控制工作流量,同时PLC控制冷却塔根据温度传感器信号自动选择开启台数。当过滤网前后压差超出设定值时,PLC发出过滤堵塞报警信号。送风机转速的快慢是由回风温度与系统设定值相比较后,用PID方式控制变频器,从而调节风机的转速,达到调节回风温度的目的。停机:关闭制冷机,冷水及冷却水泵以及冷却塔延时十五分钟后自动关闭。保护:由压力传感器控制冷水及冷却水的缺水保护,压力偏低时自动开启补水泵补水。
2.8介绍系统节能改造原理
1、对冷冻泵进行变频改造控制原理说明如下:PLC控制器通过温度模块及温度传感器将冷冻机的回水温度和出水温度读入控制器内存,并计算出温差值;然后根据冷冻机的回水与出水的温差值来控制变频器的转速,调节出水的流量,控制热交换的速度;温差大,说明室内温度高系统负荷大,应提高冷冻泵的转速,加快冷冻水的循环速度和流量,加快热交换的速度;反之温差小,则说明室内温度低,系统负荷小,可降低冷冻泵的转速,减缓冷冻水的循环速度和流量,减缓热交换的速度以节约电能;
2、对冷却泵进行变频改造由于冷冻机组运行时,其冷凝器的热交换量是由冷却水带到冷却塔散热降温,再由冷却泵送到冷凝器进行不断循环的。
冷却水进水出水温差大,说明冷冻机负荷大,需冷却水带走的热量大,应提高冷却泵的转速,加大冷却水的循环量;温差小,则说明,冷冻机负荷小,需带走的热量小,可降低冷却泵的转速,减小冷却水的循环量,以节约电能。
3、冷却塔风机变频控制通过检测冷却塔水温度对冷却塔风机进行变频调速闭环控制,使冷却塔水温度恒定在设定温度,可以有效地节省风机的电能额外损耗,能达到最佳节电效果。
4、室内风机组变频控制通过检测冷房温度对变风机组的风机进行变频调速闭环控制,实现冷房温度恒定在设定温度。室内风机组变频控制后可达到理想的节电效果,并且空调效果较佳。2.5系统流量、压力保障
本方案的调节方式采用闭环自动调节控制,冷却水泵系统和冷冻水泵系统的调节方式基本相同,用温度传感器对冷却(冷冻)水在主机上的出口水温进行采样,转换成电量信号后送至温控器将该信号与设定值进行比较运算后输出一类比信号(一般为4—20MA、0—10V等)给PLC,由PLC、数模转换模块、温度传感器、温度模块进行温差闭环控制,手动/自动切换和手动频率上升、下降由PLC控制,最后把数据传关到上位机人机界面实行监视控制。变频器根据PLC发出的类比信号决定其输出频率,以达到改变水泵转速并调节流量的目的。冷却(冷冻)水系统的变频节能系统在实际使用中要考虑水泵的转速与扬程的平方成正比的关系,以及水泵的转速与管损平方成正比的关系;在水泵的扬程随转速的降低而降低的同时管道损失也在降低,因此,系统对水泵扬程的实际需求一样要降低;而通过设定变频器下限频率的方法又可保证系统对水泵扬程的最低需求。供水压力的稳定和调节量可以通过PID参数的调整。当供水需求量减少时,管道压力逐渐升高,内部PID调节器输出频率降低,当变频器输出频率低至0HZ时,而管道在一设定时间内还高于设定压力,变频器切断当前变频控制泵,转而控制下一个原工频控制泵,变频器在水泵控制转换过程中,逐渐轮换使用水泵,使每个水泵的利用率均等,增加系统、管道压力的稳定性和可靠性。
五、中央空调系统进行变频改造的优点
变频节能改造后除了可以节省大量的电能外还具有以下优点:、只需在中中央空调冷却管出水端安装一个温度传感器(如图,安装在冷却水系统中中央空调冷却水出水主管上的B处),简单可靠。、当冷却水出水温度高于温度上限设定值时,频率直接优先上调至上限频率。3、当冷却水出水温度低于温度下限设定值时,频率直接优先下调至下限频率。而采用冷却管进、出水温度差来调节很难达到这点。4、当冷却水出水温度介于温度下限设定值与温度上限设定值时,通过对冷却水出水温度及温度上、下限设定值进行PID计算,从而达到对频率进行无极调速,闭环控制迅速准确。、节能效果更为明显。当冷却水出水温度低于温度上限设定值时,采用冷却管进、出水温度差来调节方式没有将出水温度低这一因素加入节能考虑范围,而仅仅由温度差来对频率进行无极调速,而采用上、下限温度来调节方式充分考虑这一因素,因而节能效果更为明显,通过对多家用户市场调查,平均节电率要提高5 %以上,节电率达到20 %以上。
额定电流变化,减小了大电流对电机的冲击;
六、ABB ACS800系列一体化变频器的优点 1.采用独特的空间矢量(SVPWM)调制方式; 2.操作简单,具有键盘锁定功能,防止误操作; 3.内置PID功能,可接受多种给定、反遗信号;
4.具有节电、市电和停止三位锁定开关,便于转换及管理; 5.保护功能完善,可远程控制;
6.超静音优化设计,降低电机噪声;
7.安装比较方便,不用破坏原有的配电设施及环境; 8.稳定整个系统的正常运行,抗干扰能力强;
9.具有过载、过压、过流、欠压、电源缺相等自动保护功能及声光报警功能。
