第一篇:2018高二数学立体几何学习方法
2018高二数学立体几何学习方法
数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。查字典数学网为大家推荐了高二数学立体几何学习方法,请大家仔细阅读,希望你喜欢。
一、逐渐提高逻辑论证能力
论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(推出法)形式写出。
二、立足课本,夯实基础
直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在出学的时候一般都很复杂,甚至很抽象。掌握好定理有以下三点好处:
(1)深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。
(2)培养空间想象力。
(3)得出一些解题方面的启示。
在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,用以帮助提高空间想象力。对后面的学习也打下了很好的基础。
三、转化思想的应用
我个人觉得,解立体几何的问题,主要是充分运用转化这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:
(1)两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。
(2)异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。
(3)面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。
(4)三垂线定理可以把平面内的两条直线垂直转化为空间的两条直线垂直,而三垂线逆定理可以把空间的两条直线垂直转化为平面内的两条直线垂直。
以上这些都是数学思想中转化思想的应用,通过转化可以使问题得以大大简化。
四、培养空间想象力 为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。例如:正方体或长方体。在正方体中寻找线与线、线与面、面与面之间的关系。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。其次,要培养自己的画图能力。可以从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。最后要做的就是树立起立体观念,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的立体图形,想象出原来空间图形的真实形状。空间想象力并不是漫无边际的胡思乱想,而是以提设为根据,以几何体为依托,这样就会给空间想象力插上翱翔的翅膀。
五、总结规律,规范训练
立体几何解题过程中,常有明显的规律性。例如:求角先定平面角、三角形去解决,正余弦定理、三角定义常用,若是余弦值为负值,异面、线面取锐角。对距离可归纳为:距离多是垂线段,放到三角形中去计算,经常用正余弦定理、勾股定理,若是垂线难做出,用等积等高来转换。不断总结,才能不断高。
还要注重规范训练,高考中反映的这方面的问题十分严重,不少考生对作、证、求三个环节交待不清,表达不够规范、严谨,因果关系不充分,图形中各元素关系理解错误,符号语言不会运用等。这就要求我们在平时养成良好的答题习惯,具体来讲就是按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。答题的规范性在数学的每一部分考试中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。对于即将参加高考的同学来说,考试的每一分都是重要的,在按步给分的原则下,从平时的每一道题开始培养这种规范性的好处是很明显的,而且很多情况下,本来很难答出来的题,一步步写下来,思维也逐渐打开了。
六、典型结论的应用
在平时的学习过程中,对于证明过的一些典型命题,可以把其作为结论记下来。利用这些结论可以很快地求出一些运算起来很繁琐的题目,尤其是在求解选择或填空题时更为方便。对于一些解答题虽然不能直接应用这些结论,但其也会帮助我们打开解题思路,进而求解出答案。
小编为大家提供的高二数学立体几何学习方法,大家仔细阅读了吗?最后祝同学们学习进步。
第二篇:高二数学立体几何基本知识及定理
1、柱、锥、台、球的结构特征
(1)棱柱:
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱 或用对角线的端点字母,如五棱柱
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
(4)圆柱:
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间点、直线、平面的位置关系
(1)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。(即直线在平面内,或者平面经过直线)
(2)公理2:经过不在同一条直线上的三点,有且只有一个平面。
推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
(4)公理4:平行于同一条直线的两条直线互相平行
(5)空间直线与直线之间的位置关系
① 异面直线定义:不同在任何一个平面内的两条直线
② 异面直线性质:既不平行,又不相交。
③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线
④ 异面直线所成角:直线a、b是异面直线,经过空间任意一点O,分别引直线a’∥a,b’∥b,则把直线a’和b’所成的锐角(或直角)叫做异面直线a和b所成的角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。
(6)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。
(7)空间直线与平面之间的位置关系——平行、相交、线在面内
(8)平面与平面之间的位置关系:平行——没有公共点;相交——有一条公共直线。
3、空间中的平行问题
(1)直线与平面平行的判定及其性质
线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
(2)平面与平面平行的判定及其性质
两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行,(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。,(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)
(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)
7、空间中的垂直问题
(1)线线、面面、线面垂直的定义
①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。
②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。
③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。
(2)垂直关系的判定和性质定理
①线面垂直判定定理和性质定理
判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
②面面垂直的判定定理和性质定理
判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。
第三篇:高二数学立体几何解题技巧
在做难题的时候,要注意方法。其实数学也是有方法可找的。就比如说解析几何,椭圆这类型的题,是联立还是点差法,下面给大家分享一些关于高二数学立体几何解题技巧,希望对大家有所帮助。
高二数学立体几何解题技巧
1平行、垂直位置关系的论证的策略
(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。
2空间角的计算方法与技巧
主要步骤:一作、二证、三算;若用向量,那就是一证、二算。
(1)两条异面直线所成的角①平移法:②补形法:③向量法:
(2)直线和平面所成的角
①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。
②用公式计算。
(3)二面角
①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。
②平面角的计算法:
(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式。
3空间距离的计算方法与技巧
(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。
(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。
(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。
4熟记一些常用的小结论
诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。
5平面图形的翻折、立体图形的展开等一类问题
要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。
6与球有关的题型
只能应用“老方法”,求出球的半径即可。
7立体几何读题
(1)弄清楚图形是什么几何体,规则的、不规则的、组合体等。
(2)弄清楚几何体结构特征。面面、线面、线线之间有哪些关系(平行、垂直、相等)。
(3)重点留意有哪些面面垂直、线面垂直,线线平行、线面平行等。
8解题程序划分为四个过程
①弄清问题。也就是明白“求证题”的已知是什么?条件是什么?未知是什么?结论是什么?也就是我们常说的审题。
②拟定计划。找出已知与未知的直接或者间接的联系。在弄清题意的基础上,从中捕捉有用的信息,并及时提取记忆网络中的有关信息,再将两组信息资源作出合乎逻辑的有效组合,从而构思出一个成功的计划。即是我们常说的思考。
③执行计划。以简明、准确、有序的数学语言和数学符号将解题思路表述出来,同时验证解答的合理性。即我们所说的解答。
④回顾。对所得的结论进行验证,对解题方法进行总结。
高二数学采取针对性措施提升成绩
(1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
(2)建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
(3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。
(4)经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。
(5)阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。
(6)及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。
(7)学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。
(8)经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。
(9)无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。
高二数学的学习方法
用好笔记本
从高一开始,我就有笔记本,老师上课的板书从来没有漏过一个知识点,没有漏掉过一个例题,都记在笔记本上。而且一定要上课的时候就听懂老师的思路,即使有不懂的,下课一定要去找老师提问。我借了笔记,看不懂就去问他。
笔记本上,基础概念,公式,例题,老师让我们课上做的题,都要记下来。其实目的很简单,以后好复习,而且写一遍有助于记忆。
下课之后,在每天做作业之前,我都会把笔记本拿出来先看一遍,今天主要什么知识,什么例题,主要的思路方法是什么,然后再去做作业。
其实作业里的很多题都不超出老师上课所涉及到的题型知识。有些确实难的,一定要自己先思考怎么做,实在做不出来就标注一下,拿答案来看。搞清楚自己到底卡在哪个地方了,然后把这个题当作一个典型记下来,当作一个方法的示例。
跟着老师走
另外就是自己做的练习了。我当时每一门课都有一本辅导书,或者是中学教材全解或者是王后雄或者是其他的,都是我自己亲自到书店去挑的,自己觉得好才去买。我是以自己学习情况来做题的,会的题做一两个就行了。如果是不会的,就一定会好好做,仔细研究题目整个的思路。后来发现考试里其实也就是很多见过的题型,方法都有共通之处。
高考复习,我就是很乖地跟着老师走。然后做老师的练习。然后自己做高考题,做别的模拟题。查缺补漏,多总结做题的方法。有些题型一开始我也不知道该怎么想,后来做多了,再加上老师一轮复习过方法,看看例题,自己慢慢就开窍了,看到之后也不会害怕了。
一定要有自信,不可以有抵触心理,不可以厌恶一门科目,否则你绝对学不好。我并不喜欢数学,但是我为了高考是一定会把它好好学好的。得数学者得天下,这句话没错!