七、结束语
在科技日新月异的今天,积极推广变频调速节能技术的应用,使其转化为社会生产力,是我们工程技术人员应尽的社会责任。对落后的设备生产工艺进行技术革新,不仅可以提高生产质量、生产效率,创造可观的经济效益。对节能、环保等社会效益同样有着重要的意义。随着变频器应用普及时代的来临,我公司已将变频器的应用扩展到传统中央空调改造的领域,不仅扩大了变频器的应用市场,而且为中央空调应用也提出了新的课题。预计在不久的将来,由于变频调速技术的介入,中央空调系统将真正地进入经济运行时代,希望上述工作对于同仁们在传统的电气传动设备技术改造和推进高新技术产品的普及应用工作中能有所启示和借鉴。
第三篇:中央空调系统变频节能改造方案
中央空调系统变频节能改造方案
点击数: 465
刘佳畅
摘要 在我国经济快速发展的大背景下,能源(水、电、油)的消耗在企业中所占的比重越来越高,也受到愈来愈大的重视。同时由于房地产的快速发展需求,中央空调的市场需求呈现强劲的增长趋势。在市场容量不断增大的吸引下,越来越多的厂家加入到商用中央空调的领域。变频技术应用于中央空调系统,对提升中央空调自动化水平、降低能耗、减少对电网的冲击、延长机械及管网的使用寿命,都具有重要的意义。
关键字 中央空调系统;水泵;风机;变频器
Abstract
Keywords 概述
中央空调系统在现代企业及生活环境改善方面极为普遍,而且是某些生活环境或生产工序中所必须配备的,即所谓人造环境,不仅是温度的要求,还有湿度、洁净度等。之所以要求配置中央空调系统,目的在于提高产品质量,提高人的舒适度,而且集中供冷供热效率高,便于管理,节省投资等。为此,几乎所有企业、高层商厦、商务大楼、会场、剧场、办公室、图书馆、宾馆、商场、超市、酒店、娱乐场、体育馆等中大型建筑上都采用中央空调,它是现代大型建筑物不可缺少的配套设施之一,但由于它的电能消耗非常之大,是用电大户,几乎占了用电量的50%以上,因此其日常开支费用很大。
中央空调系统都是按最大负载并增加一定余量设计的,而实际上在一年中,满负载下运行最多只有十多天,甚至十多个小时,绝大部分时间负载都在70%以下运行。通常,中央空调系统中冷冻主机的负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配的冷冻泵、冷却泵却不能自动调节负载,几乎长期在100%负载下运行,造成了能量的极大浪费,也恶化了中央空调的运行环境和运行质量。
随着变频技术的日益成熟,利用变频器、PLC、D/A转换模块、温度传感器、温度模块等部件的有机结合,可构成温差闭环自动控制系统,自动调节水泵的输出流量。采用变频调速技术不仅能使商场室温维持在所期望的状态,让人感到舒适满意,使整个系统工作状态平缓稳定,更重要的是其节能效果高达30%以上,能带来很好的经济效益。中央空调系统构成及工作原理
如图1所示,中央空调系统主要由以下几个部分组成。2.1 冷冻机组
通往各个房间的循环水经由冷冻机组进行“内部热交换”作用,使冷冻水降温为5~7℃。并通过循环水系统向各个空调点提供外部热交换源。内部热交换产生的热量,通过冷却水系统在冷却塔中向空气中排放。内部热交换系统是中央空调的“制冷源”。2.2 冷冻水塔
用于为冷冻机组提供“冷却水”。2.3 “外部热交换”系统
此系统由两个循环水系统组成:
1)冷冻水循环系统由冷冻泵及冷冻管道组成。
从冷冻机组流出的冷冻水由冷冻泵加压送入冷冻水管道,在各个房间内进行热交换,带走房间内的热量,使房间内的温度下降;
2)冷却水循环系统由冷却泵、冷却水管道及冷却塔组成。冷冻机组进行热交换,使水温冷却的同时,必将释放大量的热量,该热量被冷却水吸收,促使冷却水温度升高,冷却泵将升了温的冷却水压入水塔,使之在冷却塔中与大气进行热交换,然后再将降了温的冷却水,送回到冷冻机组,如此不断循环,带走冷冻机组所释放的热量。
2.4 冷却风机
1)室内风机安装于所有需要降温的房间内,用于将由冷冻水冷却了的冷空气吹入房间,加速房间内的热交换。2)冷却塔风机用于降低冷却塔中的水温,加速将“回水”带回的热量散发到大气中去。
中央空调系统的四个部分都可以实施节电改造,但冷冻水机组和冷却水机组改造后的节电效果最为理想。因此我们将重点阐述对冷冻机组和冷却机组的变频调速技术改造,次要说明冷却风机的变频调速技术改造。3 中央空调系统变频改造的具体方案
现将淅江省嘉兴市某集团公司办公楼的中央空调系统的变频节能改造方案做一具体介绍。3.1 中央空调原系统存在的问题
该集团中央空调系统改造前的主要设备和控制方式:
1)450 t冷气主机2台,型号为特灵二极式离心机,两台并联运行; 2)冷冻水泵2台,扬程28 m,配用功率45 kW;
3)冷却水泵有2台,扬程35m,配用功率75 kW,冷冻水泵与冷却水泵均采用一用一备的方式运行; 4)冷却塔2台,风扇电机11 kW,并联运行,室内风机4台,5.5 kW,并联运行。
该集团是一家合资企业,为了给员工营造一个良好的工作环境,办公楼大部分空间采用全封密的模式,因此公司大部分空间自然通风效果不好,所以对夏季冷气质量的要求较高。除了一些节假日外,其它时间中央空调都是全开的。由于中央空调系统设计时按天气最热、负荷最大时设计,且留有10%~20%的设计余量。其中冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应的调节。这样,冷冻水、冷却水系统几乎长期在大流量、小温差的状态下运行,造成了能量的极大浪费。原系统中冷冻、冷却水泵采用的均是Y-△起动方式,电机的起动电流均为其额定电流的3~4 倍,在如此大的电流冲击下,接触器的使用寿命大大下降;同时,启动时的机械冲击和停泵时的水锤现象,容易对机械部件、轴承、阀门和管道等造成破坏,从而增加维修工作量、维修费用,设备也容易老化。
另外,由于冷冻泵轴输送的冷量不能跟随系统实际负荷的变化,其热力工况的平衡只能由人工调整冷冻主机出水温度,结果只能是用大流量获得小温差。这样,不仅浪费能量,也恶化了系统的运行环
境与运行质量。特别是在环境温度偏低、某些末端设备温控稍有失灵或灵敏度不高时,将会导致大面积空调室温偏冷,感觉不适,严重干扰中央空调系统的运行质量。
针对上述实际情况,对该集团的中央空调系统实施了利用变频器、人机界面、PLC、数模转换模块、温度模块、温度传感器等构成的温差闭环自动调速系统的方案。主要对冷冻、冷却水泵进行了变频调速技术改造,达到节约电能、稳定系统、延长设备寿命,提高环境舒适度的目的。3.2 中央空调系统节能改造的具体方案
对该中央空调节能系统进行变频节能改造的具体装机清单如表1所列。
3.2.1 变频节电原理
由流体传输设备(水泵、风机)的工作原理可知:水泵、风机的流量(风量)与其转速成正比;水泵、风机的压力(扬程)与其转速的平方成正比;而水泵、风机的轴功率等于流量与压力的乘积,故水泵、风机的轴功率与其转速的三次方成正比(即与电源频率的
三次方成正比)。变频器节能的效果是十分显著的,这种节能回报是看得见的。特别是调节范围大、启动电流大的系统及设备,通过图2 可以直观地看出在流量变化时只要对转速(频率)稍作改变就会使水泵轴功率有更大程度上的改变,此特点使得使用变频器进行调速成为一种趋势,而且不断深入并应用于各行各业的调速领域。根据上述原理可知:改变水泵、风机的转速就可改变水泵、风机的输出功率。
图中阴影部分为同一台水泵的工频运行状态与变频运行状态在随着流量变化所消耗的功率差。3.2.2 系统电路设计和控制方式
根据中央空调系统冷却水系统的一般装机形式,建议在冷却水系统和冷冻水系统各装两套传动之星SD-YP 系列一体化变频调速控制柜,其中冷却变频调速控制柜供两台冷却水泵切换(循环)使用,冷冻变频调速控制柜供两台冷冻水泵切换(循环)使用。变频节能调速系统是在保留原工频系统的基础上改装的,变频节能系统的联动控制功能与原工频系统的联动控制功能相同,变频节能系统与原工频系统之间设置了联锁保护,以确保系统工作安全。利用变频器、人机界面、PLC、数模转换模块、温度传感器、温度模块等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量,为达到节能的目的提供了可靠的技术条件。如图3所示,给出了主电路具体的改造方案。
3.2.3 系统主电路的控制设计
根据具体情况,同时考虑到成本控制,尽可能地利用原有的电器设备。冷冻水泵及冷却水泵均采用一用一备的运行方式,因备用泵转换时间与空调主机转换时间一致,切换频率不高,所以冷冻水泵和冷却水泵电机的主备切换控制利用原有电器设备,通过接触器、启停按钮、转换开关进行电气和机械互锁。确保每台水泵只能由一台变频器拖动,避免两台变频器同时拖动同一台水泵造成交流短路事故;并且每台变频器任何时间只能拖动一台水泵,以免一台变频器同时拖动两台水泵而过载。3.2.4 系统功能控制方式
上位机监控系统主要通过人机界面完成对工艺参数的检测,各机组的协调控制以及数据的处理、分析等任务;下位机PLC主要完成数据采集,现场设备的控制及联锁等功能。具体工作过程中,开机时,开启冷水及冷却水泵,由PLC控制冷水及冷却水泵的启停,由控制冷水及冷却水泵的接触器向制冷机发出联锁信号,开启制冷机,由变频器、温度传感器、温度模块组成的温差闭环控制电路对水泵进行调速以控制工作流量,同时PLC控制冷却塔根据温度传感