别太在乎分数
关于所有的考试和练习:
请大家珍惜每一次练习,考试。
这种时候都是对自己这一阶段学习的一次检查。是非常必要的,查缺补漏都靠这个了。
不要太过于在乎分数
每次做完一定要找出自己的问题,是基础不牢,还是粗心大意,还是方法没有掌握等等。在困惑的时候一定要和老师好好交流。
一定记住,不要把问题归结于什么心态不好,不在状态这种虚无缥缈的原因上,一定要找到最基础最根本的原因!否则你就永远晕头转向,不知道该朝哪个方向努力!
关于考试作弊,提前查答案等等不诚实的行为。我只能说,出来混的,迟早要还的,不信的话,高考见吧。浪费掉的是你每次练习检验自己的机会,浪费掉的是自己这么多年来的学习,你自己的心里也会不安的!
在一轮复习中,老师会按照知识点复习。复习中,老师在课堂上会讲一些经典的例题和一些必会的基础题型。这些题型请大家务必做好做透,将它的方法吃透。上完课后做作业前,请大家把这些题再仔细看一遍,之后再开始做作业,事半功倍。
请大家在每个知识点结束时争取将这个知识点的问题解决。不说难题都没有问题,至少基本的概念,方法要会。
在做难题的时候,要注意方法。其实数学也是有方法可找的。就比如说解析几何,椭圆这类型的题,是联立还是点差法,在每次做完题后,根据题目设问的类型要进行反思和整理。
考试的时候,大家务必拿到的分,就是选择除最后一道,填空除最后一道,大题的前几道,这些题拿到了,上100肯定没问题。那些难题,再提升提升,120以上应该是可以的。
第四篇:高二数学学习方法
高二数学学习方法
在生活、工作和学习中,大家都在努力,勤奋的学习,找到适合的学习方法,能够让大家学习更有效率!想要高效学习,却不知道怎么做?以下是小编整理的高二数学学习方法,欢迎大家分享。
高二数学学习方法1一、温故法
学习新概念前,如果能对孩子认知结构中原有的适当概念作一些结构上的变化来引进新概念,则有利于促进新概念的形成。
二、操作法
对有些概念的教学,可以从感性材料出发,让孩子在操作中去发现概念的发生和发展过程。
三、类比法
这种方法有利于分析两相关概念的异同,归纳出新授内容有关知识;有利于帮助孩子架起新、旧知识的桥梁,促进知识迁移,提高探索能力。
四、喻理法
为正确理解某一概念,以实例或生活中的趣事、典故作比喻,引出新概念。
五、置疑法
这种方法是通过揭示教学自身的矛盾来引入概念,以突出引进新概念的必要性和合理性,调动孩子了解新概念的强烈的动机和愿望。
六、创境法
如在讲相遇问题时,为让孩子对相向运动的各种可能的情况有所感受,可以从研究"鼓掌时两只手怎样运动"开始。通过拍手体验,在边问、边议中逐步讲解。实践证明,如此使孩子犹如身临其境去体验并理解有关知识,能很快准确地掌握相关的数学概念。
高二数学学习方法2一、了解高中数学知识的特点
经过初中三年的学习,特别是中考前的复习、巩固,同学们已经熟练地掌握初中知识,并对其中一些数学思想、方法有所体会。而高中的知识无论从深度还是广度上都比初中有所加强,因此在学习中感到有一定的困难也是正常的。解决的方法之一是我们首先要对高中知识的特点有所了解,做到心中有“数”。高中知识及其学习方法具有以下的特点:
1、概念的抽象性
进入高中后,同学们觉得数学的概念不易理解。的确,初中阶段我们所学的概念很多都是从直观例子或实际事物的关系中获得感性认识后才给出定义,而高中的概念的获得则需要更多的理性思考。以函数概念为例,初中阶段我们是考虑变量x,y之间的.对应关系,即对x每个值都有唯一的y对应;而高中再次接触函数时,是从两个非空数集A,B中的元素之间的对应关系来考虑的。通过对比,我们还可以看到两个阶段中对函数的学习是有区别的。首先在符号表示上,初中只要求我们以具体的函数解析式如:等来表示函数,而高中阶段我们用更抽象的形式这个形式便于对函数的一般性质进行研究;其次,在初中阶段,学习过函数概念后,通过对具体函数的应用来实现对函数概念的巩固。而在高中阶段则是通过对函数一般性质的讨论、应用来实现对函数概念的深入理解和巩固。
上述分析告诉我们,若能将初、高中的同一概念加以对比、我们就能够对高中的抽象概念理解得更为透彻。
2、语言的精炼性
从集合与函数这章开始,一些数学符号,如∩,∪,∈。Φ等等已初广泛地运用,将繁冗的语言表示得即简单又精确。例如,空集Φ可以表示方程无解;再如,设方程组的解集是F,方程的解集分别是与。若我们要表示出F、、之间的关系,用集合语言很容易,即。
3、知识的综合性
高中数学每一章,每一节的知识都不是孤立的,章与章之间,节与节之间有密切的联系,需要我们综合运用。例如在我们学习了有关解不等式的内容后,我们来看下列问题:已知三个不等式:要使满足不等式(3)的x值至少满足不等式(1)和(2)中的一个,求a的取值范围。
这个问题的分析,不仅涉及到不等式解的问题,还涉及到方程根的分布,函数在某一点的取值,几个不等式解集之间取交还是取并等等,需要我们综合利用学过的知识。
二、自觉架起数学知识的过渡桥梁
1、把握好集合的概念、性质
集合知识是由初中向高中知识过渡的第一座桥梁。首先,集合的表法使初中所学的自然数集、有理数集、实数集等有关的知识的表示更为简炼,从而简化了后面复杂问题的表述;其次,集合间的关系运算可以更好地帮助我们理解新学的知识,例如对不等式的解或方程组的解的理解;第三,集合作为一种数学思想渗透于今后所要学习的许多知识中。因此在高中伊始学好有关集合的知识是十分重要的。
2、加强联想与类比
高中知识与初中知识之间的联系是十分密切的。高中的很多知识可以通过降维、降幂等形式转化为初中的有关知识,但这需要我们能将它们加以类比、联想。以几何为例,初中平面几何中我们有过证明正三角形内任意一点到三边的距离和等于三角形的高,通过面积和相等很容易证明。类比高中立体几何,我们能否证明一个正面体内任意一点到四个面的距离和等于该四面体的高呢?
其实同学们能够看出这个问题与上面平面几何的问题是十分类似的。这里是将二维的问题推广到三维。二维的问题可以用面积解决,三维的问题我们能用什么办法呢?也许用求体积的方法?有兴趣的同学可以试一试。当然,联想、类比是以对知识的理解与掌握为前提的。
3、深化对数学计算的认识
数学计算在中学各个阶段的学习要求有所不同。高中阶段要求的不再是简单的应用运算法则进行运算,而是要求在计算中掌握计算的方法,理解算理,如构造法、拆项法、变量替换法、数学归纳法等的选择与运用。
例如当我们学习数列求和时遇到这样的问题:“求1!+2!2+3!3+······+n!n的和”。显然利用公式是无能为力的。这就需要我们构造算法,不妨从通项n!n入手,找出它与(n+1)!、n!的关系,不难发现n!n=(n+1)!—n!,这样运用拆项法解决了求此和的问题。
三、几点学习建议
1、认真阅读教材
想只凭借课堂听讲就学好高中数学,这对大多数同学来说是不太可能的。要求我们在课下认真阅读教材,在阅读的同时还要勒于思考,只有这样才能深入理解知识及知识的联系。
2、理解、掌握、运用数学思想方法
数学思想方法是数学知识的精髓。初中阶段同学们对综合分析法、反证法等有了一些体会。与之相比,高中所涉及的数学思想方法要丰富得多。如:集合思想、函数思想、类比法、数学归纳法、分析法等常用的数学思想方法渗透于各部分知识中,都需要大家认真体会。
3、注意知识之间的联系
在日常的学习中要做到:
①注意思考不同数学知识之间的联系;
②注意例题与习题间的联系。弄清知识之间的逻辑关系,从而系统、灵活地掌握高中数学。
第五篇:浅谈高中立体几何的学习方法
浅谈高中立体几何的学习方法
高三数学组邓雪芹
升入高中后,面对新的课程,新的知识,新的学习方法很多学生多会感到无所适从,尤其是在高中立体几何方面颇感头疼。中学阶段我们接触的是一些简单的平面几何内容,学生在这一阶段并没有建立起比较强的空间感,所以学起来比较吃力。然而立体几何在历年的高考中有两到三道小题,必有一道大题。虽然分值比重不是特别大,但是起着举足轻重的作用。下面就如何学好立体几何谈几点建议。