器信号自动选择开启台数;当过滤网前后压差超出设定值时,PLC发出过滤堵塞报警信号;送风机转速的快慢是由回风温度与系统设定值相比较后,用PID方式控制变频器,从而调节风机的转速,达到调节回风温度的目的。停机时,关闭制冷机,冷水及冷却水泵以及冷却塔延时15 min 后自动关闭。保护时,由压力传感器控制冷水及冷却水的缺水保护,压力偏低时自动开启补水泵补水。
3.3 系统节能改造原理
变频节能系统示意图如图4所示。
1)对冷冻泵进行变频改造PLC控制器通过温度模块及温度传感器将冷冻机的回水温度和出水温度读入控制器内存,并计算出温差值;然后根据冷冻机的回水与出水的温差值来控制变频器的转速,调
节出水的流量,控制热交换的速度。温差大,说明室内温度高系统负荷大,应提高冷冻泵的转速,加快冷冻水的循环速度,加大流量,加快热交换的速度;反之温差小,则说明室内温度低,系统负荷小,可降低冷冻泵的转速,减缓冷冻水的循环速度,减小流量,降低热交换的速度以节约电能。
2)对冷却泵进行变频改造由于冷冻机组运行时,其冷凝器的热交换量是由冷却水带到冷却塔散热降温,再由冷却泵送到冷凝器进行不断循环的。冷却水进水出水温差大,说明冷冻机负荷大,需冷却水带走的热量大,应提高冷却泵的转速,加大冷却水的循环量;温差小,则说明,冷冻机负荷小,需带走的热量小,可降低冷却泵的转速,减小冷却水的循环量,以节约电能。
3)冷却塔风机变频控制通过检测冷却塔水的温度对冷却塔风机进行变频调速闭环控制,使冷却塔水温恒定在设定温度,可以有效地节省风机的电能额外损耗,能达到最佳节电效果。
4)室内风机组变频控制通过检测冷房温度对变风机组的风机进行变频调速闭环控制,实现冷房温度恒定在设定温度。室内风机组变频控制后可达到理想的节电效果,并且使空调效果更佳。
3.4 系统流量、压力保障
本方案的调节方式采用闭环自动调节控制,冷却水泵系统和冷冻水泵系统的调节方式基本相同,用温度传感器对冷却(冷冻)水在主机上的出口水温进行采样,转换成电量信号后送至温控器将该信号
与设定值进行比较运算后输出一模拟信号(一般为4~20 mA、0~10 V等)给PLC,由PLC、D/A转换模块、温度传感器、温度模块进行温差闭环控制,手动/自动切换和手动频率上升、下降由PLC控制,最后把数据传送到上位机人机界面实行监视控制。变频器根据PLC 发出的模拟信号决定其输出频率,以达到改变水泵转速并调节流量的目的。
冷却(冷冻)水系统的变频节能系统在实际使用中要考虑水泵的转速与扬程的平方成正比的关系,以及水泵的转速与管损平方成正比的关系。在水泵的扬程随转速的降低而降低的同时管道损失也在降 低,因此,系统对水泵扬程的实际需求一样要降低; 而通过设定变频器下限频率的方法又可保证系统对水泵扬程的最低需求。供水压力的稳定和调节量可以通过PID参数的调整。当供水需求量减少时,管道压力逐渐升高,内部PID调节器输出频率降低,当变频器输出频率低至0 Hz时,而管道在一设定时间内还高于设定压力,变频器切断当前变频控制泵,转而控制下一个原工频控制泵,变频器在水泵控制转换过程中,逐渐轮换使用水泵,使每个水泵的利用率均等,增加系统、管道压力的稳定性和可靠性。中央空调系统进行变频改造的优点
变频节能改造后除了可以节省大量的电能外还具有以下优点:
1)电机起动是软起动,电流从0 A到额定电流变化,减小了大电流对电机的冲击; 2)电机软起动转速从0 开始缓慢升速,可以有效减少水泵或风机的机械磨损;
3)变频器是高性能的电力电子设备,具有较强的电机保护功能,能延长系统各部件的使用寿命; 4)使室温维持恒定,让人感到舒适;
5)经过改造后,可以使系统具有较高的可靠性,减少了环境噪音,减少了维修维护工作量。5 传动之星SD-YP系列一体化变频器的优点 1)采用独特的空间矢量(SVPWM)调制方式; 2)操作简单,具有键盘锁定功能,防止误操作; 3)内置PID功能,可接受多种给定、反馈信号;
4)具有节电、市电和停止三位锁定开关,便于转换及管理; 5)保护功能完善,可远程控制; 6)超静音优化设计,降低电机噪声;
7)安装比较方便,不用改变原有的配电设施及环境; 8)稳定整个系统的正常运行,抗干扰能力强;
9)具有过载、过压、过流、欠压、电源缺相等自动保护功能及声光报警功能。6 结语
在科技日新月异的今天,积极推广变频调速节能技术的应用,使其转化为社会生产力,是我们工程技术人员应尽的社会责任。对落后的设备生产工艺进行技术革新,不仅可以提高生产质量、生产效率,创造可观的经济效益,对节能、环保等社会效益同样有着重要的意义。随着变频器应用普及时代的来临,不仅扩大了变频器的应用市场,而且为中央空调应用也提出了新的课题。预计在不久的将来,由于变频调速技术的介入,中央空调系统将真正地进入经济
运行时代,希望上述工作对于同仁们在传统的电气传动设备技术改造和推进高新技术产品的普及应用工作中能有所启示和借鉴。
第四篇:山东大学主教学楼中央空调节能改造工程
山东大学主教学楼中央空调节能改造工程
摘要:针对重庆大学主教学楼中央空调系统的特点和要求,我们将分层能量计量和用电计量集成到EA系统。EA能源顾问系统能够对重庆大学主教学楼的中央空调系统的运行信息的全面采集及综合分析处理,实现冷水机组与冷冻水系统、冷却水系统和冷却塔系统的匹配和协调运行,实现变负荷工况下整个系统综合性能优化,可保障冷机控制系统在任何负荷条件下,都高效率地运行,最大限度地降低整个系统的能耗。
关键词:山东大学,主教学楼,中央空调,节能改造
Abstract: aiming at the main teaching chongqing university of the central air conditioning system characteristics and requirements, we will be layered energy measurement and electricity meters integrated to EA system.EA energy adviser to chongqing university system to the main teaching of the central air conditioning system operation of information collection and comprehensive analysis and processing of comprehensive, realize water chillers and chilled water system, cooling water system and cooling tower system matching and harmoniously, realize the variable load conditions the whole system comprehensive performance optimization, guaranteeing cold machine control system in any load conditions, high efficiency operation, maximize reduce the energy consumption of the whole system.Keywords: shandong university, the main teaching building, central air conditioning, energy saving transformation
中图分类号:TE08文献标识码:A 文章编号:
主教学楼中央空调节能改造概况及分析
1、改造概况
山东大学主教学楼是集教学、科研、办公、会议于一体的综合性大楼,位于重庆大学A区心脏地带,西邻经营学院,北临嘉陵江,南邻民主湖,总建筑面积70032平方米,建筑高低99米,分裙楼
一、裙楼二和塔楼三部分,地下三层,总空调面积37032平方米。
学校为了提高主教楼中央空调计量监控和节能经济运行,决定对相关系统进行节能改造,包括:
1、冷冻泵、冷却泵和冷却塔进行变频改造;
2、对冷机及控制系统进行节能改造;
3、对中央空调分楼层计量及楼层分项用电进行计量改造;
根据我们对项目的了解和实地的现场考察,我们发现此项目之前有一套机房控制系统,且为江森自控的产品系列,所以这个项目无论从硬件还是软件方面都非常适合应用我们的Energy Advisor能源管理系统,我们可以实现真正的无缝化通讯控制和能源计量。
从上述我们对该系统的了解可以得知:Energy Advisor能源管理系统是专门针对变频改造和冷机控制而设计的能源管理系统,Energy Advisor不仅通过先进、可转换的控制技术对控制系统进行优化,而且很重要的是它可以通过简洁、方便的可视化界面,能对整个系统的能源状态和节能情况有个直观的数字化计量,此系统比其它产品的出众之处也正是基于对整个能源系统的完整展示和计量分析。下面我们就具体方案进行详细阐述。
2、需求分析
2.1冷冻泵、冷却泵和冷却塔进行变频改造部分
我们根据系统的设计图纸要求,冷冻泵为2用2备,对其中的2台加装变频器,其功率为55KW, 冷却水泵为2用2备,对其中的2台加装变频器,其功率为75KW,循环泵为一用一备,对其中一台加装一台功率为22KW的变频器,水源热泵机组的水泵为2台,其中一台加装45KW的变频器,屋顶冷却塔风机共4台,分别加装3台22KW(5.5kw×5)的变频器,一台11KW(5.5kw×2)变频器,我们将变频器控制柜就近安放在启动柜附近,以方便安装和管理。
2.2对冷机及控制系统的节能改造