一 立足课本,夯实基础
直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。(这个定理对今后学习线面垂直以及二面角的平面角的作法非常重要)定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在出学的时候一般都很复杂,甚至很抽象。掌握好定理有以下三点好处:
(1)深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。
(2)培养空间想象力。
(3)得出一些解题方面的启示。
在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,(我要求学生用手里的书本当平面,笔作直线)这样亲自实践可以帮助提高空间想象力。对后面的学习也打下了很好的基础。
二 培养空间想象力
从认识平面图形到认识立体图形是一次飞跃,要有一个过程。有的同学自制一些空间几何模型并反复观察,这有益于建立空间观念,是个好办法。有的同学有空就对一些立体图形进行观察、揣摩,并且判断其中的线线、线面、面面位置关系,探索各种角、各种垂线作法,这对于建立空间观念也是好方法。
建立空间观念要做到:重视看图能力的培养:对于一个几何体,可从不同的角度去观察,可以是俯视、仰视、侧视、斜视,体会不同的感觉,以开拓空间视
野,培养空间感。加强画图能力的培养:掌握基本图形的画法;如异面直线的几种画法、二面角的几种画法等等;对线面的位置关系,所成的角,所有的定理、公理都要画出其图形,而且要画出具有较强的立体感,除此之外,还要体会到用语言叙述的图形,画哪一个面在水平面上,产生的视觉完全不同,往往从一个方向上看不清的图形,从另方向上可能一目了然。加强认图能力的培养:对立体几何题,既要由复杂的几何图形体看出基本图形,如点、线、面的位置关系;又要从点、线、面的位置关系想到复杂的几何图形,既要看到所画出的图形,又要想到未画出的部分。能实现这一些,可使有些问题一眼看穿。
此外,多用图表示概念和定理,多在头脑中“证明”定理和构造定理的“图”,对于建立空间观念也是很有帮助的。
三 建立数学模型
新课程标准中多次提到“数学模型”一词,目的是进一步加强数学与现实世界的联系。数学模型是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的描述。数学模型的形式是多样的,它们可以是几何图形,也可以是方程式,函数解析式等等。实际问题越复杂,相应的数学模型也越复杂。
从形状的角度反映现实世界的物体时,经过抽象得到的空间几何体就是现实世界物体的几何模型。由于立体几何学习的知识内容与学生的联系非常密切,空间几何体是很多物体的几何模型,这些模型可以描述现实世界中的许多物体。他们直观、具体、对培养大家的几何直观能力有很大的帮助。空间几何体,特别是长方体,其中的棱与棱、棱与面、面与面之间的位置关系,是研究直线与直线、直线与平面、平面与平面位置关系的直观载体。学习时,一方面要注意从实际出发,把学习的知识与周围的实物联系起来,另一方面,也要注意经历从现实的生活抽象空间图形的过程,注重探索空间图形的位置关系,归纳、概括它们的判定定理和性质定理。
四 逐渐提高逻辑论证能力
立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备
了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(“推出法”)形式写出。
五 “转化”思想的应用
解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:
1.两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。
2.异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。
3.面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。
4.三垂线定理可以把平面内的两条直线垂直转化为空间的两条直线垂直,而三垂线逆定理可以把空间的两条直线垂直转化为平面内的两条直线垂直。
以上这些都是数学思想中转化思想的应用,通过转化可以使问题得以大大简化。
六 总结规律,规范训练
立体几何解题过程中,常有明显的规律性。例如:求角先定平面角、三角形去解决,正余弦定理、三角定义常用,若是余弦值为负值,异面、线面取锐角。对距离可归纳为:距离多是垂线段,放到三角形中去计算,经常用正余弦定理、勾股定理,若是垂线难做出,用等积等高来转换。不断总结,才能不断高。
还要注重规范训练,高考中反映的这方面的问题十分严重,不少考生对作、证、求三个环节交待不清,表达不够规范、严谨,因果关系不充分,图形中各元素关系理解错误,符号语言不会运用等。这就要求我们在平时养成良好的答题习惯,具体来讲就是按课本上例题的答题格式、步骤、推理过程等一步步把题目演
算出来。答题的规范性在数学的每一部分考试中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。对于即将参加高考的同学来说,考试的每一分都是重要的,在“按步给分”的原则下,从平时的每一道题开始培养这种规范性的好处是很明显的,而且很多情况下,本来很难答出来的题,一步步写下来,思维也逐渐打开了。
七、借助向量这个有用的工具
在学习过程中,用传统的方法不太好做的题目,抓住好本质,建立空间直角坐标系,借助向量这个有用的工具,证明垂直,平行,解决夹角,线面角,二面角等问题就非常容易.
高考中还十分重视解题过程表述的正确与严谨。同学们对“作”、“证”、“算”三个环节往往头轻脚重,对图形构成交代不清楚,造成逻辑上错误,对需要严格论证的往往没有表达出来,只算结果。这些在复习中都应该引起注意。在传统的逻辑推理方法中的基本步骤是:“一作,二证明,三求”;在用向量代数法时,必须按照“一建系,二求点的坐标,三求向量的坐标,四运用向量公式求解”;如在证明线面垂直时,证明线线垂直时,容易只证明与平面内一条直线垂直就下结论,这里应强调证明两条相交直线,缺一不可;用空间向量解决问题时,需要建立坐标系,一定要说清楚;用三垂线定理作二面角的平面角时,一定得点明斜线在平面上射影;书写解题过程的最后都必须写结题语。在解题中,要书写规范,如用平行四边形ABCD表示平面时,可以写成平面AC,但不可以把平面两字省略掉;要写出解题根据,不论对于计算题还是证明题都应该如此,不能想当然或全凭直观;对于文字证明题,要写已知和求证,要画图;用定理时,必须把题目满足定理的条件逐一交代清楚,自己心中有数而不把它写出来是不行的。
八、培养两种意识
特殊化意识。许多线面关系的问题要特别注意它们的特殊位置关系,在一些计算问题中,一般位置和特殊位置的答案是不变的,从特殊中寻找快捷的解题思路。要培养这种意识,以提高解题速度。有时,由特殊图形的关系可引出一般在关系。
运动的观点。平移不改变角的大小,在立体几何中,所有角的求解都可做平行线来解决,这样可将不相交的线的夹角转化为相交线的夹角;直线不能移动,但其方向向量可以按需要任意平移。
在平时的学习过程中,对于证明过的一些典型命题,可以把其作为结论记下来。利用这些结论可以很快地求出一些运算起来很繁琐的题目,尤其是在求解选择或填空题时更为方便。对于一些解答题虽然不能直接应用这些结论,但其也会帮助我们打开解题思路,进而求解出答案。
我相信,如果在学习过程中做到了以上八点,那么任何题目也会迎刃而解。