重庆大学冷水机组共4台,冷冻水循环泵6台,冷却水循环泵6台,我们去现场对江森自控的冷机系统进行了检测,发现原来安装的设备全部完好并能正常使用,为了给用户节约成本,不造成重复投资,将保留现场完好的现场设备;但我们如果进行节能监测和节能改造还需要加装部分设备以对其能耗进行更好的监测,主要设备包括:在冷水机组和冷冻和冷却出水侧分别安装流量计,以监测冷机的水流量情况,在每台冷水机组加装功率表,对其耗能情况进行实时监视,功率表的数据可以连入控制系统,通过通讯线传输到网络,实时显示在机房Energy Advisor系统的控制屏中。在屋顶安装室外温湿度传感器,当室外温度较低时,用以控制进入制冷机组冷凝器的冷却水温度不低于主机要求的最低启动温度。
2.3对中央空调分楼层计量及楼层分项用电进行计量改造
根据要求和图纸所示,要求我们的系统对于中央空提提供能量进行分层统计,在每层的空调水系统的供回水管上需加装水管温度传感器监测供回水温差,同时在水管上加装水流量传感器,从而根据这两个参数计算出相应的负荷和耗能。在每层的配电柜线路上安装功率表,监测每层动力、插座和照明的用电量,功率表接入控制系统并传输到网络,空调系统和功率使用情况会最终显示在机房Energy Advisor系统的控制屏中,我们可以通过软件平台清楚明了的知道空调使用功率和耗电量的情况,并可以进行能耗分析、财务计费、趋势模拟和报表打印。
4、冷机系统控制策略
由现场控制器及网络控制引擎组成冷机控制网络,操作站通过以太网与群控网络连接,操作系统为微软WINDOWS系统,完全图形化操作,人机界面简洁直观,轻松实现系统数据显示及控制功能,且操作站故障不影响自控系统的运行。冷机控制系统原理图见附件。
系统机房监控内容一般包含以下几部分:
在每台冷水机组、冷冻水泵、冷却水泵、冷却塔安装功率表,以提取一定周期内的功率消耗情况,从而为能源使用状态提供数据。
监控每台冷水机组的冷冻水和冷却水两侧水温度、压力、水流开关状态、电动阀门状态,监控设备状态。
在每台冷水机组的冷冻水侧安装水流量计,以监测冷冻水的水流量。
在冷冻水泵、冷却水泵和冷却塔根据设备数量安装相应负荷的变频器,并安装水压力传感器,监测前后端压力。
监测冷冻水总供回水、冷却水总供回水温度传。
监测冷冻水分集水器分的压力,调控分集水器间的压差调节阀,使分集水器间的压力在规定范围内。
监控主机、冷却塔、水泵等设备运行情况;其中冷冻机组、冷却塔相关的水泵和电动阀门、风扇的启停、运转台数完全由程序根据系统设置及负荷需求进行自动控制,无须人工干预,操作管理便捷、节省能源。
系统内所有设备发生故障,在操作站即有报警信息及明显表示,程序自动启动备用设备,并不再试图启动故障设备,直至故障消除,报警复位。
连锁控制:
A、起动:首先开冷却塔碟阀→开冷却塔风机→开冷却水碟阀→开冷却水泵→开冷冻水碟阀→冷却水塔风机(延时60秒)→开冷冻水泵→最后开冷水机组
B、停止:首先停止冷水机组(延时5-10分钟)→关冷冻泵→关冷冻水碟阀→关冷却水泵→关冷却水碟阀→最后关冷却塔风机→关冷却塔碟阀
系统将自动记录单台冷水机组的累计运行时间,根据机组的累计运行状况来采取超前和滞后控制,尽量使冷水机组达到平均使用,便于用户进行统一的维护和保养。
控制系统将对上述冷水机组参数和状态全部进行监测,并及时的向用户提供机组当前的最新状况。当机组出现故障时,系统将显示故障的具体位置和具体原因,帮助用户尽快解决问题。
总结:
整个项目改造完毕,我们做到了整个系统做到了
1)实现了低频低压的软启动,软停车,使运行更加平衡;
2)启动及加速过程冲击电流小,加速过程中最大启动电流不超过1.5倍额定电流,大大减小了对电网的冲击;
3)节能效果显著,据实测,在低速段节能明显,一般可达30%左右,降低运行成本;
4)延长水泵的使用寿命;
5)所有系统实时监控,能源使用率最大化。
注:文章内所有公式及图表请用PDF形式查看。
第五篇:项目教学法的实施与典型案例分析
项目教学法的实施与典型案例分析
(发表日期:2010-12-23 09:15)来源:《中国现代教育装备》 我要分享 周明虎 汪木兰 封世新
南京工程学院 江苏南京 211167 摘 要:总结了“项目教学法”基本程序和实施模式中“确定项目任务—制定工作计划—组织项目实施—检查考核评估—总结评比归档”5个阶段,分析了项目教学法和常规课程实践教学环节之间的显著区别,然后以数控加工与维修专业方向实施系列化项目教学为背景,详细介绍了“CAD/CAM应用”和“数控机床电气设计安装”两个项目教学典型案例的具体实施过程,为推广应用项目教学法提供了借鉴。关键词:项目教学法;教学改革;大工程观
1998年,南京工程学院先进制造技术工程中心与德国政府合作共建“南京自动化高等职业技术教育培训中心”(简称BAN项目),旨在学习借鉴德国高等工程和高等职业教育的先进理念和成功经验,结合我国国情开展应用型高等工程(职业)教育改革的探索和实践,并采用了德国“3+1”的教学模式,以机械设计制造及其自动化专业中数控加工与维修专业方向作为试点,进行了“小范围、大幅度”的教育教学改革,大力推行“项目教学法”,经过十多年的改进与完善,已经取得了很好的成效,培养的专业人才得到了行业的认可,多年来毕业生就业率在全校名列前茅。为此,本文主要对实施“项目教学法”的基本情况进行详细介绍和总结,为推广应用提供参考。
一、项目教学法
“项目教学法”是以现代认知心理学思想、自适应学习理论和探索性学习架构为基础,采用类似科学研究与工程实践的教学方法,促进学生主动学习、自主发展的一种新型的教学方法。在项目教学中,学习过程成为人人参与的创造性的实践活动,它注重的不是最终的结果,而是完成项目的全过程。其目的是在项目教学过程中把理论与实践教学有机地结合起来,充分发掘出学生的创造潜能,培养学生的自学能力、观察能力、动手能力、科学研究和分析问题能力、协作和互助能力、交际和交流等综合能力。
“项目教学法”的执行全过程包括收集信息、确定项目、制定计划、实施落实、成果展示与结果评价等。一般情况下,其基本程序和模式至少应包括以下5个阶段:
1.确定项目任务
通常由教师围绕专业能力培养要求和专业知识模块提出一个或几个项目任务,并与学生一起充分讨论,最终确定项目的实现目标和具体任务。
2.制定工作计划
以学生为主制定项目工作计划,确定工作步骤和流程,并注重同学之间的交流以及与指导教师之间的沟通,力保项目计划切实可行。
3.组织项目实施
确定学生各自的分工和合作的形式,并按照自己制定的步骤和程序有效地开展工作。在实施过程中碰到问题时要求及时地与同学或指导教师讨论,寻找解决问题的最佳方案。
4.检查考核评估
对项目实施过程以及完成的成果,指导教师进行检查、考核和评分,师生共同讨论和评判项目执行过程中所遇到的问题及其解决办法、成绩评定的原则和本项目的整体分析。
5.总结评比归档
师生共同对项目教学过程进行全面总结,并对学生或学习小组在该项目中的表现进行互相评比,结果按一定比例计入总分,最后将项目的成果(包括实物、软件、数据、资料和总结等)全部进行归档保存或集中展示。
二、项目教学和常规课程教学实践环节之间的区别
项目教学法和传统的教学实验、课程设计和实习等环节对比具有明显区别,其特点主要表现在:
1.项目教学可以作为一门独立的实践性课程,已经不再是某门理论课程或主干课程的附属,也不再局限于某个学科和课程。而是一门理论和实践相结合的综合性课程,涉及的知识和技能至少在两门课程以上,甚至于跨学科。学生通过项目的参与和亲自动手,巩固了所学的理论知识,提高了操作技能的水平,特别能将理论和实际相结合,相互支撑。
2.项目教学的指导教师不再是教学活动的惟一中心,而是从传统教学的主角转变为教学活动的组织者、监督者和学习辅导者。在整个项目教学中只有在第一阶段明确项目任务时以教师为主。在随后的第二、第三阶段,即制定计划和项目实施两个阶段学生逐步成为教学的中心,教师在把学生引入项目中后退居到次要的位置,随时准备帮助学生解决困难。最后的两个阶段则是教师和学生共为中心,进行总结评估和分析得失。
3.整个教学活动不光是知识和技能的获取,通过以上5个阶段而形成一个完整的行为模式,学生的计划、组织、分析、合作和评估等非专业的社会能力得到锻炼和提高,而社会能力正是学生将来走上工作岗位后体现从业能力的关键能力之一。
4.学生成为教学活动的主角,由传统的被动学习(要我学)变为现在的主动学习(我要学),提高了学生学习的兴趣和热情。
5.传统实践性教学方法往往是封闭的、单向的、灌输式的;而项目教学法则是开放的、双向的、互动式的,具有较多的自主学习的成分,不少项目学生可以将已经掌握的知识进行综合运用和自由发挥,减少了条条框框,与指导教师可以进行更多的平等交流,可以发表自己的意见,甚至对指导教师的要求可以提出自己的不同见解。这样可以将知识和技能学活,更能激发锻炼学生的创新意识和创新能力,而创新能力也是将来学生从业能力的关键。
6.项目教学一般都以团队学习的形式进行组织,学生相互交流、充分发挥个人的聪明才智,培养他们与他人合作共事的能力。特别在我国多为独生子女,合作能力先天不足,在教学环节中潜移默化加以锻炼,尤为重要。
7.项目教学中教师尽管不再是绝对的主角,但工作更重、责任更大,需要在项目执行之前做大量的准备工作:要确定项目内容、任务要求、工作计划、评价方法,设想在教学活动过程中可能会发生的情况,要考虑项目的难易程度以及学生对项目的承受能力等。在项目实施过程中,要把握每个小组乃至每位学生的具体情况,适时指导、保证进度,正确评判、不失公平。
8.项目教学对教师的素质提出了更高的要求,指导教师不仅要求讲授理论,还要能讲授实践课程;不但要会讲,还要动手做、给学生做示范,纠正学生操作中的错误;并能解释、解决整个教学过程中学生提出的任何问题。所以“双师”(教师、工程师)乃至“三师”(教师、工程师、技师)素质的师资队伍是项目教学取得实效的重要保证。
三、典型应用案例分析
南京工程学院先进制造技术工程中心在实践教学体系中对项目教学法进行了尝试,围绕专业主线开发了系列化项目教学,贯穿于整个培养过程,这些项目先易后难、有机衔接,并有其他实习课程配合,作为系列项目教学的基础。
现以数控加工与维修专业方向为例,设计的系列化教学项目有:数控机床测绘和CAD绘图→零件的数控加工→CAD/CAM应用→数控机床机械装配→PLC应用→数控机床电气设计安装→数控机床调试维修。相配套的其他实习教学环节有:金工实习、电工电子实习、数控编程操作实习等。整个进阶形式和各个教学项目之间的关系如图1所示,下面继续对其中的两个项目教学案例进行介绍。
1.“CAD/CAM应用”教学项目
在项目开始之前,学生已经学习了40学时的CAD/CAM理论课程。这个项目为期4周,其任务就是通过练习掌握软件的熟练使用。指导教师给出一些必须完成的目标任务,学生根据所学知识独立制定完成任务的方法和途径,在这个过程中教师进行指导和讲解。然后,每个人自己选择1个任务,自由设计并加工出1个具有一定复杂程度的三维曲面的零件,其具体步骤是:用CAD进行建模造型→用CAM生成加工程序→选择工件材料、刀具和夹具→数控加工仿真→检查修改完善加工程序→将程序从计算机传送至数控铣床→操作数控铣床将自己设计的零件加工出来,并且精度和表面粗糙度等都要达到设计要求。最后,由指导教师和学生一起进行项目讲评和总结。
该教学项目的直接目的是完整地、熟练地掌握CAD/CAM技术的应用,包括理论知识和操作技能。在项目实施的过程中必须用到的前续知识和技能有:金属材料、数控编程与操作、数控刀具、数控加工工艺和夹具、CAD/CAM理论等。通过该项目巩固了学过的知识,将这些知识融合在一起加以应用也是与将来的实际工作岗位相吻合的。最后的项目成果也不千篇一律,有人设计的是手机模型、有人加工了1个学校的徽标、也有人做了1位圣诞老人,等等。每件作品都倾注了同学们的热情和心血,对自己的作品人人都爱不释手,学习的积极性和主动性非常高,效果是不言而喻的。
2.“数控机床电气设计安装”教学项目
该项目的主要任务是设计、安装、接线、调试1台真实数控铣床的电气控制系统,一般按5人左右组成1个项目小组,每人先独立进行设计,然后小组成员互相讨论、交流和修改,最后形成1份比较完整的设计方案,由指导教师进行讲评和修改。方案设计通过以后,学生领取该系统所需要的电气安装底板、电气元器件、电线电缆、接线端子、工具和量具等,小组成员通力合作完成电气控制系统的接线。在接线完成以后,先由学生自行检查,再由指导教师审查,然后才能通电调试机床,各种预定功能的实现即标志项目基本完成。最后,指导教师还要就项目的执行过程进行点评,和学生们一起进行全面总结。这个项目学生将应用所学过的机床电气与PLC、数控技术等课程,电工电子实习中掌握的技能。项目执行过程中学生先动脑、再动手;既要与指导教师交流、也要与同学合作和探讨。将数控机床外围电气控制系统从理论到实践、从图纸到实物有机地对应起来,以培养学生的核心职业能力。
四、结束语
学生通过系列项目教学的参与和亲自动手制作,巩固了所学的理论知识,提高了操作技能的水平,特别能将理论和实际相结合,相互支撑。对本专业涉及的主要技术和关键技能都有了比较深刻的认识和一定程度的掌握。学生通过项目教学的训练,掌握了本专业应当具备的主要核心职业能力(例如,数控机床编程操作、CAD/CAM应用、数控机床电气设计安装、数控机床故障诊断与维修等),这些核心能力将成为学生打开企业大门的关键“钥匙”,也提高了他们就业后的适应能力。
参考文献
[1]李坤,赵阳,宁静.德国职教项目教学法的理论研究与实践及推行策略[J].吉林工程技术师范学院学报,2005,4:38~40 [2]王令其,汪木兰.构建高层次工程应用型人才培养的新模式[J].大学教育科学,2005,4:38~40 [3]王令其,左健民,汪木兰.大工程观与应用型工科教学改革[J].理工高教研究,2009,28(2):130~132 [4]曹德跃.项目教学法在专业课程教学中应用的探索[J].中国现代教育装备,2009,1:101~103 [5]胡力勤,马福军.以项目教学法为导向的实训体系构建研究[J].中国现代教育装备,2008,7:119~120 [6]罗运虎,邢丽冬,王勤,等.基于项目教学法的课程设计改革[J].电气电子教学学报,2009,31(6):14~15 [7]李松,崔巍.在课堂教学中运用项目教学法的思考[J].辽宁教育行政学院学报,2009,26(4):64~65